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Abstract This is a companion paper of a previous

work on the surface reconstruction from a sparse cloud

of points, which are estimated by Structure-from-Motion.

The surface is a 2-manifold sub-complex of the 3D De-
launay triangulation of the points. It is computed as

the boundary of a list of tetrahedra, which grows in the

set of Delaunay tetrahedra. Here we detail the proofs
for the 2-manifold tests that are used during the grow-

ing: we show that the tetrahedron-based test and the

test for adding (or subtracting) one tetrahedron to (or
from) the list are equivalent to standard tests based on

triangles.

Keywords Reconstruction · Volumetric models ·
Geometric topology · Duality and planar graphs

1 Introduction

Recently, batch [7] and incremental [11,8] methods have
been introduced to reconstruct a surface from sparse

Structure-from-Motion points. These methods adaptively

divide up the space using a 3D Delaunay triangula-

tion (tetrahedralization) of the points, whose tetrahe-
dra are labeled as free-space or matter using visibil-

ity constraints provided by Structure-from-Motion. The

surface is then computed as the boundary of a list O of
tetrahedra, which grows in the set of free-space tetra-

hedra. This list must be as large as possible subject to

the constraint that the boundary is a 2-manifold.
These methods represent the 3D Delaunay triangu-

lation by the adjacency graph g of the tetrahedra, since

this is adequate for both memory space [1] and tetra-

hedron labeling. The surface is implicitly represented
by the set which includes every g edge linking a tetra-

hedron in O and another one not in O. However, the

standard 2-manifold tests for a surface are defined on a
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surface-based representation (e.g. the adjacency graph

of triangles), not a volumetric one as in ours.
Thus, two 2-manifold tests directly based on tetra-

hedra are used in [7] for efficiency. The former checks

that the surface is a 2-manifold near surface vertex v

by counting the connected components of a g sub-graph

of the tetrahedra having v as vertex. The latter checks

that a single tetrahedron can be added to O without
loss of the 2-manifold property.

However, the complete proofs of the two tests have

not been published before. The former has a short and

sketch proof in Appendix A of [7], which ignores the
case of a surface with a vertex at the boundary of the

Delaunay triangulation. The latter only has a visual

proof [2] (a figure) or a partial proof [4] (sufficient but
not necessary condition) in the special case where the

surface encloses all input points. Here we give detailed

proofs with necessary and sufficient conditions in all
cases. The paper provides prerequisites (Sec. 2), state-

ments (Sec. 3) and proofs (Sec. 5 and 4) of the tests.

2 Prerequisites (Main Definitions, Properties)

The majority of prerequisites are in [6,5]. We introduce
integers k ≥ 0 and n > 0. A (geometric) simplex σ is the

convex hull of k+ 1 points v0 · · ·vk in general position

in R
n, i.e. v1 − v0 · · ·vk − v0 are linearly independent.

We say that σ′ is a face of σ if σ′ is the convex hull

of some of the vi above (thus σ′ ⊆ σ). A simplicial

complex K in R
n is a finite set of simplices in R

n such
that

1. if σ ∈ K and σ′ is a face of σ, σ′ ∈ K.

2. if {σ, σ′} ⊆ K, σ∩σ′ is empty or a face of σ and σ′.

Let V ′ be a set. An abstract simplicial complex S
is a finite set of subsets of V ′ such that A ∈ S and
B ⊂ A imply B ∈ S. It is implicitly defined by every

simplicial complex K as follows: V ′ is the vertex set

of K and S is the family of the vertex sets of the K

simplices. Conversely, we say that K is a realization of
S in R

n. In this paper, we often use the same notation

for a simplicial complex and its abstract version.

The elements of S are called (abstract) simplices.
Their faces are their subsets. If simplex σ has exactly

k+1 vertices, σ has a dimension k. Simplex σ is a vertex,

edge, triangle or tetrahedron if k is 0,1,2 or 3, respec-
tively. We use bold fonts for vertices in an (abstract)

simplicial complex, e.g. a is a vertex, ab is an edge,

abc is a triangle. We say that edge ab is c-opposite in

triangle abc, triangle abc is d-opposite in tetrahedron
abcd, σ is σ′-incident if σ′ ⊂ σ.

Let L′ be a subset of simplices in an (abstract) sim-

plicial complex. The closure c(L′) is the set of the faces

of the L′ simplices; c(L′) is an (abstract) simplicial com-

plex which includes L′. Let σ ∈ L′. If σ is not included
in another simplex in L′, we say that σ is maximal in

L′. In a k-dimensional pure (abstract) simplicial com-

plex, every maximal simplex has dimension k, therefore
every simplex is included in a simplex of dimension k.

The boundary ∂σ of a k-dimensional simplex σ is

the set of its k+1 faces of dimension k−1: a tetrahedron

has four triangles, a triangle has three edges, an edge
has two vertices, a vertex has an empty boundary. If all

simplices in L′ are tetrahedra, boundary ∂L′ is the set

of triangles such that every triangle is a face of exactly

one tetrahedron in L′. In this case, c(L′) and c(∂L′)
are 3D and 2D pure (abstract) simplicial complexes,

respectively.

Let V be a set of m ≥ 4 points in R
3. Let T be a set

of tetrahedra which meets three conditions:

1. V is the vertex set of the tetrahedra in T .
2. the convex hull of V is the union of tetrahedra in T .

3. the circumscribing sphere of every tetrahedron in T

does not contain a V vertex in its interior.

Thus c(T ) is a 3D pure simplicial complex in R
3, which

is called a 3D Delaunay triangulation of V . Every tri-

angle in c(T ) is included in exactly two tetrahedra in

c(T ), except those in ∂T (we have ∂T 6= ∅).

To avoid special cases in the statements and proofs
of our tests, we extend c(T ) to a 3D pure abstract sim-

plicial complex where every triangle is included in ex-

actly two tetrahedra [1]. Its vertex set is V∞ = V ∪
{v∞}, where new vertex v∞ is called the infinite vertex
(v∞ /∈ R

3). Its tetrahedron set is T∞ = T ∪ {abcv∞,

abc ∈ ∂T} (here we use the abstract versions of c(T )

simplices). Thus c(T∞) is a 3D pure abstract simplicial
complex including the abstract version of c(T ). Assume

σ ∈ c(T∞). We say that σ is infinite if v∞ is a vertex

of σ, otherwise σ is finite.

Let k ∈ {2, 3} and L be a subset of k-dimensional
simplices in c(T∞). If k = 3, we use notation Lc = T∞\
L. Let τ be a vertex or an edge in c(T∞). We also use

notation Lτ = {σ ∈ L, τ ⊂ σ}. For example, T∞
τ is the

set of the τ -incident tetrahedra in T∞, Lc
τ is the set of

the τ -incident tetrahedra in T∞\L. If τ is the edge with

vertices a and b, Lτ = La∩Lb. Indeed, a triangle (or a

tetrahedron) includes edge ab iff it includes vertices a

and b (”iff” means ”if and only if”). Assuming vertex

v ∈ c(T ), v ∈ c(∂T ) iff T∞
v contains at least one infinite

tetrahedron. We also have ∂T∞
v = {abc,abcv ∈ T∞}.

A cycle is a graph with m vertices q1 · · ·qm and

m edges q1q2, · · · ,qm−1qm, qmq1 where m > 2. Let
(V,E) be the graph with vertex set V and edge set E.

Let {V1, V2} be a partition of V . Let F be the set of all

edges in E such that every edge in F has a vertex in
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V1 and a vertex in V2. Set F is a cut in (V,E). Graph

(V,E \ F ) has at least two connected components: one
in V1 and another one in V2. Set F is a minimal cut [3] if

V1 and V2 are two connected components in (V,E \F ).

Two simplices σ1 and σ2 in L are adjacent if σ1∩σ2

has dimension k−1 (e.g. two tetrahedra are adjacent if

their intersection is a triangle). Let gL be the adjacency

graph of L: the vertices of gL are the simplices in L, ev-
ery edge of gL links two distinct vertices in gL if the

two corresponding simplices in L are adjacent. Let τ be

a vertex or and edge in c(T ), and g be the adjacency
graph of T∞. The adjacency graph of T∞

τ is shortened

gτ ; gτ is a connected sub-graph of g. If τ is an edge, gτ
is a cycle. If vertex v is in c(T ), the vertices and edges of

c(∂T∞
v ) form a connected graph. Proofs for these prop-

erties are in the supplementary material (available at

http://maxime.lhuillier.free.fr/pJmiv15Supp.pdf).

A n-ball B has center x ∈ R
n and radius r > 0, i.e.

B = {y ∈ R
n, ||x− y|| < r} where ||.|| is the Euclidean

norm. B is open in R
n. If L ⊆ c(T ), we define |L| =

∪σ∈Lσ (union of convex hulls). A set included in R
n

(e.g. |L|) has the topology induced by the n-balls [12].

Topological spaces X and Y are homeomorphic if there

is a bijective and continuous function ϕ such that ϕ−1

is continuous and ϕ(X) = Y ; ϕ is a homeomorphism.

Let M ⊆ R
3. We say that x ∈ M is regular in M if

x has a neighborhood in M homeomorphic to a 2-ball.
Intuitively, M has a local 2D parametrization at x. If

every x ∈ M is regular in M , M is a 2-manifold in R
3.

3 Overview of 2-Manifold Tests

Let O be a list of tetrahedra included in T∞ such that
every triangle in ∂O is finite. We would then like to

check that |∂O| is a 2-manifold. We use two definitions.

Definition 1 (Good Edges) An edge in c(∂O) is ∂O-

good if it is included in exactly two triangles of ∂O.

Definition 2 (Good Vertex) A vertex v in c(∂O) is
∂O-good if the v-incident triangles in ∂O can be or-

dered as t0, t1, · · · tk such that ti ∩ t(i+1) mod (k+1) is

an edge for every i ∈ {0, 1, · · · k}.

According to [10],

Theorem 1 (Global Test) |∂O| is a 2-manifold iff

the vertices and the edges in c(∂O) are ∂O-good.

We have the same test for a single vertex:

Theorem 2 (Triangle-based Test) A vertex v in

c(∂O) is regular in |∂O| iff v and the v-incident edges

in c(∂O) are ∂O-good.

v
e

Fig. 1 Two examples where |∂O| is non manifold. O has two
tetrahedra, whose intersection is vertex v or edge e.

For the completeness of the paper, we also provide proofs
of these theorems in the supplementary material. Fig. 1

shows two examples where O has two tetrahedra and

both conditions (good vertices and good edges) are needed

to obtain a 2-manifold. On the left, vertex v is not reg-
ular in |∂O| since v is not ∂O-good. On the right, every

point of edge e is not regular in |∂O| since e is not

∂O-good. All other vertices and edges are ∂O-good.

Since Theorem 1 condition is the conjunction of the

conditions of Theorem 2 for all vertices in c(∂O),

Corollary 1 |∂O| is a 2-manifold iff every vertex of

c(∂O) is regular in |∂O|.

The Triangle-based Test can be rewritten using edges [2]:

Corollary 2 (Edge-based Test) A vertex v in c(∂O)

is regular in |∂O| iff the v-opposite edges in the triangles

of ∂O having v as vertex form a cycle.

Now assume that our data structure is the adja-
cency graph g of the tetrahedra of T∞. Boundary ∂O

is represented by a cut: the g edges between O and Oc.

In this case, the following test is preferred [7] over the
Triangle-based Test.

Theorem 3 (Tetrahedron-based Test) Let gOv be

the graph obtained from gv by removing the edges be-

tween a tetrahedron in O and another in Oc. Vertex

v ∈ c(∂O) is regular in |∂O| iff gOv exactly has 2 con-

nected components. These components are Ov and Oc
v.

The proof is in Sec. 5. In [8,7], the implementation of
this test is a graph traversal of gOv .

Fig. 2 shows examples to experiment the above tests:

1. v /∈ c(∂O), gOv is connected since gOv = gv.

2. v is not regular in |∂O|, the v-opposite edges does

not form a cycle, gOv has 3 connected components.
3. v is regular in |∂O|, the v-opposite edges form a

cycle, gOv has exactly 2 connected components.

If we would like to add a single tetrahedron in O, a

specific test is given in Appendix of [11]:

Theorem 4 (Adding One Tetrahedron) Assume

that |∂O| is a 2-manifold. Let ∆ ∈ T \ O and f be the

number of triangles in ∂∆ ∩ ∂O. Thus |∂(O ∪ {∆})| is
a 2-manifold iff one of the following conditions is meet:
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Fig. 2 The Triangle/Edge/Tetrahedron-based tests in three
cases (top, middle, bottom) such that T∞

v
has 6 tetrahedra.

Top: v /∈ c(∂O) and Ov = T∞
v

. Middle: v is non regular and
Ov = T∞

v
\ {abcv, cdev}. Bottom: v is regular and Ov =

T∞
v

\ {abcv}. Left: tetrahedra in Ov. Middle-left: v-incident
triangles in ∂O. Middle-right: graph of the v-opposite edges
in triangles of ∂O. Right: graph gO

v
(a circle is filled iff the

corresponding tetrahedron is in Oc
v
).

f=4f=0 f=1 f=2 f=3

Fig. 3 Cases f ∈ {0, 1, 2, 3, 4} where tetrahedron ∆ can be
added to O such that |∂O| is maintained 2-manifold. Top:
triangles of ∂O ∩ ∂∆ before adding ∆ to O (O is below the
plane, except on the right where |O| is a ball with a tetrahe-
dral cavity). Bottom: surface |∂(O∪{∆})|. The bold vertices
and edges should not be included in a tetrahedron of O.

– if f = 0 and every ∆ vertex v meets Ov = ∅.
– if f = 1 and the ∆ vertex v, which is opposite to

the ∆ triangle included in ∂O, meets Ov = ∅.
– if f = 2 and the ∆ edge e, which is not in one of

the two ∆ triangles included in ∂O, meets Oe = ∅.
– if f = 3.
– if f = 4.

Fig. 3 shows the five cases. The proof is in Sec. 4. In [11,
7,8], we check that Ov = ∅ or Oe = ∅ by a single reading

of T∞
v , the set of v-incident tetrahedra (for edge e with

vertices v and w, we look for the tetrahedra in T∞
v

having vertex w).

Since ∂O = ∂Oc and subtracting one tetrahedron

from O is like adding one tetrahedron to Oc, we can

rewrite the addition Theorem 4 as a subtraction one.
This result is used in [8] (without proof). A similar

result is also used in [2,4] where only cases f ∈ {1, 2}
occur.

4 Proof for “Adding One Tetrahedron”

First we study the simplicial complex “between O and

∆” in the two following lemmas. Intuitively, it is indif-
ferently defined by the intersection of closures of O and

∆, or by the intersection of closures of ∂O and ∂∆. We

have O ⊂ T∞, ∂O ⊂ c(T ) and ∆ ∈ T \O in the paper.

Lemma 1 c(O) ∩ c(∆) is a simplicial complex in R
3.

Furthermore, c(O) ∩ c(∆) = c(∂O) ∩ c(∂∆). As a con-

sequence, the triangles in c(O)∩ c(∆) are exactly those

in ∂∆ ∩ ∂O.

Lemma 2 |∂∆|∩|∂O| = |c(∂O)∩c(∂∆)|. If c(O)∩c(∆)
is 2D pure, |∂∆| ∩ |∂O| = |∂∆ ∩ ∂O|.

We also examine the triangles in ∂(O ∪ {∆}):

Lemma 3 ∂(O ∪ {∆}) = (∂O ∪ ∂∆) \ (∂O ∩ ∂∆).

The proofs of the three lemmas above are in Appendix A.

They can be omitted at the first reading since they

are essentially consequences of basic properties of (ab-
stract) simplicial complexes.

In Lemma 4, we convert the condition of Theorem 4
to a more tractable condition for our proof. It is also

useful to visualize all cases in Theorem 4 at once.

Lemma 4 The condition of Theorem 4 is meet iff c(O)∩
c(∆) is a 2D pure simplicial complex.

Proof If f ∈ {0, 1, 2}, we show that the conditions of
Theorem 4 are not meet iff there exists a maximal sim-

plex in c(O) ∩ c(∆) which is not a triangle.

Assume f = 0. According to Lemma 1, c(O)∩ c(∆)
does not contain triangles. If there is a vertex v of ∆

such that Ov 6= ∅, v ∈ c(O) ∩ c(∆). There is therefore

a maximal simplex τ in c(O) ∩ c(∆) which contains v,
and τ is not a triangle. Conversely, let τ be a maximal

simplex in c(O)∩ c(∆) (which is not a triangle). Every

vertex v of τ is in simplicial complex c(O)∩ c(∆). This
implies that v is a vertex of ∆ and Ov 6= ∅.

Assume f = 1. We have ∆ = abcv and ∂O ∩ ∂∆ =

{abc}. According to Lemma 1, abc is the unique tri-
angle in c(O)∩ c(∆). If Ov 6= ∅, v ∈ c(O)∩ c(∆). There

is a maximal simplex τ in c(O) ∩ c(∆) which contains

v, and τ is not a triangle (otherwise τ = abc, which is
impossible). Conversely, let τ be a maximal simplex in

c(O)∩c(∆) which is not a triangle. Assume (reductio ad

absurdum) that v is not a vertex of τ . Since τ ⊂ abcv,
τ ⊆ abc. Since τ is maximal, τ = abc (impossible).

Thus v ∈ c(O) ∩ c(∆), and we obtain Ov 6= ∅.
Assume f = 2. We have ∆ = abcd, ∂O ∩ ∂∆ =

{abc,bcd} and e = ad. According to Lemma 1, the

triangles in c(O) ∩ c(∆) are abc and bcd. If Oe 6= ∅,
e ∈ c(O)∩c(∆). Since c(O)∩c(∆) only has two triangles
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abc and bcd, edge e is maximal. Conversely, let τ be a

maximal simplex in c(O)∩c(∆) which is not a triangle.
Since every ∆ vertex is in abc or bcd, τ is an edge.

Since every ∆ edge except e is included in abc or bcd,

τ = e. Thus Oe 6= ∅.
Assume f = 3 or f = 4. Thus c(O) ∩ c(∆) contains

f triangles of ∆ (Lemma 1), and every vertex and edge

of ∆ is in these triangles. So c(O)∩c(∆) is 2D pure. ⊓⊔

Last we show that Lemma 4 condition is necessary (in
Lemma 5) and sufficient (in Lemma 6) to conclude that

|∂(O ∪ {∆})| is a 2-manifold. We obtain Theorem 4.

Lemma 5 If c(O) ∩ c(∆) is not a 2D pure simplicial

complex, |∂(O ∪ {∆})| is not a 2-manifold.

Proof The principle of the proof is the following. Since
c(O)∩c(∆) is not 2D pure, it contains a maximal vertex

or edge τ . Then we show that τ is not ∂(O∪{∆})-good
by studying (∂(O∪{∆}))τ , the triangles in ∂(O∪{∆})
which include τ . Lastly we use Theorem 1: |∂(O∪{∆})|
is not a 2-manifold since τ is not ∂(O ∪ {∆})-good.

First we detail (∂(O ∪ {∆}))τ thanks to Lemma 3

and (∂O ∪ ∂∆) \ (∂O ∩ ∂∆) = (∂O \ ∂∆) ∪ (∂∆ \ ∂O).
Using shortened notations LO

τ = (∂O \∂∆)τ and L∆
τ =

(∂∆ \ ∂O)τ , we have (∂(O ∪ {∆}))τ = LO
τ ∪ L∆

τ .

Assume that τ is a vertex. Since τ ∈ c(∂O)∩ c(∂∆)
(Lemma 1), there are triangles tO and t∆ such that

τ ⊂ tO ∈ ∂O and τ ⊂ t∆ ∈ ∂∆. Furthermore tO /∈ ∂∆

(otherwise, τ ⊂ tO ∈ ∂O ∩ ∂∆ ⊆ c(O) ∩ c(∆) and thus
τ is not maximal) and similarly t∆ /∈ ∂O. We obtain

L∆
τ 6= ∅ and LO

τ 6= ∅. Let t′∆ ∈ L∆
τ , t′O ∈ LO

τ and

e = t′O ∩ t′∆. If e is an edge, τ ⊂ e ∈ c(O) ∩ c(∆) and τ

is not maximal (impossible). Thus the adjacency graph
of L∆

τ ∪LO
τ is not connected: τ is not ∂(O∪{∆})-good.

If τ is an edge, gτ is a cycle of adjacent tetrahedra

∆0∆1 · · ·∆n∆0 in T∞
τ (n ≥ 2) where ∆0 = ∆. We have

∆1 /∈ O and ∆n /∈ O (otherwise there is i ∈ {1, n} such

that τ ⊂ ∆i ∩∆ ∈ c(O) ∩ c(∆) and τ is not maximal).

Since Oτ is included in this cycle and ∆ /∈ Oτ 6= ∅,
there are (at least) four pairs (∆i, ∆(i+1) mod (n+1)

)

such that one tetrahedron is in O ∪ {∆} and the other

one is not. Thus, four triangles in ∂(O ∪ {∆}) include

τ : τ is not ∂(O ∪ {∆})-good. ⊓⊔

Lemma 6 If |∂O| is a 2-manifold and c(O) ∩ c(∆)

is a 2D pure simplicial complex, |∂(O ∪ {∆})| is a 2-

manifold.

Proof For cases f ∈ {0, 4}, we choose an arbitrary ver-

tex or edge τ in c(∂(O ∪ {∆})), examine the triangles

in (∂(O∪{∆}))τ , show that τ is ∂(O∪{∆})-good, and
conclude using Theorem 1.

If f = 0, ∂∆ ∩ ∂O = ∅. Lemma 2 implies c(∂O) ∩
c(∂∆) = ∅ and Lemma 3 implies ∂(O ∪ {∆}) = ∂O ∪

b

c

d

a
v

e

Fig. 4 Notations used in the proof of Theorem 3. Here
∂T∞

v
= {abc,acd,adb, ebc, ecd, edb} (e and a are in op-

posite sides of bcd) and Ov = T∞
v

\ {vabc,vadb}. The G
edges are in E, the G∗ edges are in E∗, F ⊂ E, F∗ ⊂ E∗.
Bold edges are drawn if and only if their names are in bold
font (e.g. on the right: E∗ \ F∗ is bold, F∗ is not).

∂∆. Thus (∂(O ∪ {∆}))τ = (∂O)τ or (∂(O ∪ {∆}))τ =

(∂∆)τ . Since |∂O| and |∂∆| are 2-manifolds, τ is ∂O-

good (case 1) or ∂∆-good (case 2) by Theorem 1. We

see that τ is ∂(O ∪ {∆})-good in both cases.

If f = 4, ∂∆ ⊆ ∂O and ∂(O ∪ {∆}) = ∂O \ ∂∆
(Lemma 3). Assume (reductio ad absurdum) that τ ∈
c(∂∆). There is a vertex v in c(∂∆)∩c(∂O\∂∆). Since

|∂O| is a 2-manifold and v ∈ c(∂O), the v-opposite
edges in the triangles of ∂O form a cycle (Corollary 2).

Since |∂∆| is a 2-manifold and v ∈ c(∂∆), the v-opposite

edges in the triangles of ∂∆ form a cycle (Corollary 2).
Now the second cycle is strictly included in the first one

(impossible). We see that τ is not in a triangle of ∂∆

and (∂(O∪{∆}))τ = (∂O)τ . Since |∂O| is a 2-manifold,

τ is ∂O-good (Theorem 1). Thus τ is ∂(O∪{∆})-good.

Assume f ∈ {1, 2, 3}. Since |∂O|∩ |∂∆| = |∂O∩∂∆|
(Lemma 2), |∂O| ∩ |∂∆| is homeomorphic to a closed

2-ball. Thus |∂(O ∪ {∆})| is a 2-manifold since it is a

connected sum [12] of two 2-manifolds |∂∆| and |∂O|.
An alternative proof is the following: |∂(O ∪ {∆})| is
homeomorphic to |∂O| (Appendix B) and |∂O| is a 2-

manifold, thus |∂(O ∪ {∆})| is also a 2-manifold. ⊓⊔

5 Proof of the “Tetrahedron-based Test”

Let v be a vertex in c(∂O). Let G be the graph with

the vertices V and the edges E in c(∂T∞
v ). Let V ∗ be

the triangles in c(∂T∞
v ), i.e. V ∗ = ∂T∞

v . Let G∗ be

the adjacency graph of the triangles in V ∗. Let E∗ be

the G∗ edges, i.e. e∗ ∈ E∗ is an edge between triangles

{tj , tk} ⊆ V ∗ if tj ∩ tk is an edge e ∈ E. The top of
Fig. 4 shows G and G∗ if T∞

v is a set of 6 tetrahedra.

Here we need an additional definition. A drawing of

graph G = (V,E) is a function ϕ defined on V ∪E such

that V and ϕ(V ) ⊆ R
2 are bijective, ϕ(ab) is a non self-
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intersecting curve in R
2 whose endpoints are ϕ(a) and

ϕ(b) if ab ∈ E. Furthermore, two such curves cannot
intersect except at their endpoints.

The proof of Theorem 3 has six steps:

1. show that e 7→ e∗ is a bijection between E and E∗.

2. find a G drawing using a realization of c(T∞
v ) in R

3.

3. show that G∗ has a drawing which is dual [3] to G
drawing (Fig. 4 shows one example for G and G∗).

4. express Theorem 3 in terms of G∗ and a minimal

cut of G∗.
5. express Corollary 2 in terms of G and a cycle of G.

6. show that Theorem 3 and Corollary 2 are equivalent

through duality [3] between cycles of G and minimal
cuts of G∗.

Step 1. We have ∂T∞
v = {abc,abcv ∈ T∞

v }. There-
fore gv (the adjacency graph of tetrahedra in T∞

v ) and
G∗ (the adjacency graph of triangles in ∂T∞

v ) are the

same. Since every triangle abv is included in exactly

two tetrahedra in T∞, every edge ab ∈ E is included
in exactly two triangles in V ∗. The function e 7→ e∗ is

thus well defined and bijective between E and E∗.

Step 2. First we need a realization K of c(T∞
v ) in

R
3. If v /∈ c(∂T ), T∞

v does not contain infinite tetra-

hedra and c(T∞
v ) is a simplicial complex. We use K =

c(T∞
v ). If v ∈ c(∂T ), T∞

v contains infinite tetrahedra.
In this case, another K is required.

Lemma 7 c(T∞
v ) has realization K in R

3 if v ∈ c(∂T ).

Proof Note that c(T∞
v ) is the union of two abstract

simplicial complexes: c(Tv) and the closure of the vv∞-

incident tetrahedra in c(T∞). The former is also a sim-

plicial complex in R
3. The idea of the proof is the follow-

ing. We find w ∈ R
3 such that the latter has realization

K ′ in R
3 by replacing v∞ byw, and such thatK ′∪c(Tv)

is a simplicial complex. We obtain K = K ′ ∪ c(Tv).

Let J = {vab,vab ∈ ∂T} and w ∈ R
3. Assume

1. if vab ∈ J , {w,v,a,b} are in general position.

Let w ∗ J = {wσ, σ ∈ c(J)} where wσ is the geometric

simplex whose vertex set is that of σ plus w. Assume

2. if {wσ,wσ′} ⊆ w ∗ J , (wσ) ∩ (wσ′) is empty or a

face of wσ and wσ′.

Thus K ′ = {w}∪c(J)∪ (w∗J) is a simplicial complex:

it is the cone [5] on c(J) with vertex w. Assume

3. if σ1 ∈ c(Tv) and σ2 ∈ K ′, σ1 ∩ σ2 is empty or a
face of σ1 and σ2.

Thus K = K ′ ∪ c(Tv) is a simplicial complex.

Now we choose w to meet (1), (2) and (3). Every

triangle t in ∂T is included in a plane πt which defines

two open half-spaces Ht and H ′
t. The open convex hull

C of Delaunay T meets C = ∩t∈∂THt. Let U = ∩t∈JHt

and U ′ = ∩t∈JH
′
t. U and U ′ are opposite half-cones

with apex v. Since ∅ 6= C ⊆ U , we have U ′ 6= ∅ and get

w ∈ U ′.

We have (1) since w /∈ ∪t∈Jπt; (2) is a consequence

of (wσ)∩(wσ′) = w(σ∩σ′). We havew(σ∩σ′) ⊆ (wσ)∩
(wσ′). Conversely, let x be a point in (wσ)∩ (wσ′) and

show x ∈ w(σ ∩ σ′). Let a be a point in σ and b be a
point in σ′ such that x ∈ wa∩wb. Assume (reductio ad

absurdum) that a 6= b. Since w, x, a, b are collinear,

a ∈ wb. Let t be a triangle in J such that b ∈ t. Thus
w ∈ H ′

t and b ∈ πt and a ∈ wb \ {b} imply a ∈ H ′
t,

which contradicts a ∈ |T |. Since a = b, x ∈ w(σ ∩ σ′).

Lastly we show (3). Since σ2 ∈ K ′ = c(w ∗J), there
is a triangle t in J such that σ2 is a face of tw. Thus

σ2 ⊂ πt ∪ H ′
t. Furthermore, σ1 ⊆ |T | ⊂ πt ∪ Ht. Thus

σ1∩σ2 ⊂ πt. Since σ2∩πt = σ2∩ t, we have σ1∩σ2 ⊆ t.
Assume σ1 ∩ σ2 6= ∅. Note that t ∈ J ⊆ c(Tv) ∩ K ′.

This implies σi ∩ t ∈ c(J) and σi ∩ t is a face of σi if

i ∈ {1, 2}. Since c(J) is a simplicial complex, σ1 ∩ σ2 =

(σ1 ∩ t)∩ (σ2 ∩ t) is a face of σ1 ∩ t and σ2 ∩ t. Now we
see that σ1 ∩ σ2 is empty or a face of σ1 and σ2. ⊓⊔

Then we would like a drawing ϕ of G. Since c(T∞
v ) has

realization K and G is an abstract simplicial complex

included in c(∂T∞
v ), G has a realization included in

c(∂K). Now |G| is well defined and |G| ⊂ |∂K|. We use
the following lemma to obtain ϕ.

Lemma 8 Let p be a point in |∂K| \ |G|. There is a

homeomorphism ϕ such that ϕ(|∂K| \ {p}) = R
2.

Proof The proof has three steps: show that there ex-

ists a sphere S included in |K| whose center is v, find

homeomorphism ϕ1 such that ϕ1(|∂K|) = S, define
ϕ = ϕ2 ◦ ϕ1 where ϕ2 is homeomorphism such that

ϕ2(S \ ϕ1(p)) = R
2.

For the first step, we need the following assertion
whose technical proof is in Appendix C: if K is a 3D

pure simplicial complex in R
3 and x ∈ |K| \ |∂K|, there

exists a 3-ball B centered at x such that B ⊆ |K|.
Since ∂T∞

v = {abc,abcv ∈ T∞
v }, v /∈ |∂K|. Now we

take x = v and obtain a sphere S centered at v with

radius ǫ > 0 such that S ⊆ |K|.

Half-line l in R
3 started at v intersects S at a single

point p2. Let abcv be a tetrahedron in K such that

p2 ∈ abcv. Thus l intersects |∂K| at a single point p1

such that p1 ∈ abc. Let ϕ1 be the function such that

ϕ1(p1) = p2. We have ϕ1(p1) = v+ ǫ p1−v

||p1−v|| and ϕ1 is

a homeomorphism1 between |∂K| and S. Since R
2 and

a sphere minus a point are homeomorphic, there is a

homeomorphism ϕ2 such that ϕ2(S \ϕ1(p))) = R
2. ⊓⊔

1 Addendum: this is detailed in Appendix D.
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Step 3. In this step, we first construct a drawing of

G∗ from the images by ϕ of curves Ci included in |∂K|,
then we check that this drawing and that of G (defined

from the images by ϕ of edges ei ⊂ |∂K|) are dual [3].

Let v∗
j = (a+b+c)/3 for every triangle tj = abc ∈

∂K. Let mi = (a + b)/2 for every edge ei = ab ∈
c(∂K). Since ei 7→ e∗i is bijective (step 1), there are

exactly two triangles tj and tk of V ∗ such that ei = tj∩
tk. Let Ci be the union of line segments v∗

jmi andmiv
∗
k.

We have Ci ⊆ tj ∪ tk ⊆ |∂K|. Let p be a point in |∂K| \
(∪iCi∪|G|). We use Lemma 8 and p to obtain ϕ (ϕ is a

drawing ofG). Let ϕ∗ be the function defined on V ∗∪E∗

such that ϕ∗(tj) = ϕ(v∗
j ) if tj ∈ V ∗ and ϕ∗(e∗i ) =

ϕ(Ci) if e∗i ∈ E∗. Now ϕ∗ meets the requirements of

a drawing of G∗ (note that curves ϕ∗(e∗i ) and ϕ∗(e∗j )
cannot intersect except at their endpoints, as curves Ci

and Cj do).

We check that the drawings of G and G∗ are dual
according to Sec. 4.6 of [3]: G is connected (Sec. 2) and

has a drawing, there are bijections between G face fj =

ϕ(tj \|∂tj |) and G∗ vertex ϕ∗(tj) such that ϕ∗(tj) ∈ fj ,

between G edge ϕ(ei) and G∗ edge ϕ∗(e∗i ) such that
ϕ(ei) ∩ ϕ∗(G∗) = ϕ(ei) ∩ ϕ∗(e∗i ) = ϕ(G) ∩ ϕ∗(e∗i ) =

ϕ(mi). This triple equality means that ϕ(ei) only in-

tersects ϕ∗(G∗) at a single point in ϕ∗(e∗i ), and similarly
for the intersection between ϕ∗(e∗i ) and ϕ(G). This is

illustrated at the top right corner of Fig. 4.

Step 4. Since v ∈ c(∂O), Ov 6= ∅ and Oc
v 6= ∅. The

partition {Ov, O
c
v} of T∞

v defines a partition {V ∗
O, V

∗
Oc}

of V ∗: t ∈ V ∗
O iff t is the v-opposite triangle of a tetra-

hedron in Ov, and similarly for V ∗
Oc and Oc

v. Let F ∗

be the edges of graph G∗ having a vertex in V ∗
Oc and

a vertex in V ∗
O. Since gv = G∗ = (V ∗, E∗) (step 1), we

have gOv = (V ∗, E∗ \F ∗). Fig. 4 shows one example for

E∗ and F ∗ where Oc
v has two tetrahedra. According to

Theorem 3, v is regular in |∂O| iff gOv exactly has two

connected components, i.e. iff F ∗ is a minimal cut in

G∗.

Step 5. Let F be the edges of graph G included in
a V ∗

Oc triangle and in a V ∗
O triangle. Fig. 4 shows one

example for F where V ∗
Oc has two triangles. We have

f ∈ F iff there are vertices a,b, c, c′ such that f = ab

and abvc ∈ O and abvc′ ∈ Oc, i.e. iff f is a v-opposite

edge in a triangle of ∂O. According to Corollary 2, v is

regular in |∂O| iff F is a cycle in G.

Step 6. Note that every edge in F ∗ is dual to an

edge in F by bijection ei 7→ e∗i (step 1). Since G is con-

nected (Sec. 2) and has a drawing (step 3), and thanks

to the duality between G and G∗ (step 3) and between
F and F ∗, we use Proposition 4.6.1 in [3]: F is a cycle

in G iff F ∗ is a minimal cut in G∗. Now we see that

Theorem 3 and Corollary 2 are equivalent.

6 Conclusion

Two other theoretical topics related to surface recon-
struction based on these tests should be investigated.

First we do not know if the problem of finding a 2-

manifold surface maximizing the visibility score in [7] is
NP-hard. Second we do not know if there is a growing

algorithm whose growing list of tetrahedra can reach

every 2-manifold embedded in the 3D Delaunay.

A Proofs of prerequisites for Theorem 4

We remember that O ⊂ T∞, ∂O ⊂ c(T ) and ∆ ∈ T \O.

A.1 Proof of Lemma 1

Since c(O) and c(∆) are abstract simplicial complexes in-
cluded in abstract simplicial complex c(T∞), c(O) ∩ c(∆)
is an abstract simplicial complex included in c(T∞). Since
∆ ∈ T , c(∆) is also a simplicial complex and c(O)∩ c(∆) has
a realization included in simplicial complex c(∆). We use the
same notation for c(O) ∩ c(∆) and its realization in R

3.
We have c(∂O) ∩ c(∂∆) ⊆ c(O) ∩ c(∆) since ∂O ⊂ c(O)

and ∂∆ ⊂ c(∆). Conversely, let σ be an arbitrarily chosen
simplex from c(O)∩ c(∆) and show σ ∈ c(∂O)∩ c(∂∆). First
we study the case where σ is a triangle. Since ∆ /∈ O, σ
is included in ∆ and in another tetrahedron which is in O.
Thus σ ∈ ∂∆ ∩ ∂O ⊂ c(∂O) ∩ c(∂∆). Now we study the case
where σ is a vertex or an edge. Since σ ∈ c(O), Oσ 6= ∅.
Furthermore gσ is a connected graph. Therefore, there is a
series ∆0∆1 · · ·∆n of adjacent tetrahedra where ∆0 = ∆,
∆n ∈ Oσ and ∀i ∈ {1, · · ·n− 1},∆i ∈ T∞

σ \ (O ∪ {∆}). Note
that ∆ /∈ O implies n > 0 and triangle ∆0 ∩ ∆1 ∈ ∂∆ and
triangle ∆n−1 ∩ ∆n ∈ ∂O. Since σ is included in all the ∆i

above, σ ⊆ ∆0 ∩ ∆1 and σ ⊆ ∆n−1 ∩ ∆n. Thus σ ∈ c(∂∆)
and σ ∈ c(∂O).

A.2 Proof of Lemma 2

Note that |∂O| is well defined since ∂O ⊂ c(T ). Point p ∈
|∂∆| ∩ |∂O| iff there are geometric triangles t and t′ such
that p ∈ t ∈ ∂∆ and p ∈ t′ ∈ ∂O. If p ∈ |∂∆| ∩ |∂O|,
p ∈ t∩t′ ∈ c(∂∆)∩c(∂O) and we obtain p ∈ |c(∂∆)∩c(∂O)|.
If p ∈ |c(∂∆) ∩ c(∂O)|, there is a geometric simplex σ such
that p ∈ σ ∈ c(∂∆) ∩ c(∂O). Thus there are triangles t and
t′ such that σ ⊆ t ∩ t′ and t ∈ ∂∆ and t′ ∈ ∂O. We obtain
p ∈ |∂∆| ∩ |∂O|.

Thanks to Lemma 1, |∂O| ∩ |∂∆| = |c(∂O) ∩ c(∂∆)| =
|c(O) ∩ c(∆)| and the triangles of c(O) ∩ c(∆) are ∂O ∩ ∂∆.
Thus |∂O| ∩ |∂∆| = |∂O ∩ ∂∆| if c(O) ∩ c(∆) is 2D pure.

A.3 Proof of Lemma 3

Since ∆ /∈ O, triangle t is in ∂O ∩ ∂∆ iff the two tetrahedra
including t are ∆ and another one in O. Thus, t ∈ (∂O∪∂∆)\
(∂O ∩ ∂∆) iff triangle t is a face of exactly one tetrahedron
of O ∪ {∆}, i.e. iff t ∈ ∂(O ∪ {∆}).
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Fig. 5 Notations for the reductio ad absurdum of Lemma 8
(tetrahedra ∆0 and ∆ are represented by triangles). This fig-
ure suggests that y ∈ |K|, which is wrong.

B Alternative proof for Lemma 6 (f ∈ {1, 2, 3})

Here we find homeomorphism ϕ such that ϕ(|∂O|) = |∂(O ∪
{∆})|. ϕ is defined by its values on vertices and linear interpo-
lation on ∂O triangles (or their subdivisions) as follows. For
every vertex v in c(∂O), we set ϕ(v) = v. We use notation
∆ = abcd.

If f = 1, |∂O ∩ ∂∆| = abc, we split abc into triangles
abe, bce, cae where e = (a + b + c)/3, and set ϕ(e) = d.
We obtain ϕ(abc) = abd ∪ bcd ∪ cad.

If f = 2, |∂O ∩ ∂∆| = abc ∪ bcd, we split bc into edges
be and ec where e = (b+c)/2, we split ad into edges ag and
gd where g = (a + d)/2, and set ϕ(e) = g. Note that this
scheme also splits every ∆ triangle into two other triangles.
We obtain ϕ(abc ∪ bcd) = adb ∪ adc.

If f = 3, |∂O∩∂∆| = dab∪dbc∪dca, we split abc into
abe, bce, cae where e = (a+ b+ c)/3, and reset ϕ(d) = e.
We obtain ϕ(dab ∪ dbc ∪ dca) = abc.

In all cases, ϕ(|∂O ∩ ∂∆|) = |∂∆ \ ∂O| and ϕ is the iden-
tity in |∂O \ ∂∆|. Since ∂(O∪{∆}) = (∂O \ ∂∆)∪ (∂∆ \ ∂O)
(Lemma 3), ϕ(|∂O|) = |∂(O ∪ {∆})|. Lastly, ϕ is a homeo-
morphism between |∂O| and |∂(O ∪ {∆})| since [9] it maps
the |∂O| vertices to distinct points (ϕ is a simplicial map).

C Proof for Lemma 8

Here we show the following assertion: if K is a 3D pure sim-
plicial complex in R

3 and x ∈ |K| \ |∂K|, there exists a 3-ball
B centered at x such that B ⊆ |K|.

First we study a special case: K = c({∆,∆′}) where ∆
and ∆′ are two tetrahedra sharing a triangle t and x ∈ t\|∂t|.
Let h0, h′

0
, h1, h2 · · ·h6 be the half-spaces such that ∆ = h0∩

h1 ∩ h2 ∩ h3 and ∆′ = h′
0
∩ h4 ∩ h5 ∩ h6 and h0 ∪ h′

0
= R

3.
Let r = min1≤i≤6 d(x, hi) where d(x, hi) is the Euclidean
distance between x and the border plane of hi. We have 0 <
r (otherwise ∆ or ∆′ is degenerate). Let B be the 3-ball
centered at x with radius r. Since 1 ≤ i ≤ 6 implies B ⊆ hi,
we have B∩h0 ⊆ ∆ and B∩h′

0
⊆ ∆′. Thus B ⊆ ∆∪∆′ = |K|.

Then we study the general case. Since K is 3D pure, there
is a tetrahedron ∆0 ∈ K such that x ∈ ∆0. Since |∂K| is
closed (indeed, it is a finite union of geometric simplices),
R

3 \ |∂K| is open. Thus there is a 3-ball B centered at x such
that B ∩ |∂K| = ∅. Now we show that B ⊆ |K|.

Assume (reductio ad absurdum) that there is y ∈ B\|K|.
Let z ∈ B ∩∆0 such that line segment zy does not intersect
the K edges. Let zα = (1 − α)z + αy where α ∈ [0, 1]. Let
β = sup

zα∈|K| α. Since z0 ∈ |K|, β ∈ [0, 1]. Since |K| is

closed, zβ ∈ |K|. There is a tetrahedron ∆ in K such that
zβ ∈ ∆. Now zβ ∈ ∆ and z1 /∈ ∆ imply that there is γ ∈ [β, 1[
such that zγ ∈ |∂∆|. Since |∂∆| ⊂ |K|, γ ≤ β. Thus γ = β
and zβ is in a triangle t of ∂∆. Fig. 5 shows B, |∂K|, ∆0, ∆,
x, y, z and zβ . Now there are two cases.

If t /∈ ∂K, t = ∆∩∆′ where∆′ is a tetrahedron inK\{∆}.
Since zβ is not in the K edges, we use the special case above
and obtain a 3-ball B′ centered at zβ and included in |K|.
Now there is α ∈]β, 1] such that zα ∈ B′ ⊆ |K| (impossible).

If t ∈ ∂K, zβ ∈ t and B ∩ |∂K| = ∅ imply zβ /∈ B.
However, B is convex and {z,y} ⊂ B and zβ ∈ zy imply
zβ ∈ B (impossible).

D Addendum

Here we detail the assertion “ϕ1 is homeomorphism” in the
proof of Lemma 8.

First we show that ϕ1 is injective. Let {x,y} ⊆ |∂K|
such that ϕ1(x) = ϕ1(y). We use notation σ̊ = σ \ |∂σ| if σ
is a geometric simplex (̊σ = σ if σ is a vertex). Let simplex
σx ∈ c(∂K) such that x ∈ σ̊x: x is at a vertex, or in an edge
without its 2 end vertices, or in a triangle without its 3 edges.
Let triangle ty ∈ ∂K such that y ∈ ty. Both simplex vσx and
tetrahedron vty are in K. Let σ = vσx and σ′ = vty. Since
x ∈ σ̊x and y is in the half-line started at v that includes
x, σ̊ ∩ σ′ 6= ∅. According to Lemma 1 in the supplementary
material, σ ⊆ σ′. This implies σx ⊆ ty, thus x = y.

Last we show that ϕ−1

1
is continuous. Let triangle t ∈ ∂K

and point p2 ∈ ϕ1(t). Since ϕ1 is injective, ϕ−1

1
(p2) ∈ t.

Thus ϕ−1

1
maps p2 to the intersection between t and the line

including both v and p2. We see that function ϕ−1

1
restricted

to ϕ1(t) is continuous. Then the pasting lemma implies that

ϕ−1

1
is continuous in the finite union of closed sets ϕ1(t) where

t ∈ ∂K, i.e ϕ−1

1
is continuous in S.
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