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SCALING OF SUB-BALLISTIC 1D RANDOM WALKS AMONG

BIASED RANDOM CONDUCTANCES

QUENTIN BERGER AND MICHELE SALVI

Abstract. We consider two models of one-dimensional random walks among biased
i.i.d. random conductances: the first is the classical exponential tilt of the conductances,
while the second comes from the effect of adding an external field to a random walk on
a point process (the bias depending on the distance between points). We study the case
when the walk is transient to the right but sub-ballistic, and identify the correct scaling
of the random walk: we find α P r0, 1s such that logXn{ lognÑ α. Interestingly, α does
not depend on the intensity of the bias in the first case, but it does in the second case.

AMS subject classification (2010 MSC): 60K37, 60Fxx, 82D30.
Keywords: Random walk, random environment, limit theorems, conductance model,
Mott random walk.

1. Introduction

We consider pXnqnPN, a discrete-time nearest-neighbor random walk in a random en-
vironment (RWRE) on Z, whose transition probabilities are determined by a random
collection ω :“ tωiuiPZ of positive numbers in r0, 1s sampled according to a stationary and
ergodic measure P (we will call E the relative expectation). For a fixed realization of the
environment ω, pXnqnPN starts at the origin and has transition probabilities

Pω
`

Xn`1 “ i` 1 | Xn “ i
˘

“ ωi , Pω
`

Xn`1 “ i´ 1 | Xn “ i
˘

“ 1´ ωi .

Necessary and sufficient conditions on P for the random walk to be transient, and to have
a positive asymptotic velocity in the transient case, are well known. Let us summarize
here some of the results that can be found in Zeitouni, [TZ04, Theorems 2.1.2 and 2.1.9]:

Theorem A. Let ρi :“ 1´ωi
ωi

and assume that Erlog ρ0s is well defined.

(i) The random walk pXnqnPN is P-a.s.: transient to the right if Erlog ρ0s ă 0; transient
to the left if Erlog ρ0s ą 0; recurrent if Erlog ρ0s “ 0.

(ii) If Erlog ρ0s ă 0, then P-a.s. the velocity v :“ limnÑ8Xn{n exists Pω-a.s. and is

equal to ErS̄s´1 P r0,`8q with S̄ :“ 1
ω0
`
ř8
i“1

1
ω´i

śi´1
j“0 ρ´j.

One possibility for choosing the environment ω is to sample with measure P a shift-
ergodic sequence of positive random variables tckukPZ attached to the edges of Z – called
conductances – and define for i P Z

ωi :“
ci

ci´1 ` ci
. (1.1)

We call the associated walk a random walk among random conductances (RWRC) and
point out that pXnqnPN is reversible with respect to the measure πpkq “ ck´1 ` ck. In
this case, the ρi’s of Theorem A are given by ρi “

ci´1

ci
and the formula for S̄ simplifies
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to S̄ “ 1` 2
ř`8
i“1

c´i
c0

. It is not hard to see that the RWRC on ergodic conductances has
always asymptotic speed v “ 0.

In this paper we consider conductances sampled in an i.i.d. manner, but we add an
external force – or bias –, which “pushes” the random walk, say to the right. There are at
least two natural choices for doing so, as discussed below. We will produce random walks
pXnqnPN that are transient but have zero speed. Our aim is to identify the correct scaling

for Xn, i.e. find α P r0, 1s such that Xn is typically of order nα`op1q. We stress that the case
of an RWRE with i.i.d. ωi’s has been studied, for example in [KKS75, ESZ09, ESTZ13],
and the picture is complete: the correct scaling has been identified as well as the scaling
limits. However, in the case of i.i.d. conductances the ωi’s are not i.i.d. anymore, and the
phenomenology is actually very different, see the discussion in Section 1.3.

The first way of tilting the conductances (see Section 1.1) is to multiply the k-th con-
ductance by a factor e2kδ, for some δ ą 0. We call the related process random walk among
Biased i.i.d. Random Conductances (BiRC). Somewhat surprisingly, the behavior of sub-
ballistic BiRC has been studied only in dimension d > 2. In [Fri13], Fribergh shows that
the walk is ballistic if and only if the expectation of the conductances is finite and then
identifies the right order of rescaling in the sub-ballistic regime, depending on the tail of the
distribution of the conductances at `8 (finer results are given in [FK16], under stronger
assumptions). This represents one of the main differences with the one-dimensional model:
as it will be clear from Theorem 1.1, in our case both the integrability of the conductance
and the integrability of the inverse of the conductance play a role for determining the
ballisticity of the walk and the right rescaling exponent. Roughly speaking, this is due to
the fact that in higher dimension the walk will naturally go around traps generated by
edges with a small conductance, whereas for d “ 1 it is not possible to avoid them.

The second way of adding a bias (see Section 1.2) is inspired from Physics: the present
work was motivated by the study of the sub-ballistic regime for the Mott variable-range
hopping (see [FGS16, FGS17] and references therein), a model for the description of the
movement of electrons in doped semi-conductors. The Mott walk is a long-range random
walk on a random point process on R (we can see it as a walk on Z by projecting it);
it may jump from its current position to any other site with a probability that decays
exponentially in the distance and depends on some random energies associated to each
point. One can then add an external electric field that induces a bias on the walk, but the
bias depends this time on the distance between points. We consider here a simplification
of this model, but we believe that our analysis captures the essence of the original one.
We ignore the energies and allow the walk to jump only to its nearest-neighbors. We call
it Range-1 Mott walk (R1M). We are not aware of any result for the sub-ballistic R1M
in any dimension. Interestingly, we find that the behavior of the R1M is very different
from that of the BiRC: the scaling of the walk depends this time on the distribution of
the conductances but also on the intensity of the bias.

1.1. Biased i.i.d. Random Conductances (BiRC) with heavy tails. We take an
i.i.d. sequence tckukPZ of random conductances under P and consider the biased random
walk among these conductances. This corresponds to taking conductances

cδk “ e2δkck , (1.2)
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where δ ą 0 is the bias intensity. Then, (1.1) and the ρk’s appearing in Theorem A become

ωk “
eδck

eδck ` e´δck´1
and ρk “ e´2δ ck´1

ck
. (1.3)

We find that Erlog ρ0s “ ´2δ ă 0 so that Theorem A ensures that pXnqnPN is indeed
transient to the right for any δ ą 0 and the asymptotic velocity is

vpδq “
1

ErS̄s
with ErS̄s “ 1` 2Erc0sEr1{c0s

e´2δ

1´ e´2δ
. (1.4)

Hence, vpδq ą 0 if and only if Erc0s ă `8 and Er1{c0s ă `8. We realize that the zero
velocity regime can occur for two different reasons: either Erc0s “ `8, i.e. c0 has some
heavy tail at `8; either Er1{c0s “ `8, i.e. c0 has some heavy tail at 0. This reflects the
fact that a slowdown of the random walk is usually due to the presence of traps, i.e. regions
of the space where it tends to spend the majority of the time, of two different kind (see
Figure 1). The first kind of trap is produced by an edge tk, k ` 1u with conductance
ck “ M " 0 surrounded by two edges with conductances of Op1q: in this case the walk
will tend to jump back and forth from point k to k` 1 several times (roughly a geometric
number of times of mean M) before hopefully escaping to the right. The other kind of
trap is represented by an edge tk, k ` 1u with a conductance ε ! 1: here the walk will
attempt to jump to k ` 1 every time it finds itself on k, but it will manage to do it only
with, roughly, probability ε.

k ´ 1 k k ` 1 k ` 2 k ´ 1 k k ` 1 k ` 2

Op1q M Op1q
Ó Ó Ó

Op1q ε
Ó Ó

Figure 1. On the l.h.s. a trap of the BiRC due to the presence of a large conductance,
ck “M " 1, surrounded by two conductances of Op1q. On the r.h.s. a trap generated by
a small conductance ck “ ε ! 1 preceded by a conductance of Op1q.

We therefore need to make some assumption on the tail of c0 at `8 and 0 to understand
the asymptotic behavior of pXnqnPN: we suppose that there are some α8, α0 P r0,`8s
such that

lim
MÑ`8

logPpc0 ąMq

logM
“ ´α8 , lim

εÑ0

logPpc0 ă εq

log ε
“ α0 . (1.5)

We denote ᾱ :“ minpα0, α8q, so that if the random walk is sub-ballistic then necessarily
ᾱ P r0, 1s.

Theorem 1.1. Let δ ą 0 and assume that (1.5) holds with ᾱ “ minpα0, α8q 6 1. Then
we have

lim
nÑ8

logXn

log n
“ ᾱ Pb Pω ´ a.s.

We stress that, in order to find a finer scaling for Xn, the assumption (1.5) on the
conductances needs to be strengthened. A natural way of doing so is to assume that there
are slowly varying functions L8p¨q and L0p¨q such that

Ppc0 ąMq
MÑ8
„ L8pMqM

´α8 , and P
`

c0 ă ε
˘ εÑ0
„ L0pεqε

α0 . (1.6)

In [FK16], the authors consider the dimension d > 2, and use this assumption (for the tail
at `8, since only large conductance traps exist in that case) to show that the properly
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rescaled walk converges in law to the inverse of a stable subordinator. In dimension 1, the
situation is fairly complicated due to the existence of several types of trap. When α0 ‰ α8
then the deepest traps are of one of the types presented in Figure 1. But when α0 “ α8, a
third kind of trap may be predominant (depending on the slowly varying functions L8 and
L0), as a combination of two consecutive edges, one with high and the other with small
conductance – we refer to Section 1.3 for further discussion. This more subtle landscape
is beyond the scope of this paper, and we postpone its study to a subsequent work.

1.2. The range-one Mott hopping model (R1M) with an external field. We
consider a random sequence of positive random variables pZiqiPZ that are ergodic and shift
invariant under P. The pZiqiPZ determine the position of points txiuiPZ on R such that

x0 :“ 0, xk “
řk´1
i“0 Zi if k > 1 and xk “ ´

řk
i“1 Z´i if k 6 ´ 1. The range-one Mott

random walk pỸnqnPN is the process starting in zero and jumping from point xk to point

xk`1 with probability equal to e´Zk

e´Zk`e´Zk´1
and to xk´1 with the remaining probability. We

can also see this walk as the RWRC on the set of points txku with conductance associated
to the edge txk, xk`1u equal to ck :“ e´Zk . We introduce an external electrical field of
intensity λ P p0, 1q. From a physical point of view, this will result in a modification of the
conductances which are given now by

cλk :“ ck ¨ e
λpxk`xk`1q . (1.7)

We will stick to the symbol cλk when dealing with the conductances of the biased R1M,

while we will use cδk for the BiRC and c‹k when dealing with both models at the same

time. It will be convenient to look at a projection of pỸnqnPN on Z: we let pYnqn > 0 be

the random walk on Z such that Ỹn :“ xYn . Studying the asymptotics of the two chains

is equivalent, since in the transient case we have the relation Ỹn
Yn
Ñ ErZ0s as n Ñ 8 by

the ergodic theorem.

For k P Z, the probability of jumping from k to k`1 for pYnqnPN and the ρk’s appearing
in Theorem A are, respectively,

ωk “
e´p1´λqZk

e´p1´λqZk ` e´p1`λqZk´1
and ρk “ e´p1`λqZk´1`p1´λqZk . (1.8)

It follows that Erlog ρ0s “ ´2λErZ0s ă 0, so that part (i) of Theorem A guarantees
that pXnqnPN is transient to the right for any λ ą 0. Part (ii) of the theorem and a
straightforward computation also show that the limiting velocity is

vpλq “
1

ErS̄s
, with ErS̄s “ 1` 2Erep1´λqZ0s

Ere´p1`λqZ0s

1´ Ere´2λZ0s
. (1.9)

Hence, vpλq ą 0 if and only if Erep1´λqZ0s ă `8 (note that this condition is equivalent to
the condition for ballisticity for the full-range Mott random walk, cfr. [FGS16, Theorem
1]). We define

λc :“ inf
 

λ : Erep1´λqZ0s ă `8
(

, (1.10)

so that vpλq “ 0 if λ ă λc and vpλq ą 0 if λ ą λc. Notice that from the definition of

λc it follows that PpZ0 ą tq “ e´p1´λcq t p1`op1qq. Interestingly, by (1.9) we see that v is

continuous at λ “ λc if and only if Erep1´λcqZ0s “ `8.

Theorem 1.2. For any λ 6 λc, define αpλq :“ 1´λc
1´λ . Then,

lim
nÑ8

log Yn
log n

“ αpλq Pb Pω ´ a.s.
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We stress once more that a notable difference with Theorem 1.1 is that here the scaling
αp¨q depends on the intensity of the bias λ, whereas ᾱ does not depend on δ.

1.3. Discussion about the traps and products of heavy-tail random variables.
In order to give a mathematical sense to the notion of traps, Sinai introduced in [Sin82]
the potential function V , canonically associated to the environment ω. It can be defined

as V pkq :“
řk
i“1 log ρi for k P Z` (for k P Z´ add a minus sign, and V p0q “ 0) and it is a

powerful and intuitive tool, since “valleys” in the potential landscape correspond to traps
for the random walk. The notion of valleys as traps has then been extended in [ESZ09]
to the case of transient random walks on Z (say to `8). Since in this case Erlog ρ0s ă 0,
one has that the potential has a negative drift (V pkq Ñ ´8) and traps correspond to
portions where V increases by a large amount. In particular, when the ωi’s are i.i.d., the
potential is a random walk with independent increments and the valleys are associated to
its excursions: they are large regions with a large deviation behavior of the sum of log ρi,
see the discussion in Section 3 of [ESZ09]. This is in sharp contrast with our framework:
in the BiRC (an analogous reasoning can be made for the R1M), the increments of V are
strongly correlated, and as a matter of fact we have V pkq “ log c0´2δk´ log ck, for k ě 1.
Valleys, i.e. large increases in the potential, will then be caused by isolated large values
of V pkq ´ V pk ´ 1q “ log ρk. For us, it is therefore crucial to understand the tail of the
distribution of ρ0 “ e´2δc´1{c0.

The following general result goes in this direction and will be useful throughout the
paper. From now on, when treating the two models at the same time, we will use α for ᾱ
or αpλq as defined in Theorems 1.1 and 1.2 respectively.

Lemma 1.3. Let X,Y be two independent, positive, random variables. Assume that there
is some α ą 0 such that, as tÑ8,

PpX ą tq “ t´α`op1q and PpY ą tq 6 t´α`op1q ,

i.e. Y has a lighter tail than X. Then we have that

P
`

XY ą t
˘

“ t´α`op1q as tÑ8 .

Proof For the lower bound, let y0 “ infty : PpY 6 yq > 1{2u; then

PpXY ą tq > PpY 6 y0qP
`

X ą t{y0

˘

“ t´α`op1q .

For the upper bound, we fix some ε P p0, αq, and we write

PpXY ą tq 6 P
`

Y ą t
˘

` E
“

P
`

X ą t{Y | Y
˘

1tY 6 tu
‰

6 t´α`op1q ` cεt
´α`εE

“

Y α´ε1tY 6 tu
‰

,

where we used the fact that there is a constant cε such that PpX ą xq 6 cεx
´α`ε for

all x > 1. Then, because of our assumption on Y , we easily get that for all ε ą 0,
ErY α´εs ă `8. Therefore, we get that there is a constant Cε such that

PpXY ą tq 6 t´α`op1q ` Cεt
´α`ε ,

so that PpXY ą tq 6 t´α`op1q, since ε is arbitrary. �

Thanks to this lemma, we are able to obtain the tail of ρ0: we have that for both models

Ppρ0 ą tq “ t´α`op1q . (1.11)

Indeed, for the BiRC we have that ρ0 is the product of two independent random variables:
X :“ e´2δc´1, which has a tail PpX ą tq “ t´α8`op1q, and Y :“ 1{c0, which has a tail



6 Q. BERGER AND M. SALVI

PpY ą tq “ t´α0`op1q (we might have to exchange the role of X and Y to properly apply

Lemma 1.3). Analogously, for the R1M, ρ0 is the product of X :“ ep1´λqZ0 which has

a tail PpX ą tq “ PpZ0 ą
1

1´λ log tq “ exp
 

´ 1´λc
1´λ log t p1 ` op1qq

(

“ t´αpλq`op1q, and

Y :“ e´p1`λqZ´1 which is not larger than 1 (and therefore satisfies PpY ą tq 6 t´αpλq`op1q).
Note that this proof gives an indication on the easiest way to create a large trap, i.e. a
large log ρi: the tail of ρ0 comes from having either a large c´1 (with c0 of order one), or
a small c0 (with c´1 of order one), depending on which one is the easier.

Remark 1.4. In the case where c0 has a regularly varying tail at 0 and `8, as in (1.6),
[EG80] gives that ρ0 “ c´1{c0 has a regularly varying tail with exponent ᾱ “ minpα0, α8q,
and [Cli86, Corollary 5] provides the sharp behavior of Ppρ0 ą tq as tÑ 8. Let us stress
here that in the case α0 “ α8, the main contribution to Ppρ0 ą tq will come from a
combination of having c´1 large and c0 small, therefore suggesting a new type of trap,
different from those of Figure 1. As an example, if Ppc0 ą tq „ t´ᾱ and Ppc0 ă εq „ ε´ᾱ

in (1.6), a straightforward calculation gives that P
`

ρ0 ą t
˘

„ plog tqt´ᾱ, and the main

contribution comes from all possibilities of having c´1 — ta and c0 — ta´1 with a P r0, 1s.

2. Proof of Theorems 1.1 and 1.2

2.1. A fundamental preliminary result. A central tool for the study of the walks are
the hitting times

Tn :“ inftk , Xk “ nu . (2.1)

We will also use the notation Tn for the hitting times of the R1M pYnqnPN. Understanding
the behavior of Tn is the key to finding the right scaling for Xn (respectively, Yn). In fact,
the following proposition, in loose terms, shows that the increasing map n ÞÑ Tn is the
inverse of the map k ÞÑ Xk, up to an error of at most a constant times log n. Corollary 2.2
shows the relation between the asymptotics of Tn and that of the position of the walker.

Proposition 2.1. There exists a constant C ą 0 such that, for P–almost every ω we have
that, Pω–a.s., there exists n0 P N such that, for all n > n0,

XTn`k > n´ C log n ,

The same result holds for the R1M process pYnqnPN.

Proof We set fpnq :“ n ´ C log n, with C ą 0 to be determined later on. We call
An :“ tWk ă fpnq , for some k > Tnu, where Wk can be taken equal to Xk or Yk, and
control

PωpAnq 6 P
ω
n pτfpnq ă `8q “ lim

MÑ8

Ceffptnu Ø tfpnquq

Ceffptnu Ø tfpnqu Y tMuq
6 c‹fpnq

8
ÿ

j“n

1

c‹j
. (2.2)

where Pωn is the law of the random walk in random environment ω, starting from n. Here τj
is the first time the walk hits j P N, while CeffpAØ Bq indicates the effective conductance
between set A and set B, that is CeffpA Ø Bq :“ inft

ř

kPZ ckpfpk ` 1q ´ fpkqq2 , f |A “
0 , f |B “ 1u. For the equality in (2.2) we have used the well known formula for walks
among conductances (see, e.g., [LP16, Exercise 2.36])

Pωk pτA ă τBq “
Ceffptku Ø Aq

Ceffptku Ø AYBq
, (2.3)

and then we have used the explicit expression of Ceff for conductances in series and in
parallel (detailed later on in formulas (2.8) and (2.9)).
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In the BiRC model case c‹j “ cδj and (2.2) becomes

PωpAnq 6 e´2δpn´fpnqqcfpnq

8
ÿ

j“0

e´2δj 1

cn`j
“: e´2δpn´fpnqqKnpωq .

We use Lemma 1.3 with X “ cfpnq and Y “
ř8
j“0 e´2δj{cn`j (by Lemma 2.5 we have

PpY ą tq “ t´α0`op1q), or the other way around if α8 > α0: we obtain PpKn ą tq “

t´ᾱ`op1q. By a Borel-Cantelli argument it follows that for any ε ą 0, P–a.s., there exists
an m0 “ m0pωq such that Km 6 mp1`εq{ᾱ for each m > m0. As a consequence, P–

a.s. there exists n0 such that, for each n > n0, we have PωpAnq 6 np1`εq{ᾱe´2δpn´fpnqq “

np1`εq{ᾱ´2δC . Since this probability is summable for C big enough, again by a Borel-
Cantelli argument we have that An happens only a finite number of times and the claim
follows for pXnqnPN.

For the R1M, one has c‹j “ cλj “ e´Zj`λpxj`xj`1q in (2.2) and therefore

PωpAnq 6 e´Zfpnq`λpxfpnq`xfpnq`1q

8
ÿ

n“0

1

e´Zj`λpxj`xj`1q
6

8
ÿ

j“n

eZj´λpxj´xfpnqq.

Now, P–a.s. there exists n0 “ n0pωq such that, for each n > n0 and j > n, we have
xj ´ xfpnq > pj ´ fpnqqErZ0s{2 and also Zj 6 pj ´ fpnqqλErZ0s{4. It follows that

PωpAnq 6 n´CλErZ0s{4, and for C big enough this probability is summable. It follows
that An happens only a finite number of times and the claim follows for pYnqnPN, too. �

An easy and important consequence of Proposition 2.1 is the following corollary, which
says that in order to prove Theorems 1.1-1.2, we simply need to focus on Tn, and prove

lim
nÑ8

log Tn
log n

“
1

α
Pb Pω ´ a.s. (2.4)

for both models (recall that α indicates either ᾱ or αpλq).

Corollary 2.2. For P–almost every ω we have that, Pω–a.s.,

lim
nÑ8

log Tn
log n

“
1

a
ðñ lim

nÑ8

logXn

log n
“ a (2.5)

with a : Ωˆ pZdqbN Ñ R`. The same result holds for the R1M process pYnqnPN.

Proof Throughout the proof we will use the fact that Tn Ñ 8 almost surely as n Ñ 8,
which comes from the transience to the right of the walk. As in [TZ04, Lemma 2.1.17],
for n P N we define kn to be the unique integer such that Tkn 6 n ă Tkn`1 and note
that kn Ñ 8. We first prove “ñ”. By Proposition 2.1 we have that, for n big enough,
kn ´ C log kn 6 Xn ă kn ` 1. Hence, almost surely,

a “ lim inf
nÑ8

logpkn ´ C log knq

log Tkn`1
6 lim inf

nÑ8

logXn

log n

6 lim sup
nÑ8

logXn

log n
6 lim sup

nÑ8

logpkn ` 1q

log Tkn
“ a .

The direction “ð” of (2.5) is easily proved by noticing that, almost surely,

1

a
“ lim inf

nÑ8

log Tn
logXTn

“ lim inf
nÑ8

log Tn
log n

6 lim sup
nÑ8

log Tn
log n

“ lim sup
nÑ8

log Tn
logXTn

“
1

a
.

�
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2.2. Lower bound in (2.4). Firstly we show that there are many traps deeper than

n1{α´ε between 0 and n with high probability; secondly we show how to use this fact to
conclude that limnÑ8 log Tn{ log n > 1{α.

Step 1: There are many deep traps. From the tail probability of ρ0 given in (1.11) and the
fact that the ρk have only a range-two dependence, we get for both models the following
lemma, as a standard application of the Borel-Cantelli lemma.

Lemma 2.3. For every ε ą 0 we get that, P-a.s., there exists some n0pε, ωq such that, for
any n > n0 the events

An “ Anpεq :“
!

Card
 

1 6 k 6 n : ρk ą n1{α´ε
(

> 2{ε
)

are verified.

Proof We may reduce to a sequence of i.i.d. random variables ρk by separately proving
the statement for the sequences of i.i.d. r.v.’s pρ2iqiPN and pρ2i`1qiPN. In the following, we
therefore assume that pρkqk > 1 is a sequence of i.i.d. r.v.’s which satisfy (1.11). By the
independence of the ρk we have that

PpAcnq 6 P
´

D 1 6 k1, . . . , k2{ε 6 n : ρk ď n1{α´ε for all k R tk1, . . . , k2{εu

¯

6 n2{εP
`

ρ0 6 n
1{α´ε

˘n´2{ε
6 n2{ε exp

!

´
n

2
P
`

ρ0 ą n1{α´ε
˘

)

,

the last inequality holding for n ě 4{ε, using also that p1´ xqn{2 ď e´nx{2. Then, we use

(1.11) to get that nPpρ0 ą n1{α´εq “ n´αε`op1q. Therefore,

PpAcnq 6 exp
 

´ n´αε`op1q
(

,

which is summable; the conclusion follows by Borel-Cantelli’s lemma. �

Step 2: Deep traps slowdown the walk. We are now ready to prove the lower bound in
(2.4): we show that, for both models,

lim inf
nÑ8

log Tn
log n

>
1

α
Pb Pω ´ a.s. (2.6)

Let us fix ε ą 0 (we assume for simplicity that 2{ε is an integer). Thanks to Lemma 2.3,

it will be sufficient to control PωpTn 6 n1{α´2εq only on the event An that there are at

least 2{ε points k such that ρk > n1{α´ε: let us denote them by k1, . . . k2{ε. On An we
have that

Pω
`

Tn 6 n
1{α´2ε

˘

6
2{ε
ź

i“1

Pω
`

Gki 6 n
1{α´2ε

˘

,

where Gk are geometric random variables with respective parameter pk “ ωk 6 1{ρk. In
fact, every time the walk is in k, it tries to overjump the edge tk, k`1u and has a probability
pk of succeeding: Gk represents the random number of attempts the random walk has to
make before crossing tk, k`1u for the first time. Since we have that pki 6 1{ρki ă n´1{α`ε

for all i “ 1, ..., 2{ε, we get that, provided that n is large enough,

Pω
`

Gki 6 n
1{α´2ε

˘

“ 1´
`

1´ pki
˘n1{α´2ε

6 2n´ε .

Therefore, on the event An and for n big enough, we get that

Pω
`

Tn 6 n
1{α´2ε

˘

6 41{εn´2 .
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Since by Lemma 2.3 we know that An is realized for n big enough P-a.s., an application
of Borel-Cantelli’s lemma gives that

P´ a.s., Pω ´ a.s. one eventually has Tn ą n1{α´2ε .

This proves that for any ε ą 0, a.s. log Tn{ log n ě 1{α´ 2ε for n large enough, and (2.6)
follows.

2.3. Upper bound in (2.4). Also for the upper bound we divide the proof in two steps.

First we show that, P-a.s., EωrTns 6 n1{α`ε as nÑ8; then we use this estimate to obtain

a bound on PωpTn ą n1{α`ε{2q which in turn gives the upper bound in (2.4).

Step 1: Estimates on EωrTns. A central tool of our analysis will be the the following
representation for the expectation of the hitting times (cfr. [Bov06, Formula (3.22)])

EωrTns “
1

Ceffpt0u Ø tnuq

ÿ

kăn

πpkqPωk pτ0 ă τnq (2.7)

where πpkq :“ cδk´1`c
δ
k is a reversible measure for pXnqnPN (analogously, πpkq :“ cλk´1`c

λ
k

for the R1M), τj denotes the first time the walk hits point j P Z and Ceff is the effective
conductance introduced after (2.2). We notice that in (2.7) the quantity Pωk pτ0 ă τnq is
equal to 1 for k 6 0, while for the other k’s we can use (2.3). Moreover Ceff is very easy
to handle in our case: for i ă k ă j we have

Ceffpt0u Ø tkuq “ Spi, j ´ 1q´1 (2.8)

Ceffptku Ø tiu Y tjuq “ Spi, k ´ 1q´1 ` Spk, j ´ 1q´1 , (2.9)

where Spi, jq :“
řj
`“i

1
c‹`

. For the first formula we have used that we have conductances in

series, while for the second formula we have two sequences of conductances-in-series that
are in parallel. Therefore, using (2.8) and (2.9), we get that for both our models

EωrTns “
1

Sp0, n´ 1q´1

´

ÿ

k 6 0

πpkq `
ÿ

0ăkăn

πpkq
Sp0, k ´ 1q´1

Sp0, k ´ 1q´1 ` Spk, n´ 1q´1

¯

“
ÿ

k 6 0

pc‹k´1 ` c
‹
kqSp0, n´ 1q `

ÿ

0ăkăn

pc‹k´1 ` c
‹
kqSpk, n´ 1q . (2.10)

This formula allows us to prove the following.

Proposition 2.4. For any β ą 1{α, we have that

P
`

EωrTns > n
β
˘

6 n1´αβ`op1q .

As a consequence, for every ε ą 0, we get that, P-a.s., there exists some n0pε, ωq such
that, for any n > n0,

EωrTns 6 n
1
α
`ε`op1q . (2.11)

Proof The second part of the lemma comes as an easy consequence of the first part.
Indeed, we have PpEωrTns > n1{α`εq 6 n´αε`op1q, so an application of Borel-Cantelli

lemma gives that, P-a.s., EωrT2ks 6 p2kq1{α`ε for k > k0pωq. Then, since EωrTns is
non-decreasing, we can set kn “ tlog2 nu and see that

EωrTns 6 E
ωrT2kn`1s 6 p2kn`1q1{α`ε 6 p2nq

1
α
`ε

for all n > 2k0pωq “: n0pωq, P-a.s.
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We therefore focus on the first part of the lemma. We start from equation (2.10), which
admits as an easy upper bound

EωrTns 6 2
ÿ

k 6 0

c‹k

n´1
ÿ

`“0

1

c‹`
` 2

n´1
ÿ

k“0

c‹k

n´1
ÿ

`“k

1

c‹`
“: 2A` 2B .

Hence we get

P
`

EωrTns > n
β
˘

6 P
`

A > nβ{4
˘

` P
`

B > nβ{4
˘

, (2.12)

and we want to control the two probabilities. As a preliminary, we give an estimate on
the tail of the two random variables of interest. We postpone the proof of the lemma to
the end of Step 1.

Lemma 2.5. Set X :“
ř

k 6 ´1 c
‹
k and Y :“

ř

` > 1 1{c‹` . We have:

(i) For the BiRC

P pX ą tq “ t´α8`op1q and PpY ą tq “ t´α0`op1q as tÑ8 . (2.13)

(ii) For the R1M (recall that αpλq “ p1´ λcq{p1´ λq)

P pX ą tq 6 t´αpλq`op1q and PpY ą tq “ t´αpλq`op1q as tÑ8 . (2.14)

We can deal now with the first term (Term A) and second term (Term B) in the r.h.s. of (2.12).

Term A. We pull out the term ` “ 0 and k “ 0 in A, so that we can write

A “
`

c‹0 `X
˘

´ 1

c‹0
`

n´1
ÿ

`“1

1

c‹`

¯

6 1`
1

c‹0
X ` c‹0 Y `XY ,

with X and Y defined as in Lemma 2.5. Hence, we get that

P
`

A > nβ{4
˘

6 P
`

X{c‹0 > n
β{16

˘

` P
`

c‹0Y > n
β{16

˘

` P
`

XY > nβ{16
˘

. (2.15)

Using Lemma 1.3 (note that X, Y and c‹0 are mutually independent), we therefore get

that PpA > nβ{4q 6 n´αβ`op1q.
Term B. For the term B, we pull out the terms ` “ k, so that we can write

B 6 n`
n´1
ÿ

k“0

c‹k
ÿ

`ąk

1

c‹`
.

Hence, setting Vk :“ c‹k
ř

`ąk
1
c‹`

, and for n so large that nβ{4´ n > nβ{5, we get that

P
`

B > nβ{4
˘

6 P
´

n´1
ÿ

k“0

Vk > n
β{5

¯

. (2.16)

Note that the Vk’s are not independent, but they have the same distribution as V0 “ c‹0Y .
Moreover, Lemma 2.5, combined with Lemma 1.3 (possibly exchanging the roles of c‹0 and
Y ) gives that

PpV0 ą tq “ P
`

c‹0 Y ą t
˘

“ t´α`op1q as tÑ8. (2.17)

Now, going back to (2.16), we split the sum of the Vk’s into two parts, writing

P
´

n´1
ÿ

k“0

Vk >
nβ

5

¯

6 P
´

n´1
ÿ

k“0

Vk1tVkěnβ{10u >
nβ

10

¯

` P
´

n´1
ÿ

k“0

Vk1tVkănβ{10u >
nβ

10

¯

. (2.18)
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For the first term, we notice that the event is realized if and only if one of the indicator
function is non-zero. Using a union bound, the first term is therefore bounded by

P
´

D k P t0, 1, . . . , n´ 1u : Vk > n
β{10

¯

6 nP
`

V0 > n
β{10

˘

“ n1´αβ`op1q .

For the second term, we simply use Markov’s inequality to get

P
´

n´1
ÿ

k“0

Vk1tVkănβ{10u >
nβ

10

¯

6 10n1´β E
“

V01tV0ănβ{10u

‰

“ n1´αβ`op1q

where we used that ErV01tV0ătus “ t1´α`op1q as tÑ8, thanks to (2.17).

Plugging the last two estimates in (2.18) and going back to (2.16) proves that PpB ě

nβ{4q “ n1´αβ`op1q. This and (2.15), inserted into (2.12), conclude the proof. �

Proof of Lemma 2.5 For item piq, we focus on PpX ą tq, since the tail of Y can be
found in a similar way. On the one hand, since X ě cδ´1, we simply have that PpX ą

tq > Ppc0 ą tq “ t´α8`op1q. On the other hand, X “
ř

kď´1 c
δ
k ą t implies that there

exists some j ě 1 such that cδ´j ą δe´δjt, so that a union bound gives

PpX ą tq 6
8
ÿ

j“1

Ppc0 ą δeδjtq “
8
ÿ

j“1

pδeδjtq´α8`op1q “ t´α8`op1q .

For item piiq, for X, we get that by Markov inequality and the independence of the Zi’s

PpX ą tq 6 P
´

ÿ

k 6 ´1

e´λpZk`¨¨¨`Z´1q ą t
¯

6
1

t

ÿ

k > 1

E
“

e´λZ0
‰k
6 t´αpλq`op1q

since Ere´λZ0s is clearly smaller than 1 and αpλq ă 1. We now turn to the tail of Y . First,
we have the lower bound

PpY ą tq > P
`

ep1´λqZ1´2λZ2 ą t
˘

> PpZ2 ě bqPpep1´λqZ1 ą te2λbq “ t´αpλq`op1q .

For the first inequality we have restricted the sum in Y to the first summand. For the
secon inequality, we used the independence of the Zi’s, and we used some constant b ą 0
such that PpZ2 ď bq ą 0. Finally, for the last identity, we just used that for a ą 0,

PpZ1 ą a log tq “ t´ap1´λcq`op1q, see (1.10) and below.
For the upper bound, we take a constant η ą 0 to be determined later, and call K :“

e´η{p1 ´ e´ηq. We notice that Y “
ř

`ě1 1{cλ` ą t implies that there exists at least some

` > 1 such that 1{cλ` ą t e´η`{K. A union bound therefore gives

PpY ą tq 6
ÿ

` > 1

P
`

ep1´λqZ`´2λpZ0`¨¨¨`Z`´1q ą t e´`η{K
˘

.

We fix some ε ą 0 and we use Markov inequality (with the pαpλq́ εq-th moment) to obtain

PpY ą tq 6
ÿ

` > 1

`

t´1Ke`η
˘αpλq´ε E

”´

ep1´λqZ`´2λpZ0`¨¨¨`Z`´1q
¯αpλq´εı

6 t´αpλq`εB
ÿ

` > 1

´

eηpαpλq´εq E
”

e´2λpαpλq´εqZ0

ı¯`

where B “ Erep1´λc´εp1´λqqZ0sKαpλq´ε is a finite constant for each ε ą 0. The geometric

sum is also finite if we choose η small enough. It follows that PpY ą tq 6 t´αpλq`ε`op1q for
arbitrary ε ą 0, and this concludes the proof. �
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Step 2: Conclusion of the argument. We finally prove that

lim sup
nÑ8

log Tn
log n

6
1

α
Pb Pω ´ a.s. (2.19)

Let us fix ε ą 0. Thanks to Markov inequality and Proposition 2.4-(2.11), we get that,
P-a.s., for n large enough, we have

Pω
`

Tn ą pn{2q
1{α`2ε

˘

6 pn{2q´1{α´2εEωrTns 6 21{α`2εn´ε .

Hence, by an application of Borel-Cantelli lemma, we get that, Pω-a.s., there exists some

k0 “ k0pωq > 1 such that T2k 6
`

2k´1
˘1{α`2ε

for all k ě k0. We therefore conclude by
observing that Tn is increasing, so that for any n such that kn :“ tlog2 nu ě k0 we get that

Tn ď T2kn`1 ď
`

2kn
˘1{α`2ε

ď n
1
α
`2ε for all n ě n0pωq :“ 2k0 .

This proves that for any ε ą 0, one eventually has log Tn{ log n ď 1{α` 2ε a.s., and (2.19)
follows.
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