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Introduction

We consider pX n q nPN , a discrete-time nearest-neighbor random walk in a random environment (RWRE) on Z, whose transition probabilities are determined by a random collection ω :" tω i u iPZ of positive numbers in r0, 1s sampled according to a stationary and ergodic measure P (we will call E the relative expectation). For a fixed realization of the environment ω, pX n q nPN starts at the origin and has transition probabilities P ω `Xn`1 " i `1 | X n " i ˘" ω i , P ω `Xn`1 " i ´1 | X n " i ˘" 1 ´ωi .

Necessary and sufficient conditions on P for the random walk to be transient, and to have a positive asymptotic velocity in the transient case, are well known. Let us summarize here some of the results that can be found in Zeitouni, [TZ04, Theorems 2.1.2 and 2.1.9], and were first proven by Solomon [START_REF] Solomon | Random walks in a random environment[END_REF] in the case of an i.i.d. environment ω:

Theorem A. Let ρ i :" 1´ω i ω i and assume that Erlog ρ 0 s is well defined. (i) The random walk pX n q nPN is P-a.s.: transient to the right if Erlog ρ 0 s ă 0; transient to the left if Erlog ρ 0 s ą 0; recurrent if Erlog ρ 0 s " 0. (ii) If Erlog ρ 0 s ă 0, then P-a.s. the velocity v :" lim nÑ8 X n {n exists P ω -a.s. and is equal to Er Ss ´1 P r0, `8q with S :" 1 ω 0

`ř8

i"1 1 ω ´i ś i´1 j"0 ρ ´j . One possibility for choosing the environment ω is to sample with measure P a shiftergodic sequence of positive random variables tc k u kPZ attached to the edges of Z -called conductances -and define for i P Z ω i :" c i c i´1 `ci .

(1.1)

We call the associated walk a random walk among random conductances (RWRC) and point out that pX n q nPN is reversible with respect to the measure πpkq " c k´1 `ck . In this case, the ρ i 's of Theorem A are given by ρ i " c i´1 c i and the formula for S simplifies to S " 1 `2 ř `8 i"1 c ´i c 0 . It is not hard to see that the RWRC on ergodic conductances has always asymptotic speed v " 0.

In this paper we consider conductances sampled in an i.i.d. manner, but we add an external force -or bias -, which "pushes" the random walk, say to the right. There are at least two natural choices for doing so, as discussed below. We will produce random walks pX n q nPN that are transient but have zero speed. Our aim is to identify the correct scaling for X n , i.e. find α P r0, 1s such that X n is typically of order n α`op1q . We stress that the case of an RWRE with i.i.d. ω i 's has been studied, for example in [KKS75, [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF][START_REF] Enriquez | Quenched limits for the fluctuations of transient random walks in random environment on Z 1[END_REF], and the picture is complete: the correct scaling has been identified as well as the scaling limits. However, in the case of i.i.d. conductances the ω i 's are not i.i.d. anymore, and the phenomenology is actually very different, see the discussion in Section 1.3.

The first way of tilting the conductances (see Section 1.1) is to multiply the k-th conductance by a factor e 2kδ , for some δ ą 0. We call the related process random walk among Biased i.i.d. Random Conductances (BiRC). This process has been studied in the ballistic regime in several cases: on Z (see [START_REF] Faggionato | Regularity of biased 1d random walks in random environment[END_REF]), on Z d with d 2 (see [START_REF] Berger | The speed of biased random walk among random conductances[END_REF][START_REF] Fribergh | Biased random walk in positive random conductances on Z d[END_REF]), on the percolation cluster of Z d with d 2 (see [START_REF] Berger | The speed of biased random walk on percolation clusters[END_REF][START_REF] Fribergh | Phase transition for the speed of the biased random walk on the supercritical percolation cluster[END_REF]), and on trees (see [START_REF] Gantert | Random walks on Galton-Watson trees with random conductances[END_REF] or [START_REF] Aïdékon | Speed of the biased random walk on a galton-watson tree[END_REF][START_REF] Ben Arous | Lyons-pemantle-peres monotonicity problem for high biases[END_REF]). Somewhat surprisingly, the behavior of sub-ballistic BiRC on Z d has been studied only in dimension d 2. In [START_REF] Fribergh | Biased random walk in positive random conductances on Z d[END_REF], Fribergh shows that the walk is ballistic if and only if the expectation of the conductances is finite and then identifies the right order of rescaling in the sub-ballistic regime, depending on the tail of the distribution of the conductances at `8 (finer results are given in [START_REF] Fribergh | Scaling limits for sub-ballistic biased random walks in random conductances[END_REF], under stronger assumptions). This represents one of the main differences with the one-dimensional model: as it will be clear from Theorem 1.1, in our case both the integrability of the conductance and the integrability of the inverse of the conductance play a role for determining the ballisticity of the walk and the right rescaling exponent. Roughly speaking, this is due to the fact that in higher dimension the walk will naturally go around traps generated by edges with a small conductance, whereas for d " 1 it is not possible to avoid them.

The second way of adding a bias (see Section 1.2) is inspired from Physics: the present work was motivated by the study of the sub-ballistic regime for the Mott variable-range hopping (see [START_REF] Faggionato | The velocity of 1d Mott variable range hopping with external field[END_REF][START_REF] Faggionato | Einstein relation and linear response in one-dimensional mott variable-range hopping[END_REF] and references therein), a model for the description of the movement of electrons in doped semi-conductors. The Mott walk is a long-range random walk on a random point process on R (we can see it as a walk on Z by projecting it); it may jump from its current position to any other site with a probability that decays exponentially in the distance and depends on some random energies associated to each point. One can then add an external electric field that induces a bias on the walk, but the bias depends this time on the distance between points. We consider here a simplification of this model, but we believe that our analysis captures the essence of the original one. We ignore the energies and allow the walk to jump only to its nearest-neighbors. We call it Range-1 Mott walk (R1M). We are not aware of any result for the sub-ballistic R1M in any dimension. Interestingly, we find that the behavior of the R1M is very different from that of the BiRC: the scaling of the walk depends this time on the distribution of the conductances but also on the intensity of the bias. 1.1. Biased i.i.d. Random Conductances (BiRC) with heavy tails. We take an i.i.d. sequence tc k u kPZ of random conductances under P and consider the biased random walk among these conductances. This corresponds to taking conductances

c δ k " e 2δk c k , (1.2)
where δ ą 0 is the bias intensity. Then, (1.1) and the ρ k 's appearing in Theorem A become

ω k " e δ c k e δ c k `e´δ c k´1 and ρ k " e ´2δ c k´1 c k . (1.3)
We find that Erlog ρ 0 s " ´2δ ă 0 so that Theorem A ensures that pX n q nPN is indeed transient to the right for any δ ą 0 and the asymptotic velocity is vpδq " 1

Er Ss with Er Ss " 1 `2Erc 0 sEr1{c 0 s e ´2δ 1 ´e´2δ .

(1.4)

Hence, vpδq ą 0 if and only if Erc 0 s ă `8 and Er1{c 0 s ă `8. We realize that the zero velocity regime can occur for two different reasons: either Erc 0 s " `8, i.e. c 0 has some heavy tail at `8; either Er1{c 0 s " `8, i.e. c 0 has some heavy tail at 0. This reflects the fact that a slowdown of the random walk is usually due to the presence of traps, i.e. regions of the space where it tends to spend the majority of the time, of two different kind (see Figure 1). The first kind of trap is produced by an edge tk, k `1u with conductance c k " M " 0 surrounded by two edges with conductances of Op1q: in this case the walk will tend to jump back and forth from point k to k `1 several times (roughly a geometric number of times of mean M ) before hopefully escaping to the right. The other kind of trap is represented by an edge tk, k `1u with a conductance ε ! 1: here the walk will attempt to jump to k `1 every time it finds itself on k, but it will manage to do it only with, roughly, probability ε. We therefore need to make some assumption on the tail of c 0 at `8 and 0 to understand the asymptotic behavior of pX n q nPN : we suppose that there are some α 8 , α 0 P r0, `8s such that lim

k ´1 k k `1 k `2 k ´1 k k `1 k `2 Op1q M Op1q Ó Ó Ó Op1q ε Ó Ó
M Ñ`8 log Ppc 0 ą M q log M " ´α8 , lim εÑ0 log Ppc 0 ă εq log ε " α 0 . (1.5)
We denote ᾱ :" minpα 0 , α 8 q, so that if the random walk is sub-ballistic then necessarily ᾱ P r0, 1s.

Theorem 1.1. Let δ ą 0 and assume that (1.5) holds with ᾱ " minpα 0 , α 8 q 1. Then we have lim nÑ8 log X n log n " ᾱ P b P ω ´a.s.

We stress that, in order to find a finer scaling for X n , the assumption (1.5) on the conductances needs to be strengthened. A natural way of doing so is to assume that there are slowly varying functions L 8 p¨q and L 0 p¨q such that

Ppc 0 ą M q M Ñ8
" L 8 pM qM ´α8 , and P `c0 ă ε ˘εÑ0 " L 0 pεqε α 0 .

(1.6)

In [START_REF] Fribergh | Scaling limits for sub-ballistic biased random walks in random conductances[END_REF], the authors consider the dimension d 2, and use this assumption (for the tail at `8, since only large conductance traps exist in that case) to show that the properly rescaled walk converges in law to the inverse of a stable subordinator. In dimension 1, the situation is fairly complicated due to the existence of several types of trap. When α 0 ‰ α 8 then the deepest traps are of one of the types presented in Figure 1. But when α 0 " α 8 , a third kind of trap may be predominant (depending on the slowly varying functions L 8 and L 0 ), as a combination of two consecutive edges, one with high and the other with small conductance -we refer to Section 1.3 for further discussion. This more subtle landscape is beyond the scope of this paper, and we postpone its study to a subsequent work.

1.2. The range-one Mott hopping model (R1M) with an external field. We consider a random sequence of positive random variables pZ i q iPZ that are independent and identically distributed. The pZ i q iPZ determine the position of points tx i u iPZ on R such that x 0 :" 0, x k "

ř k´1 i"0 Z i if k 1 and x k " ´řk i"1 Z ´i if k ´1.
The range-one Mott random walk p Ỹn q nPN is the process starting in zero and jumping from point x k to point x k`1 with probability equal to e ´Zk e ´Zk `e´Z k´1 and to x k´1 with the remaining probability. We can also see this walk as the RWRC on the set of points tx k u with conductance associated to the edge tx k , x k`1 u equal to c k :" e ´Zk . We introduce an external electrical field of intensity λ P p0, 1q. From a physical point of view, this will result in a modification of the conductances which are given now by

c λ k :" c k ¨eλpx k `xk`1 q .
(1.7)

We will stick to the symbol c λ k when dealing with the conductances of the biased R1M, while we will use c δ k for the BiRC and c ‹ k when dealing with both models at the same time. It will be convenient to look at a projection of p Ỹn q nPN on Z: we let pY n q n 0 be the random walk on Z such that Ỹn :" x Yn . Studying the asymptotics of the two chains is equivalent, since in the transient case we have the relation Ỹn Yn Ñ ErZ 0 s as n Ñ 8 by the ergodic theorem.

For k P Z, the probability of jumping from k to k `1 for pY n q nPN and the ρ k 's appearing in Theorem A are, respectively,

ω k " e ´p1´λqZ k e ´p1´λqZ k `e´p1`λqZ k´1 and ρ k " e ´p1`λqZ k´1 `p1´λqZ k . (1.8)
It follows that Erlog ρ 0 s " ´2λErZ 0 s ă 0, so that part (i) of Theorem A guarantees that pX n q nPN is transient to the right for any λ ą 0. Part (ii) of the theorem and a straightforward computation also show that the limiting velocity is vpλq " 1

Er Ss , with Er Ss " 1 `2Ere p1´λqZ 0 s Ere ´p1`λqZ 0 s 1 ´Ere ´2λZ 0 s .

(1.9)

Hence, vpλq ą 0 if and only if Ere p1´λqZ 0 s ă `8 (note that this condition is equivalent to the condition for ballisticity for the full-range Mott random walk, cfr. [FGS18, Theorem 1]). We define λ c :" inf λ : Ere p1´λqZ 0 s ă `8( , (1.10) so that vpλq " 0 if λ ă λ c and vpλq ą 0 if λ ą λ c . Notice that from the definition of λ c it follows that PpZ 0 ą tq " e ´p1´λcq t p1`op1qq . Interestingly, by (1.9) we see that v is continuous at λ " λ c if and only if Ere p1´λcqZ 0 s " `8.

Theorem 1.2. For any λ λ c , define αpλq :" 1´λc 1´λ . Then,

lim nÑ8 log Y n log n " αpλq P b P ω ´a.s.
We stress once more that a notable difference with Theorem 1.1 is that here the scaling αp¨q depends on the intensity of the bias λ, whereas ᾱ does not depend on δ.

1.3. Discussion about the traps and products of heavy-tail random variables. In order to give a mathematical sense to the notion of traps, Sinai introduced in [START_REF] Yakov | The limiting behavior of a one-dimensional random walk in a random medium[END_REF] the potential function V , canonically associated to the environment ω. It can be defined as V pkq :" ř k i"1 log ρ i for k P Z `(for k P Z ´add a minus sign, and V p0q " 0) and it is a powerful and intuitive tool, since "valleys" in the potential landscape correspond to traps for the random walk. The notion of valleys as traps has then been extended in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] to the case of transient random walks on Z (say to `8). Since in this case Erlog ρ 0 s ă 0, one has that the potential has a negative drift (V pkq Ñ ´8) and traps correspond to portions where V increases by a large amount. In particular, when the ω i 's are i.i.d., the potential is a random walk with independent increments and the valleys are associated to its excursions: they are large regions with a large deviation behavior of the sum of log ρ i , see the discussion in Section 3 of [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF]. This is in sharp contrast with our framework: in the BiRC (an analogous reasoning can be made for the R1M), the increments of V are strongly correlated, and as a matter of fact we have V pkq " log c 0 ´2δk ´log c k , for k ě 1. Valleys, i.e. large increases in the potential, will then be caused by isolated large values of V pkq ´V pk ´1q " log ρ k . For us, it is therefore crucial to understand the tail of the distribution of ρ 0 " e ´2δ c ´1{c 0 .

The following general result goes in this direction and will be useful throughout the paper. From now on, when treating the two models at the same time, we will use α for ᾱ or αpλq as defined in Theorems 1.1 and 1.2 respectively. Lemma 1.3. Let X, Y be two independent, positive, random variables. Assume that there is some α ą 0 such that, as t Ñ 8, PpX ą tq " t ´α`op1q and PpY ą tq t ´α`op1q , i.e. Y has a lighter tail than X. Then we have that P `XY ą t ˘" t ´α`op1q as t Ñ 8 .

Proof For the lower bound, let y 0 " infty : PpY yq 1{2u; then PpXY ą tq PpY y 0 qP `X ą t{y 0 ˘" t ´α`op1q .

For the upper bound, we fix some ε P p0, αq, and we write

PpXY ą tq P `Y ą t ˘`E " P `X ą t{Y | Y ˘1tY tu ‰ t ´α`op1q `cε t ´α`ε E " Y α´ε 1 tY tu ‰ ,
where we used the fact that there is a constant c ε such that PpX ą xq c ε x ´α`ε for all x 1. Then, because of our assumption on Y , we easily get that for all ε ą 0, ErY α´ε s ă `8. Therefore, we get that there is a constant C ε such that PpXY ą tq t ´α`op1q `Cε t ´α`ε , so that PpXY ą tq t ´α`op1q , since ε is arbitrary.

Thanks to this lemma, we are able to obtain the tail of ρ 0 : we have that for both models Ppρ 0 ą tq " t ´α`op1q .

(1.11) Indeed, for the BiRC we have that ρ 0 is the product of two independent random variables: X :" e ´2δ c ´1, which has a tail PpX ą tq " t ´α8`op1q , and Y :" 1{c 0 , which has a tail PpY ą tq " t ´α0 `op1q (we might have to exchange the role of X and Y to properly apply Lemma 1.3). Analogously, for the R1M, ρ 0 is the product of X :" e p1´λqZ 0 which has a tail PpX ą tq " PpZ 0 ą 1 1´λ log tq " exp ´1´λc 1´λ log t p1 `op1qq ( " t ´αpλq`op1q , and Y :" e ´p1`λqZ ´1 which is not larger than 1 (and therefore satisfies PpY ą tq t ´αpλq`op1q ). Note that this proof gives an indication on the easiest way to create a large trap, i.e. a large log ρ i : the tail of ρ 0 comes from having either a large c ´1 (with c 0 of order one), or a small c 0 (with c ´1 of order one), depending on which one is the easier.

Remark 1.4. In the case where c 0 has a regularly varying tail at 0 and `8, as in (1.6), [START_REF] Embrechts | On closure and factorization properties of subexponential and related distributions[END_REF] gives that ρ 0 " c ´1{c 0 has a regularly varying tail with exponent ᾱ " minpα 0 , α 8 q, and [Cli86, Corollary 5] provides the sharp behavior of Ppρ 0 ą tq as t Ñ 8. Let us stress here that in the case α 0 " α 8 , the main contribution to Ppρ 0 ą tq will come from a combination of having c ´1 large and c 0 small, therefore suggesting a new type of trap, different from those of Figure 1. As an example, if Ppc 0 ą tq " t ´ᾱ and Ppc 0 ă εq " ε ´ᾱ in (1.6), a straightforward calculation gives that P `ρ0 ą t ˘" plog tqt ´ᾱ , and the main contribution comes from all possibilities of having c ´1 -t a and c 0 -t a´1 with a P r0, 1s.

2. Proof of Theorems 1.1 and 1.2

A fundamental preliminary result. A central tool for the study of the walks are the hitting times

T n :" inftk , X k " nu .

(2.1)

We will also use the notation T n for the hitting times of the R1M pY n q nPN . Understanding the behavior of T n is the key to finding the right scaling for X n (respectively, Y n ). In fact, the following proposition, in loose terms, shows that the increasing map n Þ Ñ T n is the inverse of the map k Þ Ñ X k , up to an error of at most a constant times log n. Corollary 2.2 shows the relation between the asymptotics of T n and that of the position of the walker.

Proposition 2.1. There exists a constant C ą 0 such that, for P-almost every ω we have that, P ω -a.s., there exists n 0 P N such that, for all n n 0 ,

inf k 0 X Tn`k n ´C log n .
The same result holds for the R1M process pY n q nPN .

Proof We set f pnq :" n ´C log n, with C ą 0 to be determined later on. We call A n :" tW k ă f pnq , for some k T n u, where W k can be taken equal to X k or Y k , and control

P ω pA n q P ω n pτ f pnq ă `8q " lim M Ñ8 C eff ptnu Ø tf pnquq C eff ptnu Ø tf pnqu Y tM uq c ‹ f pnq 8 ÿ j"n 1 c ‹ j . (2.2)
where P ω n is the law of the random walk in random environment ω, starting from n. Here τ j is the first time the walk hits j P N, while C eff pA Ø Bq indicates the effective conductance between set A and set B, see [START_REF] Lyons | Probability on trees and networks[END_REF] for a formal definition. For the equality in (2.2) we have used the well known formula for walks among conductances (see, e.g., [LP16, Exercise 2.36])

P ω k pτ A ă τ B q " C eff ptku Ø Aq C eff ptku Ø A Y Bq , (2.3) 
and then we have used the explicit expression of C eff for conductances in series and in parallel (detailed later on in formulas (2.8) and (2.9)).

In the BiRC model case c ‹ j " c δ j and (2.2) becomes P ω pA n q e ´2δpn´f pnqq c f pnq 8 ÿ j"0 e ´2δj 1 c n`j ": e ´2δpn´f pnqq K n pωq .

We use Lemma 1.3 with X " c f pnq and Y " ř 8 j"0 e ´2δj {c n`j (by Lemma 2.5 we have PpY ą tq " t ´α0 `op1q ), or the other way around if α 8 α 0 : we obtain PpK n ą tq " t ´ᾱ`op1q . By a Borel-Cantelli argument it follows that for any ε ą 0, P-a.s., there exists an m 0 " m 0 pωq such that K m m p1`εq{ ᾱ for each m m 0 . As a consequence, Pa.s. there exists n 0 such that, for each n n 0 , we have P ω pA n q n p1`εq{ ᾱe ´2δpn´f pnqq " n p1`εq{ ᾱ´2δC . Since this probability is summable for C big enough, again by a Borel-Cantelli argument we have that A n happens only a finite number of times and the claim follows for pX n q nPN .

For the R1M, one has c ‹ j " c λ j " e ´Zj `λpx j `xj`1 q in (2.2) and therefore P ω pA n q e ´Zfpnq `λpx f pnq `xfpnq`1 q 8 ÿ j"n 1 e ´Zj `λpx j `xj`1 q 8 ÿ j"n e Z j ´λpx j ´xfpnq q . Now, P-a.s. there exists n 0 " n 0 pωq such that, for each n n 0 and j n, we have x j ´xfpnq pj ´f pnqqErZ 0 s{2 and also Z j pj ´f pnqqλErZ 0 s{4. It follows that P ω pA n q n ´CλErZ 0 s{4 , and for C big enough this probability is summable. It follows that A n happens only a finite number of times and the claim follows for pY n q nPN , too.

An easy and important consequence of Proposition 2.1 is the following corollary, which says that in order to prove Theorems 1.1-1.2, we simply need to focus on T n , and prove

lim nÑ8 log T n log n " 1 α P b P ω ´a.s. (2.4)
for both models (recall that α indicates either ᾱ or αpλq).

Corollary 2.2. For P-almost every ω we have that, P ω -a.s.,

lim nÑ8 log T n log n " 1 a ðñ lim nÑ8 log X n log n " a (2.5)
with a : Ω ˆpZ d q bN Ñ R `. The same result holds for the R1M process pY n q nPN .

Proof Throughout the proof we will use the fact that T n Ñ 8 almost surely as n Ñ 8, which comes from the transience to the right of the walk. As in [TZ04, Lemma 2.1.17],

for n P N we define k n to be the unique integer such that T kn n ă T kn`1 and note that k n Ñ 8. We first prove "ñ". By Proposition 2.1 we have that, for n big enough, 2.2. Lower bound in (2.4). Firstly we show that there are many traps deeper than n 1{α´ε between 0 and n with high probability; secondly we show how to use this fact to conclude that lim nÑ8 log T n { log n 1{α.

k n ´C log k n X n ă k n `1. Hence,
Step 1: There are many deep traps. From the tail probability of ρ 0 given in (1.11) and the fact that the ρ k have only a range-two dependence, we get for both models the following lemma, as a standard application of the Borel-Cantelli lemma.

Lemma 2.3. For every ε ą 0 we get that, P-a.s., there exists some n 0 pε, ωq such that, for any n n 0 the events

A n " A n pεq :" ! Card 1 k n : ρ k ą n 1{α´ε ( 2{ε 
)
are verified.

Proof We may reduce to a sequence of i.i.d. random variables ρ k by separately proving the statement for the sequences of i.i.d. r.v.'s pρ 2i q iPN and pρ 2i`1 q iPN . In the following, we therefore assume that pρ k q k 1 is a sequence of i.i.d. r.v.'s which satisfy (1.11). By the independence of the ρ k we have that

PpA c n q P ´D 1 k 1 , . . . , k 2{ε n : ρ k ď n 1{α´ε for all k R tk 1 , . . . , k 2{ε u ¯ n 2{ε P `ρ0 n 1{α´ε ˘n´2{ε n 2{ε exp ! ´n 2 P `ρ0 ą n 1{α´ε ˘) ,
the last inequality holding for n ě 4{ε, using also that p1 ´xq n{2 ď e ´nx{2 . Then, we use (1.11) to get that n Ppρ 0 ą n 1{α´ε q " n ´αε`op1q . Therefore, PpA c n q exp ´n´αε`op1q ( , which is summable; the conclusion follows by Borel-Cantelli's lemma.

Step 2: Deep traps slowdown the walk. We are now ready to prove the lower bound in (2.4): we show that, for both models, lim inf

nÑ8 log T n log n 1 α P b P ω ´a.s. (2.6)
Let us fix ε ą 0 (we assume for simplicity that 2{ε is an integer). Thanks to Lemma 2.3, it will be sufficient to control P ω pT n n 1{α´2ε q only on the event A n that there are at least 2{ε points k such that ρ k n 1{α´ε : let us denote them by k 1 , . . . k 2{ε . On A n we have that

P ω `Tn n 1{α´2ε ˘ 2{ε ź i"1 P ω `Gk i n 1{α´2ε ˘,
where G k are geometric random variables with respective parameter p k " ω k 1{ρ k . In fact, every time the walk is in k, it tries to overjump the edge tk, k`1u and has a probability p k of succeeding: G k represents the random number of attempts the random walk has to make before crossing tk, k `1u for the first time. Since we have that p k i 1{ρ k i ă n ´1{α`ε for all i " 1, ..., 2{ε, we get that, provided that n is large enough,

P ω `Gk i n 1{α´2ε ˘" 1 ´`1 ´pk i ˘n1{α´2ε 2n ´ε .
Therefore, on the event A n and for n big enough, we get that

P ω `Tn n 1{α´2ε ˘ 4 1{ε n ´2 .
Since by Lemma 2.3 we know that A n is realized for n big enough P-a.s., an application of Borel-Cantelli's lemma gives that P ´a.s., P ω ´a.s. one eventually has T n ą n 1{α´2ε .

This proves that for any ε ą 0, a.s. log T n { log n ě 1{α ´2ε for n large enough, and (2.6) follows.

2.3. Upper bound in (2.4). Also for the upper bound we divide the proof in two steps. First we show that, P-a.s., E ω rT n s n 1{α`ε as n Ñ 8; then we use this estimate to obtain a bound on P ω pT n ą n 1{α`ε{2 q which in turn gives the upper bound in (2.4).

Step 1: Estimates on E ω rT n s. A central tool of our analysis will be the following representation for the expectation of the hitting times (cfr. [Bov06, Formula (3.22)])

E ω rT n s " 1 C eff pt0u Ø tnuq ÿ kăn πpkqP ω k pτ 0 ă τ n q (2.7)
where πpkq :" c δ k´1 `cδ k is a reversible measure for pX n q nPN (analogously, πpkq :" c λ k´1 `cλ k for the R1M), τ j denotes the first time the walk hits point j P Z and C eff is the effective conductance introduced after (2.2). We notice that in (2.7) the quantity P ω k pτ 0 ă τ n q is equal to 1 for k 0, while for 0 ă k ă n we can use (2.3). Moreover C eff is very easy to handle in our case: for i ă k ă j we have C eff ptku Ø tjuq " Spk, j ´1q ´1

(2.8)

C eff ptku Ø tiu Y tjuq " Spi, k ´1q ´1 `Spk, j ´1q ´1 , (2.9)

where Spi, jq :" ř j "i 1 c ‹ . For the first formula we have used that we have conductances in series, while for the second formula we have two sequences of conductances-in-series that are in parallel. Therefore, using (2.8) and (2.9), we get that for both our models Hence, by an application of Borel-Cantelli lemma, we get that, P ω -a.s., there exists some k 0 " k 0 pωq 1 such that T 2 k `2k´1 ˘1{α`2ε for all k ě k 0 . We therefore conclude by observing that T n is increasing, so that for any n such that k n :" tlog 2 nu ě k 0 we get that T n ď T 2 kn`1 ď `2kn ˘1{α`2ε ď n 1 α `2ε for all n ě n 0 pωq :" 2 k 0 . This proves that for any ε ą 0, one eventually has log T n { log n ď 1{α `2ε a.s., and (2.19) follows.

E ω rT n s " 1 

Figure 1 .

 1 Figure 1. On the l.h.s. a trap of the BiRC due to the presence of a large conductance, c k " M " 1, surrounded by two conductances of Op1q. On the r.h.s. a trap generated by a small conductance c k " ε ! 1 preceded by a conductance of Op1q.

  We fix some ε ą 0 and we use Markov inequality (with the pαpλq´εq-th moment) to obtain Ere p1´λc´εp1´λqqZ 0 sK αpλq´ε is a finite constant for each ε ą 0. The geometric sum is also finite if we choose η small enough. It follows that PpY ą tq t ´αpλq`ε`op1q for arbitrary ε ą 0, and this concludes the proof.Let us fix ε ą 0. Thanks to Markov inequality and Proposition 2.4-(2.11), we get that, P-a.s., for n large enough, we have P ω `Tn ą pn{2q 1{α`2ε ˘ pn{2q ´1{α´2ε E ω rT n s 2 1{α`2ε n ´ε .

	PpY ą tq	ÿ	`t´1 Ke η ˘αpλq´ε	E "´e p1´λqZ ´2λpZ 0 `¨¨¨`Z ´1q ¯αpλq´ε ı
			1			
		t ´αpλq`ε B	ÿ	e ´2λpαpλq´εqZ 0 " ´eηpαpλq´εq E	ı¯
						1
	where B " Step 2: Conclusion of the argument. We finally prove that
			lim sup nÑ8	log T n log n	1 α	P b P ω ´a.s.	(2.19)
	Sp0, n ´1q ´1 ´ÿ k 0	πpkq	`ÿ 0ăkăn	πpkq	Sp0, k ´1q ´1 Sp0, k ´1q ´1 `Spk, n ´1q	´1 "
	ÿ k 0 pc ‹ k´1	`c‹ k qSp0, n ´1q	`ÿ 0ăkăn pc ‹ k´1	`c‹ k qSpk, n ´1q .	(2.10)

This formula allows us to prove the following.

Proposition 2.4. For any β ą 1{α, we have that

P `Eω rT n s n β ˘ n 1´αβ`op1q .

M. Salvi was financially supported by the European Union's Horizon 2020 research and innovation program under the Marie Sk lodowska-Curie Grant agreement No 656047.

As a consequence, for every ε ą 0, we get that, P-a.s., there exists some n 0 pε, ωq such that, for any n n 0 , E ω rT n s n 1 α `ε`op1q .

(2.11)

Proof The second part of the lemma comes as an easy consequence of the first part. Indeed, we have PpE ω rT n s n 1{α`ε q n ´αε`op1q , so an application of Borel-Cantelli lemma gives that, P-a.s., E ω rT 2 k s p2 k q 1{α`ε for k k 0 pωq. Then, since E ω rT n s is non-decreasing, we can set k n " tlog 2 nu and see that

for all n 2 k 0 pωq ": n 0 pωq, P-a.s.

We therefore focus on the first part of the lemma. We start from equation (2.10), which admits as an easy upper bound

Hence we get

) and we want to control the two probabilities. As a preliminary, we give an estimate on the tail of the two random variables of interest. We postpone the proof of the lemma to the end of Step 1.

Lemma 2.5. Set X :"

We have: (i) For the BiRC P pX ą tq " t ´α8`op1q and PpY ą tq " t ´α0 `op1q as t Ñ 8 .

(2.13) (ii) For the R1M (recall that αpλq " p1 ´λc q{p1 ´λq)

P pX ą tq t ´αpλq`op1q and PpY ą tq " t ´αpλq`op1q as t Ñ 8 .

(2.14)

We can deal now with the first term (Term A) and second term (Term B) in the r.h.s. of (2.12). Term A. We pull out the term " 0 and k " 0 in A, so that we can write

with X and Y defined as in Lemma 2.5. Hence, we get that

(2.15)

Using Lemma 1.3 (note that X, Y and c ‹ 0 are mutually independent), we therefore get that PpA n β {4q n ´αβ`op1q . Term B. For the term B, we pull out the terms " k, so that we can write

Hence, setting V k :" c ‹ k ř ąk 1 c ‹ , and for n so large that n β {4 ´n n β {5, we get that

(2.16)

Note that the V k 's are not independent, but they have the same distribution as V 0 " c ‹ 0 Y . Moreover, Lemma 2.5, combined with Lemma 1.3 (possibly exchanging the roles of c ‹ 0 and Y ) gives that PpV 0 ą tq " P `c‹ 0 Y ą t ˘" t ´α`op1q as t Ñ 8.

(2.17) Now, going back to (2.16), we split the sum of the V k 's into two parts, writing

For the first term, we notice that the event is realized if and only if one of the indicator function is non-zero. Using a union bound, the first term is therefore bounded by

For the second term, we simply use Markov's inequality to get

where we used that ErV 0 1 tV 0 ătu s " t 1´α`op1q as t Ñ 8, thanks to (2.17).

Plugging the last two estimates in (2.18) and going back to (2.16) proves that PpB ě n β {4q " n 1´αβ`op1q . This and (2.15), inserted into (2.12), conclude the proof.

Proof of Lemma 2.5 For item piq, we focus on PpX ą tq, since the tail of Y can be found in a similar way. On the one hand, since X ě c δ ´1, we simply have that PpX ą tq Ppc 0 ą tq " t ´α8`op1q . On the other hand, X " ř kď´1 c δ k ą t implies that there exists some j ě 1 such that c δ ´j ą δe ´δj t, so that a union bound gives

Ppc 0 ą δe δj tq " 8 ÿ j"1 pδe δj tq ´α8`op1q " t ´α8`op1q .

For item piiq, for X, we get that by Markov inequality and the independence of the Z i 's

since Ere ´λZ 0 s is clearly smaller than 1 and αpλq ă 1. We now turn to the tail of Y . First, we have the lower bound PpY ą tq P `ep1´λqZ 1 ´2λZ 2 ą t ˘ PpZ 2 ě bqPpe p1´λqZ 1 ą te 2λb q " t ´αpλq`op1q .

For the first inequality we have restricted the sum in Y to the first summand. For the second inequality, we used the independence of the Z i 's, and we used some constant b ą 0 such that PpZ 2 ď bq ą 0. Finally, for the last identity, we just used that for a ą 0, PpZ 1 ą a log tq " t ´ap1´λcq`op1q , see (1.10) and below.

For the upper bound, we take a constant η ą 0 to be determined later, and call K :" e ´η{p1 ´e´η q. We notice that Y " ř ě1 1{c λ ą t implies that there exists at least some 1 such that 1{c λ ą t e ´η {K. A union bound therefore gives PpY ą tq ÿ 1 P `ep1´λqZ ´2λpZ 0 `¨¨¨`Z ´1q ą t e ´ η {K ˘.