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Abstract

Visual object tracking is a fundamental function of computer vision that
has been the object of numerous studies. The diversity of the proposed
approaches leads to the idea of trying to fuse them and take advantage of
their individual strengths while controlling the noise they may introduce in
some circumstances. The work presented here describes a generic frame-
work for combining and/or selecting on-line the different components of the
processing chain of a set of trackers, and examines the impact of various
fusion strategies. The results are assessed from a repertoire of 9 state-of-
the-art trackers evaluated over 46 fusion strategies on the VOT 2013, VOT
2015 and OTB-100 datasets. A complementarity measure able to predict the
overall performance of a given set of trackers is also proposed.

Keywords: visual object tracking, fusion, on-line behavior analysis

1. Introduction

Single-object tracking is a computer vision function with a long research

history. Indeed, mastering the capacity of pursuing reliably and efficiently
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a given target, and being robust to various nuisance phenomena, is the key
to many off-line or on-line applications exploiting video data (security, video
surveillance, road traffic control, production control, human-machine inter-
action, multimedia indexing). This research topic produces a huge amount
of studies each year, sometimes accompanied by new evaluation benchmarks
and metrics, e.g. the ALOV++ dataset [1], or the On-line Tracking Bench-
mark [2]. One of the recent outstanding benchmark actions has been the
yearly VOT Challenges' that have emphasized the evaluation of single-
object model-free (no pre-learned model) short-term (no re-detection func-
tion) tracking through two criteria: robustness to drift and localization ac-
curacy. The main conclusions were that "None of the trackers consistently
outperformed the others by all measures at all sequence attributes" and that
"trackers tend to specialize either for robustness or accuracy" [3].

What is proposed in this article is to build on this empirical fact and
study how an existing repertoire of available trackers can be generically
combined in an efficient way. Tracker combination will be based on the
traditional fusion concepts of redundancy — tracker outputs are combined
— and complementarity — the repertoire of trackers samples different fea-
tures and functional structures. A key component of a fusion scheme is the
availability of a self-diagnosis capacity: its role is to prevent the propagation
of errors during fusion, detect and discard trackers with noisy behaviors, and
eventually correct them. It will be shown that possessing such a capacity
greatly improves the fusion performance.

The emphasis of the present work will be put on analyzing the drifting

behavior of trackers. From an operating point of view, losing the tracked
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target is certainly the most impacting type of error, since it implies also loss
of its awareness. Target re-acquisition is possible but is generally less reliable
and more costly. The VOT challenge has been one of the first benchmarks
to address specifically this question, and our evaluation will follow their
methodology.

Fusion approaches can be segmented in two families [4]: passive or active.
The passive approaches only combine tracker outputs with no interaction
between the trackers, whereas the active ones integrate data provided by each
tracker with the objective of correcting their inner model when necessary.
We show that active fusion leads in general to better performances, but
necessitates a control over tracker components and update mechanisms.

Determining what are the most efficient combinations of trackers, i.e.
enabling a high level of robustness at low cost, has a practical impact. We
introduce a complementarity measure between trackers based on individual
drift measures to predict the fusion performance of the combined trackers in

order to select it. The main contributions of this paper are the following:

(1) We describe a generic and parametric framework for the combination of
trackers and identify several levels and modes where fusion can operate.
The formalism results in 46 different configurations.

(2) We show experimentally that the ability to predict drift is essential for
good fusion performance and propose several on-line schemes to compute
such a prediction that can be used in active fusion approaches.

(3) We evaluate and rank the fusion configurations on 4 databases using a
repertoire of 9 state-of-the-art trackers.

(4) We propose a quantitative way to predict the complementarity of track-

ers to determine the best combinations for fusion.



The paper is organized as follows: Section 2 introduces the different
notions of fusion applied to the on-line combination of trackers. Section 3
presents the corresponding related work. Section 4 evaluates a series of
trackers and analyses their behavior with the idea of fusing them. Several
ways to detect on-line abnormal tracker behavior are presented in Section 5.
The fusion framework is described in Section 6. Section 7 gives material and
implementation details for the experiments used to identify the key fusion

strategies in Section 8. Section 9 concludes with final recommendations.

2. Exploiting multiple trackers

The fusion of trackers is based on a simple principle: single trackers have
each their domain of expertise that can be enlarged by fusion at different
levels. To understand how fusion can be realized, a better understanding of

the structure and functioning of a single tracker is first needed.

2.1. Single tracker

The objective of a tracker is to predict on-line the position of a target in
each frame of a video given an initial position. This position is represented by
a rectangular bounding box (z, y, w, h) adapted to the region occupied by the
target, (x,y) are the coordinates of the top-left corner, and (w, h), its width
and height. To deal with the appearance or motion variations of the target,
modern trackers exploit a time dependent target model which is updated
when a new frame is made available so as to deal with the target appearance
or motion variations. This model is commonly built using appearance (color,
texture, gradient, spatio-temporal) or motion features [5]. A tracker usually
operates in two stages: prediction and update. It predicts the position by

measuring a consistency score with the target model, the position with the



highest score distance is usually taken as the target’s new position. The

model is then updated using this new prediction.

2.2. Fusing trackers

Given a collection of assorted trackers, each characterized by a specific
type of image features, target model and updating mechanism, how can they
be combined to improve globally tracking performances?

A first design step is to identify a functional architecture. Two types
have been classically studied: cascade and parallel. In a cascade architec-
ture, trackers run sequentially and decide at each step to operate or not the
next tracker. One significant advantage of using cascade is the reduction of
the computation costs by executing the fewest possible trackers. However,
cascade architectures are often difficult to set-up, and are very sensitive to
single tracker failures due to their chained dependencies. Since the main
objective devoted to fusion in our paper is to increase the overall tracking
robustness, this type of architecture is clearly not the best option.

In a parallel architecture, all trackers run simultaneously. In this family,
two approaches of fusion can be distinguished: passive or active [4]. In pas-
sive approaches, trackers run independently from each others. The objective
of fusion is simply to combine their individual predictions. One limitation
of this scheme is that there is no functional way to correct drift: if a tracker
from the fused family loses the target, it cannot recover or only by chance,
for instance if the target trajectory crosses the wrong prediction. Thus, fu-
sion schemes must find a way to identify erroneous predictions to discard
them before combining the outputs. We will describe three different ways to
do so in Section 6.

Drift has two consequences on a tracker behavior: it drives the target out



of the search window used to predict the next best target position, and it
pollutes the samples used to update the target model, which may have lower
discriminating capacity. One of the roles of an active fusion approach is to
rely on the other trackers to correct these two misbehaving features. This
can be done using actions such as controlling the samples used to update
the model, or reinitializing the model, or correcting the search area from
the pool of tracker outputs. The key feature is therefore the design of a
reliable selection process analyzing tracker behavior, either individually or

collectively.

3. Related Work

The idea of fusion in tracking has been addressed in the literature either
as a control and selection of models exploited in the processing chain, or as
a dynamic combination of the inputs and outputs of several modules. The
information fusion domain sometimes speaks of centralized vs. decentralized
functional architectures [6].

Most of the tracking approaches proposed in the literature can be con-
sidered as falling into the centralized architecture category: they describe
different ways to combine either motion models |7, 8, 9, 10|, observation
models [9, 11] or appearance features [9, 12, 13, 14, 15, 16] to cite few of
them. Since our concern in this study is the analysis of decentralized strate-
gies for tracking, we won’t describe these approaches further and refer to
other recent surveys [17, 5, 1].

Decentralized fusion approaches applied to tracking differ on three as-
pects: the specificity of fused modules, the nature of interaction between

modules (passive vs. active) and the way individual module outputs are



evaluated.

Specific fusion schemes

Computer vision literature offers many types of processing modules that
can be combined in a specific way to build a complex tracker, typically
by the association of generic and on-line learned detectors. The approach
proposed by Siebel et al. [18] combines in a complex way two detectors
(motion and face) and two trackers (region-based and shape-based) to track
people specifically.

Other studies combine detectors and trackers of a whole target: Stenger
et al. [19] propose parallel and sequential fusion schemes for hand and face
tracking involving several trackers and an off-line trained detector, whose
role is to reinitialize failing trackers. Trackers are evaluated on-line using
their own confidence score: this score corresponds to an expected tracking
precision error from an off-line training that is used to determine the good
or bad operation of the tracker.

Santner et al. [20] exploit the specificities of three trackers based on
different designs in a cascade: template correlation, on-line random forest
detectors and optical flow, each tracker correcting the previous one.

The last two approaches can be considered as following an active fusion

scheme since they sequentially combine tracker outputs.

Generic fusion

Generic fusion approach combine tracker outputs with little knowledge
of the trackers. Bailer et al. [4] propose a passive fusion of a large amount of
tracker outputs (29 tracking algorithms from |2|) by maximizing a bounding

box attraction function and smoothing the final trajectory.



Zhong et al. [21] propose a passive fusion of tracker outputs using a
weakly supervised learning to simultaneously infer the most likely object
position and the probability of each tracker to provide accurate predictions.

Moujtahid et al. [22] combine a set of AdaBoost trackers [23] based on
heterogeneous characteristics (color, texture, shape) and operating indepen-
dently. At each moment, the best tracker is selected and updated from a
standardized confidence score and a spatio-temporal coherence measure. In a
more recent version, Moujtahid et al. [24] add a context predictor computed

from image features in their tracker selection process.

On-line module selection

Most of the previously presented approaches exploit a confidence score
produced along the predicted object bounding box and aiming at charac-
terizing the quality or reliability of the provided information. The role of a
selective strategy is to detect on-line each tracker abnormal behavior before
fusion.

A first idea is to detect when the low level image processing behaves
badly. A learning approach has been proposed by Zhang et al. [25] to predict
computer vision system failures for application of semantic segmentation,
vanishing point estimation and camera parameter estimation from a series
of image features (SIFT, colors, textures, gist, HOG, line histograms, LBP,
similarities) using a Support Vector Machine for classification or regression.
Daftry et al. [26] proposes the same kind of approach but exploits Deep Con-
volutional Networks to extract image features and fine tune them on learning
sequences. Grimmett et al. [27, 28] introduce the idea of introspective clas-
sification and apply it to predict the risk of taking a decision for specific

families of classifiers in robotics applications. However, all those approaches



are limited to memoryless image processing and require the knowledge of an
annotated learning database to specifically build the failure predictor off-line:
they cannot be applied to assess the behavior of complex dynamic systems
such as visual tracking algorithms.

Biresaw et al. [32| describe a particle filter based approach, where each
particle is considered as a single tracker, and propose a selection and cor-
rection strategy based on the spread of each particle correlation matrix to
detect abnormal behavior. Tracker selection is only produced from its spatial
behavior.

Another approach is to compare the results of various trackers to assess
their behavior. Kalal et al. [29] describe the TLD which is the cooperation of
a flow-based tracker and an on-line learned detector. They are combined and
updated using a low resolution template based detector assessing the quality
of each estimate. A more recent version of a similar active fusion scheme
where the combination law is described as a Hidden Markov Model, the
HMMTxD, has been published by Vojir et al. [30] and uses a set of trackers
and a high precision detector (zero false positive rate and 30% recall) to
update the HMM parameters and reinitialize the incorrect trackers. The
HMM estimates the most probable state of the trackers (correct or incorrect
operation) and outputs an average bounding box from the correct trackers.

Table 1 summarizes the various works described in this section.

The fusion approach we propose in this article is the fusion of modules:
our goal is to combine a heterogeneous repertoire of trackers, i.e. modules
of variable performance and cost, and allowing a generic level of interaction
between them. The combination is controlled through an on-line assessment
of each tracker behavior, which will govern the global dynamics of selection,

aggregation and correction of a pool of trackers. It will also be shown that



Table 1: Comparison of various fusion approaches. The second column gives the type
of fusion implemented (passive vs. active). The third column gives the number of fused
modules or n if unbounded and the fusion architecture (|| for parallel, L for cascade).
The fourth column gives indication of the way tracker outputs are combined (iteration
means that the fusion sequentially corrects tracker outputs, selection means that several
tracker outputs are discarded, and weighting means that the resulting output is a weighting

average of tracker predictions.)

Reference Fusion | Combined Output
type modules combination

Siebel [18] passive 4in || iteration
Santner [20] active 3in L iteration
Stenger [19] active | 41in || et L selection or iteration
Kalal [29] active 2in || selection

Vojir [31] active 2in || selection
Biresaw [32] active n in || weighting
Zhong [33] passive n in || weighting

Moujtahid [22] | passive nin || selection
Bailer [4] passive n in || weighting
Our work active n in || selection and/or weighting
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the simple fusion of tracker outputs has some benefit and can be easily

introduced in our framework to discard drifting trackers.

4. Off-line Tracker Evaluation

A usual action before proposing a fusion approach is to state the quality
of the components that will be combined. We present in this section how in-
dividual tracker performance is classically addressed (Section 4.1). Addition-
ally, we describe a local analysis evaluating the potential complementarity

of trackers and more suitable to fusion issues (Section 4.2).

4.1. Global Evaluation

The global evaluation follows the protocol and metrics defined in the
VOT Challenge [34]. One of its interesting features is to propose a specific
procedure to address drifting phenomena and exploit fully the annotated
sequences. This is done simply by reinitializing the tracker 5 frames after
a drift is detected, assuming that the new starting frame is uncorrelated
with the previous ones to reduce the estimation bias. A drift is indicated by
an overlap with null value, the overlap between two boxes B and B’ being

defined as a classical intersection over union area ratio:

BnB
IoU(B,B') = ;B ¥ B,: (1)
The two metrics used in the evaluation are accuracy and robustness.
Accuracy is measured by averaging the overlap between the track and the
ground truth over the video base, after removing the first 10 frames following
each reinitialization. Robustness is defined as the total number of drifts.

As announced in the introduction, our study is focused on drift control,

which is more naturally measured by robustness. However, achieving a good
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accuracy may be critical in several applications requiring geometric precision

(grasping, human computer interaction).

4.2. Local Evaluation

To complement the global evaluation of the trackers, we conducted a more
fine-grained analysis, by making a frame by frame account of tracker drifts
in each sequence of the video base. Figure 1 shows the drifting behaviors of
several trackers.

Tracker drifts give valuable information about their local behaviors, in
particular about their expected complementarity, i.e. their capacity to sub-
stitute each other when one of them drifts. This local complementarity can
be exploited for fusion. Figure 2 shows the drifting times of 8 typical trackers
(Section 7) obtained by applying the VOT protocol. Trackers show hetero-
geneous behaviors from one sequence to another: CT [36] and DPM |38, 39|
drift many times more in handballl than in the other sequences. There are
both correlated drifts as in gymnastics at frame 100, and also complementary
behaviors: ASMS [43] does not drift when the others are drifting. Similarly,
DSST [44] and ASMS are complementary in bolt. However, trackers have
also redundant behaviors: many are correctly running in gymnastics from
frame 1 to 100, which involves a certain computational cost. A good fusion

scheme should be able to balance between complementarity and redundancy.

Complementarity of trackers. Bailer et al. [45] introduce the concept of
fusibility, which compares the impact of a tracker when added to fusion or
removed from it (positive /negative impact, gain, etc.). However, its fusibility
measure is more fusion-method dependent since it is calculated after fusion.

We propose instead a complementarity measure between two or more

trackers on a given database, called "incompleteness", independent from
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Figure 1: Drifting behaviors of 6 trackers (NCC [35], KLT [29], CT [36], STRUCK [37],
DPM [38, 39], MS [40]) for particular events like occlusion (a), brightness changes (e,f),
blur (c,e), background clutter (c,d,f), scale (b) and appearance changes (d,e,f) on 6 videos
taken from VOT2013 (a) [34], our GoPro videos (b), VOT2015 (c,d,e) [41] and VOT-
TIR2015 (f) [42] using the VOT protocol. Active trackers are displayed, each outputs
a color bounding box. The cyclist is occluded by a post (a), the motorbike reduces in
size (b), the dinosaur is of the same color as the background (c), the fish warps and is
very similar to the background (d), the motorbike is rotating with important brightness
changes and blur (e), the quadrocopter is less textured in infra-red images than in RGB

(f). Refer to Section 4.2.
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Figure 2: Drifts of 8 trackers (NCC [35], KLT [29], CT [36], STRUCK [37], DPM |[38,
39], DSST [44], MS [40], ASMS [43]) in 3 difficult sequences taken from VOT2013 (bolt,
gymnastics) [34] and VOT2015 (handballl) [41]. Drifts are represented by color dots, a

different color for each tracker. See details in Section 4.2.

the fusion method. It requires only the drifts recorded individually from
each tracker as shown in Figure 2. Contrary to Bailer et al., it does not
measure the positive or negative contribution of one tracker relatively to
a group of trackers but the complementarity of a whole. We express the

complementarity of a set of trackers by its incompleteness defined below.

Incompleteness. The incompleteness measure expresses the inability of the
trackers to compensate collectively for drifting, and is computed as the num-
ber of times when all trackers are simultaneously drifting at the same mo-
ment. At each time ¢, define a variable di for each indicating that tracker T;
for i € [1, M] is drifting.

We define the incompleteness I of a set of M trackers on a database of

N frames as:
N

M
=314 @)

t=11i=1

Remind that, in the evaluation protocol inherited from the VOT chal-
lenge, reinitialization takes place 5 frames after a drift is detected. This

neutral interval can be interpreted as an uncertainty on the drifting time. A
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( ) bicycle (b) (c)

Figure 3: Score Maps of 5 trackers. (a) image from bicycle in VOT2013 [34], the blue
bounding box is the target ground truth. (b), (c), (d), (e) and (f) are respectively the
Score Maps of 5 trackers: NCC [35], KLT [29], STRUCK [37], CT [36] and DSST [44],
corresponding to image (a). High scores are in red, low scores in blue. The evolution of the
score distribution (intensity of the red stain, size, local maxima, etc.) gives information

about the tracker good functioning. Details are in Section 5.1.

good complementarity of trackers means a low incompleteness.

5. On-line Tracker Failure Prediction

Many existing trackers can be used in our fusion framework: it is only
required that they output a bounding box and an associated confidence value
at each frame. Here, we describe an important stage of the fusion of multiple
tracker outputs, which is to select the correct outputs. Our approach is to
predict tracking failures from a set of M parallel trackers T = {13, T3, ... Ty},
either individually or collectively. At each time ¢, for each tracker T;, i €
[1, M], a state st = {0, 1} is estimated, 1 for a valid state and 0 for a drifting

state. Three ways to estimate this state are proposed in this section.

5.1. Behavioral Indicators (BI)

Trackers may have various functional and algorithmic structures. We
present in this section three types of behavioral indicators that can adapt
generically to most of them: confidence score, Score Map and specific indi-

cators.
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Confidence Score. At each frame, a tracker outputs a bounding box corre-
sponding generally to a maximum confidence or prediction score in a search
window depending on the tracker (correlation, classification or detection
score). This confidence score represents the discriminating capacity of the
inner object model and also can be interpreted as a behavioral indicator of
the correct or poor operation of the tracker: the higher the score, the more
reliable the prediction. It is expected that drift can be anticipated when this

score decreases over time or goes under a given threshold.

Score Map. Rather than exploiting only its maximum value as it has been
done in [19, 29, 30|, our idea is to exploit the spatial distribution scores over
the whole image or at least over a local window. This distribution which we
call Score Map, can be peaked or flat, peaked meaning that the localisation
is expected to be more precise and more reliable. Examples of Score Maps
computed by different trackers are shown in Figure 3. We assume that
tracker behavior can be characterized by this Score Map. For that, we need
to extract some behavioral indicators based on the intensity of the response
and its spatial distribution. We determine empirically these indicators by
a closer analysis of the map distribution, testing several ones and choosing
those that describe best its evolution. The exact indicators are detailed in

Section 7.

Specific Indicators. For more complex trackers or for trackers for which the
computation of Score Maps is either unreliable or not feasible due to their
algorithmic structure, we defined ad hoc indicators: this is the case of the
DPM based tracker |38, 39] which generates only sparse detections, and the
ASMS [43] which uses an iterative scale estimation. Their exact definition

is detailed in Section 7.
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Estimate a tracker state using Behavioral Indicators. For each tracker T;,
i € [1,M], we construct a function DP; capable of predicting its state s
depending on its behavioral indicators ¢! at each time t, DP; : ¢! — si. It
consists of separating the behavioral indicator space in two states, the valid
and invalid state by thresholding. Thresholds are obtained by an off-line
evaluation of the predictive ability of DP; and are chosen so as not to exceed
a certain number of false drift predictions, the chosen values are detailed in
Section 7. The off-line evaluation of the predictive ability of DFP; consists of
comparing the drift predictions output by DP; over a database to the real
drifts measured by the VOT protocol. A prediction is counted as correct
(good detection) when it has taken place 1-15 frames before a real drift
otherwise is counted as a false alarm. The chosen range of 1-15 frames is

large due to the nature of the drifts, that can be fast or slow.

5.2. Box Filtering (BF)

The principle is to predict a drift when the current estimated location
of the target B% from tracker T; is very far from the previous estimated
location B{“$"" output by fusion: dist(BI"S"", Bi) > width(B{"s*™) then
st = 0, otherwise si = 1. The distance dist used is the euclidean distance
between the center of the boxes. Contrarily to the overlap distance, it does

not penalize a well-centered B! which is very different in size from Bﬁfi‘m.

5.3. Box Consensus (BC)

The principle is to use information from other trackers to estimate the
quality of current predictions, assuming that only few trackers in a given
collections are likely to drift. We use a simple decision rule by analyz-

ing the distribution of bounding boxes output by all trackers at time ¢,

17



Bt = (B}, B?,..BM). We first cluster the predicted bounding boxes By as
connected components derived from a similarity threshold: bounding boxes
having an overlap > 0.5 are put in a same cluster. We then select a refer-
ence cluster whose center is the nearest to the previous estimated location
l%fff"m The boxes that do not belong to the selected cluster are declared

drifting. We found this simple outlier detection sufficient in our experiments

given the size of the pool of trackers used.

6. Proposed Fusion Approach

Our system is composed of a set of M trackers T = {T1,T5,... Ty}
running in parallel. At the starting frame, all trackers receive a bounding
box By as input, which is the known localization of the target in the first
image Iy. At each image Iy, each tracker T;, i € [1, M], outputs an estimated
bounding box B; Our fusion approach consists of fusing their outputs By =
(E}, Btz, BiM) with a dynamic selection of the good ones, to give the output
of the system BJ“*". This selection goes through an on-line evaluation of
the trackers as described previously in Section 5. Moreover, passive or active
fusion is handled in our framework, enabling to choose between different

ways to correct the trackers. The fusion scheme is divided into 4 stages as

illustrated in Figure 4 and detailed below.

6.1. Tracker Parallel Running
At each time t, each tracker T; outputs one bounding box Bg and behav-

ioral indicators ¢ as described in Section 5.1.

6.2. Tracker Selection by On-line Failure Prediction
The dynamic tracker selection is performed by Drift Predictors (DP) that

estimate the state of each tracker. Each tracker Tj, i € [1, M], is associated

18



1. Tracker Parallel Running 2. Tracker Selection

! i 1

: BLet ;o .

! H H 3. Tracker Fusion
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Figure 4: Our fusion approach divided into 4 principal stages (parallel running, selection,
fusion and correction), refer to Section 6. For each new image I, each tracker T3, i € [1, M],
predicts the target location B! and computes (optional) behavioral indicators ¢! that
are indicators of the correct or poor functioning of the tracker. Vectors are in bold.
B: = (B},..BM) and/or ¢¢ = (¢1,...¢M) are used by Drift Predictors (DP) to predict
the state of each tracker si = {0,1}, 1 for a valid state and 0 for a drifting state. sy =
(si,...s27). Only bounding boxes provided by valid trackers are fused to give the output
B tfusion'

of the system Drifting trackers can be corrected by updating or reinitializing

their observation model with the correct location newly computed B} crmected — gfusion,

Hcorrected _ ; pHl,corrected M ,corrected
Be = (B ,..B] ).
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with a DP; that estimates its state si at each time ¢ using:
(i
(ii

(ii

) Behavioral Indicators (BI) in Section 5.1,

) or Box Filtering (BF) in Section 5.2,

) or Box Consensus (BC) in Section 5.3,

(iv) or combined methods like BI+BF, which is an OR operation between
their individual estimated state vector sg = (s}, 57, ...507),

(v) or BI+BC, Bl is first applied followed by BC: boxes are first eliminated

by BI, then the remaining ones are clustered.

Simulation of an Ideal DP. We can simulate an Ideal DP for each tracker in
order to measure the fusion performance in the best case scenario. For that,
we use the overlap to the ground truth B; and define a drift threshold fixed
to 0.2. If IoU(Bf, By) < 0.2, then DP; outputs a drift: st = 0.

No DP. The selection step can be skipped.

6.3. Fusion Bounding Box Computation

The output of the system Btf usion i computed by merging the outputs

of the K valid trackers, K < M. Recall that a valid tracker T; is defined by

a valid state si = 1. Two methods are used to compute BJ“*":

(i) Average (Avg): by averaging the coordinates of the K valid boxes.
(ii) Center of gravity (Grav): by weighting the K valid boxes in relation
to the euclidean distance to the other boxes. Define d;; the distance

between the centers of box ¢ and box j. Weight w; of box ¢ is:
1
Zj;&z’ dij

Wy = ZK 1
k=1 Zj;&k di;

N fusion
By =

If there is no correct box left after the selection step, then

A fusion
Busion.
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6.4. Tracker Correction

After calculating E{ usion o tracker correction step is possible. In a pas-
sive approach, this step is skipped (P). In the active one, the invalid trackers
can be corrected using the outputs of the valid ones. Indeed, drifting track-
ers are more likely to fail in the next frames since their object models are
polluted by bad updates. Thus, two types of correction can be applied to the
object model: update or reinitialization. Reinitialization is useful when the
tracker has definitely drifted out of the target area. However, reinitialization
means restarting the tracker from scratch, resetting the past knowledge of
the target appearance and variability. A less drastic way is to update the
object model by providing the right location and features to track when the

tracker is drifting. Therefore, we present three exclusive ways to correct the

object model:

(i) Update the model of drifting trackers only (UD) with the right location
output by fusion E{ usion.
(ii) Update the model of all trackers (UA) with BJ*5",

(iii) Reinitialize the model of drifting trackers only (RD) with BJ“*".

Define the corrected bounding bores used to update or reinitialize the
trackers: Bgorrected — {Ei’correded,i el,M }} Bieorrected qorresponds to
BI"$"" for an update or a reinitialization, B! otherwise (no correction).

ngected are looped back to the trackers as input as illustrated in Figure 4.

6.5. Fusion Configurations

One fusion configuration of the system consists of choosing one method
for each step of the fusion (selection, fusion, correction). In total, 46 possible

fusion configurations can be experimented.
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7. Material and Implementation

Databases. We evaluate our fusion approach on 3 databases with varied ob-
jects and scenes in challenging conditions (camera moving and zoom, bright-
ness changes, occlusions, deformable objects, fast appearance changes and

object movements, etc.):

(a) VOT2013+ contains 12 videos from VOT2013 [34] completed with 1
video from the KITTI Vision Benchmark Suite [46], and 5 other videos
we have taken from a GoPro camera embarked on a vehicle, available on
request. VOT2013+ contains a total of 25 objects (6525 frames).

(b) VOT2015 [41] contains 60 videos (21455 frames).

(c) VOT-TIR2015 [42] contains 20 thermal infra-red videos (11269 frames).

(d) OTB-100 (http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.

html) contains 98 videos of various length (58264 frames).

Trackers. The considered trackers in this work consist of a mix of standard

and state of art trackers based on different target features and object model:

(a) NCC (Normalized Cross-Correlation) [35], uses a gray-scale target patch
taken from the first frame and a normalized cross-correlation.

(b) KLT (Kanade Lucas Tomasi Tracker) [29], is the optical flow tracker
from the TLD [29] but without scale estimation.

(c) CT (Compressive Tracking) [36], uses an object model composed of mul-
tiple object-background classifiers, based on Haar-like features.

(d) STRUCK (Structured Output Tracking with Kernels) [37], is a struc-
tured output SVM framework using Haar-like features and gaussian ker-

nels.
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(e) DPM based tracker, combines an object detector based on trained de-
formable part models [47] using Dubout and Fleuret implementation [38]
and a Kalman filter [39].

(f) DSST (Discriminative Scale Space Tracker) [44], learns a multi-scale
correlation filter based on PCA-HOG features.

(g) MS (Meanshift) [40], uses an HSV color histogram from the initial target
patch and a mean-shift on the back projection image of the histogram.

(h) ASMS (Adaptive Scale mean-shift) [43], uses a RGB color histogram
weighting that exploits the target neighborhood and estimates the target
position and scale using mean-shift and a backward consistency check.

(i) CCOT-HOG (Continuous Convolution Operator Tracker )[48], learns
a multi-scale correlation filter on HOG features and searches the best

matching pattern through a continuous interpolation in spatial domain.

We collected source codes of open source trackers? and integrated them
into C4++ multi-threaded fusion framework running on an Intel Xeon 4 core
2.80 GHz CPU with 8 GB RAM. Their individual performances (robustness
and accuracy defined in VOT, and speed, the number of frames proceeded

per second) on the 3 databases can be found in Table 2.

*https://github.com/votchallenge/vot-toolkit for NCC, https://github.com/
gnebehay/OpenTLD for KLT, http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm
for CT, https://github.com/samhare/struck for STRUCK, https://github.
com/fanxu/ffld for DPM, https://github.com/klahaag/cf_tracking for
DSST, http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_
object_tracking.html for MS, https://github.com/vojirt/asms for ASMS.
https://github.com/martin-danell jan/Continuous-ConvO0p provides a  Matlab

implementation of CCOT that has been integrated in the C++ framework.
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Table 2: Tracker individual performances on VOT2013+, VOT2015, VOT-TIR2015 and
OTB-100. The number of sequences and total number of frames for each base are indicated
in parenthesis. r0b is the robustness (total number of drifts), acc is the accuracy (average
overlap) and speed, the number of frames proceeded per second. Best robustness, accuracy

and speed per base are in red, the second best results in blue. See details in Section 7.

VOT2013+ VOT2015 VOT-TIR2015

(25, 6525) (60, 21455) (20, 11269 )

OTB-100
(98, 58264 )

rob acc speed|rob acc speed|rob acc speed | rob acc speed

NCC [35] 131 0.59 612 |447 0.54 1046|149 0.66 1310 | 602 0.61 1201
KLT [29] 69 0.44 58 |253 0.41 57 [123 0.34 103 | 349 044 73
CT [36] 36 0.44 28 |221 042 22 |144 051 31 | 354 048 26

STRUCK [37] |38 049 23 |156 0.46 19 |140 0.54 20 | 182 0.56 22
DPM |38, 39] 57 0.47 24 525 04 49 |186 049 48 | 740 041 46
DSST [44] 18 0.61 190 | 170 0.54 177 |47 0.64 209 | 120 0.67 325
MS [40] 194 0.27 606 | 654 0.32 434 |297 0.24 422 |1205 0.36 568
ASMS [43] 30 0.44 290 |112 0.5 236 |8 0.53 610 | 197 0.56 355
CCOT-HOG [48]| 12 0.56 8 [102 051 7 |26 064 9 68 0.66 10

Behavioral Indicators. There are 2 groups of trackers: ones with a Score
Map (NCC, KLT, CT, STRUCK, DSST, MS, CCOT) and ones with specific
indicators (DPM, ASMS). DP based on BI are built by fixing empirically
the thresholds so that the number of generated false alarms is low.

For those that use the Score Map, most of the maps are rectangular local
maps of fixed size or depending on the target size (w, h).

NCC uses three indicators computed on the local correlation map: d.e: =

(Tmaz(t) = Tmae(t — 1)) /w, AYmaz = Ymaz(t) = Ymaz(t — 1))/h, dmaz =
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(maz(t — 1) —max(t))/maz(t — 1). Tpmaez(t) and Ymaz(t) are the x-y coordi-
nates of the maximum score of the map maxz(t) at time ¢t. The BI thresholds
are respectively 0.2, 0.2 and 0.2.

KLT computes a local map, each location (x,y) of the map stores the number
of matched points cumulated in a window (w, h) centered on (x,y). Three
indicators are used: dz. = (x.(t) — z.(t — 1)) /w, dy. = (yc(t) — yc(t — 1)) /h,
dspotsize = Spotsize(t) — spotsize(ty). x.(t) and y.(t) are the x-y coordinates
of the center of the spot in the map, defined by values > 200 at time ¢. The
number spotsize(t) = #(pizels > 200)/#(pizels > 0) counts the number of
values > 200 normalized to the number of positive values at time ¢. The BI
thresholds are respectively 0.35, 0.35 and 1.5.

CT computes a map of sums of likelihood ratios and uses one indicator:
darea = (area(t) — area(t — 1))/area(t — 1). The area area(t) counts the
number of scores higher than thr(t) = max — 0.1 * (max — min) with max
and min being the maximum and minimum values of the map at time t.
The BI threshold used is 0.7.

STRUCK computes a map of SVM classification scores and uses two indi-

cators: varTYiomaer = \/vara:wmax? + varyromaz?/min(w, h) and dryme: =

\/ ATmaz® + AYmaz /min(w, h). varTyiomaes is the variance (in pixels) of the
location of the first 10 maxima of the map at time ¢t. The number dzyq. is
the distance between the location of the maximum value in the map at time
t and t — 1. The BI thresholds used are respectively 0.5 and 0.5.

DSST computes a correlation map and uses one indicator: the Peak to Side-
lobe Ratio PSR [49]. The BI threshold is 8.

MS computes one indicator on the back projection map: fbratio = (maxp—
pup)/op where maxp is the maximum score of the foreground (box), the

mean pp and the standard deviation op are computed on the neighbor back-
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ground of size 3 x (w, h). The BI threshold is 8.

CCOT-HOG computes a correlation map at an optimal scale and exploits
a single indicator: the relative ratio between the current max value and the
maximal score on the first frame which is expected to be between 0.25 and
1.25.

For the trackers that do not use the Score Map, we compute specific in-
dicators. DPM uses two indicators: dbest = score(bestl) — score(best2) and
obest = IoU (bestl,best2). dbest is the difference of scores between bestl
and best2. bestl is the detection with the highest score and has an overlap
> 0.3 with the previous target location. best2 is the detection with the best
score below bestl. The BI thresholds are respectively 0.05 and 1.

ASMS uses two indicators: bhattacharyya coefficients of the foreground
bhattay and background bhatta, at the target predicted position. The BI
thresholds are respectively 0.4 and 0.3.

The threshold values have been settled empirically on the VOT2013+
dataset by collecting the indicator values and computing corresponding pre-
cision/recall curves for drift prediction. The target operating point was a
recall (i.e. a good drift prediction rate) of approximately 0.75. We have
checked that the threshold values generated similar precision/recall operat-
ing points on the VOT2015 database. The same values have been used for

all the experiments.

8. Experimental Results

We conducted thorough experiments from our available data and software
to answer two different questions: the impact of the selection and the cor-

rection step in our fusion approach and what is the best fusion configuration
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in Section 8.1; the best combination of trackers achieving high robustness at

low cost in Section 8.2.

8.1. What is the best fusion configuration?

In order to circumscribe the number of combinations evaluated and avoid
useless computations, we first selected the 4 trackers among the 9, with com-
parable individual performances: CT, STRUCK, DSST and ASMS. Prelim-
inary experiments with low performing trackers (NCC, KLT, DPM and MS)
showed no improvement when fusing them with the other trackers.

For this section, we experimented the fusion of 3-tracker combinations us-
ing the 4 selected trackers over the 46 fusion configurations, some fusion con-
figurations only make sense when the number of combined trackers is higher
than 2: CT+STRUCK+DSST, CT+STRUCK+ASMS, CT+DSST+ASMS
and STRUCK+DSST+ASMS.

We eliminated the 23 fusion configurations from the 46 that use the center
of gravity fusion (Grav). Experiments showed that an average fusion (Avg)
gives fewer drifts than a center of gravity fusion (Grav).

The following fusion robustness results in Figure 5 and Table 3 are com-
puted by averaging the robustness of the 4 selected tracker combinations over
all the fusion configurations using the specified selection and/or correction

method.

Impact of the Selection Step in Fusion. Figure 5a shows the average fusion
robustness obtained using each of the selection method (no DP, Ideal DP,
BF, BC, BI, BI+BF, BI+BC) on the 3 databases. Designing a good DP
associated with a simple fusion strategy greatly improves the tracking ro-

bustness as the Ideal DP results show. Using one of our 5 designed selection
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Average robustness per selection method Average robustness per correction method
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Figure 5: Average fusion robustness obtained for the 3 databases individually and summed
(Total). (a) shows the performances by using different tracker selection methods (no DP,
Ideal DP, BF, BC, BI, BI+BF, BI+BC). (b) shows the performances by using different
tracker correction methods (P, UD, UA, RD). For each method, the robustness is aver-
aged over the 4 combinations (CT+STR+DSST, CT+STR+ASMS, CT+DSST+ASMS,
STR+DSST+ASMS) and the fusion configurations of the corresponding selection method

in (a) and correction method in (b). The standard deviation is provided.

methods (BF, BC, Bl, BI+BF, BI+BC(C) globally outperforms fusion with-
out the selection step (no DP) as the figures show in Total (total of the 3
databases). The best method is BI+BF followed by BF. There is a slight
advantage in mixing selection methods. Bad results of BI are partly due to
the limited capacity of the trackers to provide sufficiently reliable scores that
leave no doubt about the tracker behavior. Indeed, the capacity of the ap-
pearance model to absorb the target appearance variations remains unclear
and differs from one tracker to another. It is more efficient to combine BI

with other methods.

Impact of the Correction Step in Fusion. Figure 5b shows the average fusion
robustness using each of the correction methods (P, UD, UA, RD) on the 3

databases whatever the chosen selection method except the Ideal DP config-
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urations that are removed from the calculation. In Total of the 3 databases,
the best correction method whatever the utilized selection method is UA,
followed by UD, then P. The worse is RD. One of the reasons of the bad
impact of reinitialization is that the appearance used to setup a new model
occurs simultaneously with the drifting phenomenon (occlusion, illumina-
tion, aspect change), which is often a transient event in the sequence. Thus,

model update is preferable to reinitialization.

Determining the best fusion configuration. Table 3 gives the average fusion
robustness over the total of the 3 databases (one single big database) with
the corresponding standard deviation for the different selection-+correction
methods. When there is no DP, the only correction that can be made is
UA. Passive fusion P is considered as invalid when using BI, BI+BF or
BI+B(C because DP based on BI are incapable of detecting a drift after it
has occurred (linked to the inner working of the model), and thus need an
active approach to be operational. The results show that with a perfect com-
mand on the selection step (Ideal DP), active fusion (UD, UA, RD) would
outperform passive fusion (P). In that case, UD would be the best active fu-
sion method. In practice, the best configurations are 2 active configurations
(BI+BF+UA, BI+UA) followed by 2 passive ones (BF-+P, BC+P). Active
fusion gives generally better results but is also more fluctuating (important

standard deviation).

8.2. What is the best combination of trackers?

Even if we have full control on the selection and correction step, i.e. ca-
pable of selecting properly the trackers for fusion and correcting the drifting
ones, there is one parameter left that influences on the fusion performance:

the choice of the trackers. Thus, the question is to know how to determine
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Table 3: Average fusion robustness per selection (no DP, Ideal DP, BF, BC, BI, BI+BF,
BI+BC) and correction method (P, UD, UA, RD) on the total of the 3 databases. For each
selection+correction method, the fusion robustness is averaged over the 4 combinations
(CT4+STR+DSST, CT+STR+ASMS, CT+DSST+ASMS, STR+DSST+ASMS) and the
fusion configurations of the corresponding selection+correction method. The standard
deviation is provided. The best robustness performances (except the Ideal DP) are in

red, and the best one is in addition underlined. See details in Section 8.1.

no DP Ideal DP BF BC BI BI+BF BI+BC

P |282+£28 86+£20 200+£20 201+£17

UD 6712  212+18 243+26 241+£24 208£26 210£20
UA | 227£14 78£14 216435 249417 191462 180462 213+35
RD 71+£9 213+21  283+£16 259+32 223£25 244419

the best group of trackers to fuse for a given database. One research area to
explore is the complementarity of the trackers. Our hypothesis is that, the
more complementary the trackers, the better the fusion.

For the following experiments, we retain one of the best fusion configura-
tions from Section 8.1: BC+P. The reason why we choose a passive config-
uration is that the active ones give more fluctuating performance from one

combination to another.

Complementarity of trackers. Figure 6 plots the fusion performance w.r.t.
the incompleteness on VOT2015 of all the possible combinations of 2-4 track-
ers from the 8 available in (a) and details the combinations of 2 trackers in
(b). The fusion performance seems to be correlated to the incompleteness:
the lower the incompleteness, the better the robustness. Thus, the incom-

pleteness can be used as an empirical way to determine the most efficient
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combinations of trackers on a database for a small number of fused track-
ers. We also observe that the variations of the fusion performance decrease
with the number of fused trackers. However, the maximum performance
is reached for 2 trackers on VOT2015. Thus, adding more trackers does
not necessarily improves robustness. The combination of very heterogeneous
trackers with very different individual performance can affect significantly
the fusion results. It requires the capacity to manage the numerous drifts of

the bad trackers.

VOT2015 : 2 trackers
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Figure 6: Fusion robustness w.r.t. the incompleteness of tracker combinations (NCC [35],
KLT [29], CT [36], STRUCK [37], DPM [38, 39], DSST [44], MS [40], ASMS [43]) using the
fusion configuration BC+P on VOT2015. (a) shows all the combinations of 2-4 trackers

among the 8. (b) shows all the combinations of 2 trackers. See details in Section 8.2.

Best tracker combinations for each database. Table 4 shows the combina-
tion with the highest robustness for each database using the selected fusion
configuration (OQurs). We do the same with another fusion approach quite

similar to our work: Bailer’s passive fusion [4] (Bailer), by executing its on-
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line available code® using the basic approach. We computed as a percentage
the Gain obtained relatively to the best individual robustness of the combi-
nation, tagged as Indiv in the table. Our fusion approach outperforms the
passive approach of Bailer et al. for the 3 databases. One has to notice that
the best combination is not the same for all databases; however the perfor-
mance Gain using the best fusion combination is always positive, justifying
the usefulness of a fusion approach.

We provide further discussion of these results and extra experimentation
in the following section.
Table 4: Best robustness (Robust) from Bailer’s fusion and from Ours using the configura-
tion BC+P on the 3 databases. Best indicates the corresponding combination of trackers.
The percentages indicate the Gain of the fusion compared to the best individual tracker

of the combination Indiv. D: DSST, A: ASMS, M: MS, S: STRUCK, C: CT, P: DPM.

Best results are in red. See details in Section 8.2.

VOT2013+ VOT2015 VOT-TIR2015
Best  Robust Best Robust Best Robust
Indiv. | D 18 A 112 D 47

Bailer | D+M 16 (11%) |S+D+A 108 (4%) |[S+D+A 45 (4%)

Ours |D+A 13 (28%) | S+A 100 (11%) | C+P+D+A 39 (17%)

8.3. Discussion and further directions of work

The fundamental idea of this study was to exploit on-line tracker drift

prediction (DP) in an active fusion process. This was motivated by the fact

3https://sites.google.com/site/alainpagani/
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(BF+P)

(BI+BF+UA)

Figure 7: Example of the impact of target confusion on two fusion approaches. Motor-

Rolling sequence from OTB-100 at times 61, 71 and 85.

(BI+BF+UA)

Figure 8: Example of the impact of badly localized bounding boxes over targets on two

fusion approaches. Human2 sequence from OTB-100 at times 760, 790 and 828.
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Table 5: Conditional performance on OTB-100 dataset for 4 different fusion configurations
of three different trackers (ASMS, STRUCK and DSST). IV = Illumination Variation, SV
= Scale Variation, OCC = Occlusion, DEF = Deformation, MB = Motion Blur, FM =
Fast Motion, IPR = In-Plane Rotation, OPR = Out-of-Plane Rotation, OV = Out-of-
View, BC = Background Clutters, LR = Low Resolution.

OPR BC OCC MB SV IV IPR LR OV FM DEF
BF+P 80 o4 76 °8 94 72 73 15 25 57 45
BC+P 55 32 53 52 75 45 51 9 21 60 44
BI+UA 73 34 62 7371 49 73 6 25 87 48
BI+BF+UA | 82 54 82 54 99 71 79 20 25 54 40

that having access to an Ideal DP greatly improved the overall performance of
the fused solution. Designing such a DP and controlling its impact appeared
to be quite tricky in practice. This section discusses some of the issues that
have been raised during this study.

Influence of video features. Table 5 analyzes the robustness of a three-tracker
configuration according to specific video attributes as proposed in (http://
cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html). The figures
show that the more complex fusion strategies (BI+) seem to be useful only
on few videos from the OTB-100 dataset. We couldn’t find however any
clear and meaningful correlation between the fusion strategies and the video
features which does not depend on the nature of the trackers involved.
Repertoire of trackers. Table 6 shows the influence of performance hetero-
geneity when fusing several trackers. The results illustrate the fact that
fusion strategies seem mostly interesting when trackers are of comparable

performance but rely on different design principles. The CCOT and DSST
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Table 6: Influence of the quality of individual trackers: STRUCK(S), ASMS (A),
DSST(D), CCOT(C) in the fusion process of two configurations on OTB-100 dataset.

Number of drifts

Fusion strategy
S+A+D S+A+C

Indiv. 182/197/120 | 182/197/68
Bailer Basic 105 88
Bailer Weighted 116 75
BC+P 119 102
BF+P 93 79
BI+UA 128 102
BI+BF+UA 129 99

trackers both exploit a multi scale discriminant pattern correlation approach
but exhibit different performances: when DSST is fused with STRUCK and
ASMS, which are trackers of comparable performance regarding robustness,
three fusion strategies are able to increase the overall system performance.
This is not true for CCOT, where all fusion strategies give lower performance
than the best individual tracker. Table 6 shows a comparison with two other
fusion schemes proposed by Bailer et al. [4]: the basic approach and the
weighted approach exploiting explicitly an estimate of the average tracking
accuracy. This last strategy is able to control the performance loss, but do

not provide any improvement when compared to the best tracker (CCOT).

Fusion vs. single. To further evaluate the impact of fusion, we have iden-
tified the sequences where fusion appeared to be profitable vs. damageable

(Table 7), with the hypothesis than each sequence in the OTB-100 bench-
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Table 7: Number of sequences from OTB-100 dataset where fusion has a positive/negative

impact when compared to the best individual tracker. Only sequences with a difference

of more than 2 drifts are reported. The names of the best/worse sequences are provided

with the drift number difference.

Fusion strategy

Number of sequences better /worse

BlurOwl(-9) / Carl(+7)

S+A+D vs. D S+A+C vs. C
11/9 3/8
Bailer Basic
Skating2(-5) / Tigerl(+3) David(-4) / Human4(+7)
8/7 6/11
Bailer Weighted
David(-5) / BlurFace(+11) | MotorRolling(-2) / Panda(+3)
5/2 1/1
BC+P
Skating2(-7) / Suv(+4) MotorRolling(-4) / BlurFace(+8)
11/1 9/8
BF+P
David(-6) / Human9(+6) David(-5) / BlurOwl(+7)
12/14 7/13
BI+UA
BlurOwl(-12) / Carl(+7) MotorRolling(-5) / Carl(+11)
12/14 10/11
BI+BF+UA

MotorRolling(-5) / Human2(+11)
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mark is a typical example of video feature mixture (for example the BlurOwl
sequence is marked with SV-MB-IPR-FM features, whereas Carl is marked
with LR-IV-SV-BC). This table shows that fusion improves performance on
sequences that are difficult for the best individual tracker (Skating2 and
BlurOwl for DSST, MotorRolling for CCOT), but may also degrade it for
several sequences. The degradation is however less consistent over sequences,
and does not seem to be correlated with the video features — performance
on BlurOwl for instance can be either increased or lowered depending on the

tracker pool.

Influence of tracker behavior on fusion. To further understand the reasons of
performance increase or degradation of the fusion strategies, one has to take
into account the individual tracker behaviors. We propose to classify individ-
ual tracker abnormal behavior in two different categories: target confusion
and bad localization. The first category happens when the target model is
attracted by a pattern with an appearance similar to the target and gets
stuck on it. The model adaptation mechanism used to control target ap-
pearance variability, often a first order dynamical model, gets trapped on a
wrong pattern. Figure 7 shows an example of such an attraction (see CCOT
box in the first row). BF+P is a simple strategy that does not exploit any
correction nor selection, but a box averaging (see 6.3): when tracker outputs
are far apart, fusion generates a wrong bounding box. BI+UA+BF, however,
contains a correction mechanism able to reposition trackers: the second row
of Figure 7 shows that this fusion strategy is able to counter CCOT target
confusion.

The second category describes trackers that provide bounding boxes with
translation, scale or orientation errors. Figure 8 shows the behavior of the

same strategies on trackers that provide in-homogeneously localized bound-
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ing boxes: the correction mechanism in this case has a negative impact, and
progressively drives trackers to be collectively attracted on a wrong pattern.
These two examples show how fusion strategies may be able to correct tracker
behavior, but also that none — at least those evaluated in this paper — can

be considered universally better.

Role of selection. On-line tracker selection is a very useful step in the fusion
strategy but heavily depends on a high level of drift prediction accuracy.
We proposed two different approaches to do so: an analysis of predicted box
distribution (BF and BC), and a self-diagnosis indicator of the appearance
model quality (BI). The first one appeared to be simple and rather effec-
tive, but failed in case of large camera motion; the second was difficult to
calibrate directly from the inner data accessible in each tracker and did not
show substantial improvements in the fusion process when used alone. Both
selection strategies exploit low dimensional tracker features: other decision
schemes exploiting more directly image features and their dynamics could
improve drift prediction accuracy, but would probably necessitate a larger
set, of training data.

Role of correction. One limitation of our approach is the lack of adaptabil-
ity of the reinitialization and updating schemes: all the trackers are either
reinitializing or updating their model from the fused prediction depending
on the chosen strategy. Although UA and UD appeared globally better than
RD (UA > UD > RD), a better flexibility of the correction scheme could
improve their robustness (see the difference of correction impact on the two
examples of Figure 7 and Figure 8).

Practical limitations. The main practical limitation to make use of the var-
ious fusion approaches described in this paper on a given set of trackers

is the implementation of the BI based selection part (indicator design and
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drift detection threshold). All the other fusion configuration parameters
(P,BF,BC,UAUD,RD) are tracker independent.

A basic approach to design a drift predictor is to use the confidence
coefficient or the likelihood often computed in the processing chain to locate
the target position from a local score map (see example in Figure 3). Rather
generic indicators can be computed from the score distribution in the map,
as has been done for DSST or STRUCK, for instance (see sections 5 and 7).
However, as Figure 3 also illustrates, the score map shape is highly tracker
dependent, and sometimes not that easy to exhibit given a tracker code —
not speaking of the software interoperability issues to integrate the code in

a common environment.

9. Conclusion

The work described in this paper focused on the design of good strategies
for the on-line fusion of trackers. The emphasis was on controlling the overall
robustness of tracking measured as a number of drifting events, i.e. the
number of times the target is lost when applied on a given database. Trackers
deal with critical situations differently (illumination, occlusion, appearance
changes, camera motion); the idea was to exploit their complementarity on
various fusion strategies.

Fusion can operate at two levels: by selecting the appropriate set of good
trackers and/or by correcting either their output or their inner state. Drift
prediction based on various features has been proposed and more specifi-
cally studied as a key component of the selecting step. The overall fusion
strategies resulted in 46 different schemes that have been extensively evalu-

ated on 3 databases (VOT2013+, VOT2015, VOT-TIR2015 and OTB-100)
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and a repertoire of 8 trackers with available source code (NCC, KLT, CT,
STRUCK, DPM, DSST, MS, ASMS, CCOT).

The results of the experiments can be summarized as a series of recom-
mendations (What trackers use? What to fuse and how?) when trying to
apply on-line fusion given a target database or application context and a set

of trackers with their individual robustness evaluation on the database.

(1) Fusion is helpful when fusing trackers with comparable individual per-
formance (robustness) and gives an important gain. By contrast, fusing
very heterogeneous trackers can be harmful when noisy outputs contam-
inate the other trackers and degrade their behavior.

(2) A selection step is useful, the simplest methods based on bounding box
reasoning — temporal filtering and consensus — leading to comparable
results to more specific methods trying to give independently a hint of
each individual tracker behavior (score or likelihood maps).

(3) The correction step is sensitive to individual tracker behaviors: passive
fusion cannot recover from target confusion, and active fusion may be

contaminated by bad target localization.

Fusion performance also depends on tracker complementarity besides
their individual performance. To quantify the complementarity of a set of
trackers, we defined an incompleteness measure based on off-line individual
drifts that is predictive (with a certain variance) of the fusion performance
of 2 to 4 trackers. This measure can be used to choose the best combination

of trackers for a given database.
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