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SCALING OF SUB-BALLISTIC 1D RANDOM WALKS AMONG
BIASED RANDOM CONDUCTANCES

QUENTIN BERGER AND MICHELE SALVI

ABSTRACT. We consider two models of one-dimensional random walks among biased
i.i.d. random conductances: the first is the classical exponential tilt of the conductances,
while the second comes from the effect of adding an external field to a random walk on
a point process (the bias depending on the distance between points). We study the case
when the walk is transient to the right but sub-ballistic, and identify the correct scaling
of the random walk: we find « € [0, 1] such that log X,/logn — «. Interestingly, a does
not depend on the intensity of the bias in the first case, but it does in the second case.

AMS subject classification (2010 MSC): 60K37, 60Fxx, 82D30.
Keywords: Random walk, random environment, limit theorems, conductance model,
Mott random walk.

1. INTRODUCTION

We consider (X, )nen, & discrete-time nearest-neighbor random walk in a random en-
vironment (RWRE) on Z, whose transition probabilities are determined by a random
collection w := {wj };ez of positive numbers in [0, 1] sampled according to a stationary and
ergodic measure P (we will call E the relative expectation). For a fixed realization of the
environment w, (X, )nen starts at the origin and has transition probabilities

PO Xpy1 =i+ 1| Xp=1)=w;, P'Xpp1=i—-1|Xp=1)=1-w.
Necessary and sufficient conditions on P for the random walk to be transient, and to have

a positive asymptotic velocity in the transient case, are well known. Let us summarize
here some of the results that can be found in Zeitouni, [TZ04, Theorems 2.1.2 and 2.1.9]:

Theorem A. Let p; := 1;:“ and assume that E[log po| is well defined.

(i) The random walk (Xy,)nen is P-a.s.: transient to the right if E[log po] < 0; transient
to the left if E[log po] > 0; recurrent if E[log po] = 0.

(ii) If E[log po] < 0, then P-a.s. the velocity v := limy, o, Xp/n exists P¥-a.s. and is
equal to E[S]~! € [0, +00) with S := wio +30, 3;% p—j-

i=1w
One possibility for choosing the environment w is to sample with measure P a shift-
ergodic sequence of positive random variables {c}xrez attached to the edges of Z — called

conductances — and define for 1 € Z
G

= — 1.1
wi Ci—1+ C; ( )

We call the associated walk a random walk among random conductances (RWRC) and
point out that (X, )nen is reversible with respect to the measure 7(k) = cx—1 + ;. In

this case, the p;’s of Theorem A are given by p; = c’C—;l and the formula for S simplifies
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2 Q. BERGER AND M. SALVI

to S =1+23"" % Tt is not hard to see that the RWRC on ergodic conductances has

i=1 cg
always asymptotic speed v = 0.

In this paper we consider conductances sampled in an i.i.d. manner, but we add an
external force — or bias —, which “pushes” the random walk, say to the right. There are at
least two natural choices for doing so, as discussed below. We will produce random walks
(X1 )nen that are transient but have zero speed. Our aim is to identify the correct scaling
for X, i.e. find a € [0, 1] such that X, is typically of order n®+°(1). We stress that the case
of an RWRE with i.i.d. w;’s has been studied, for example in [KKS75, ESZ09, ESTZ13],
and the picture is complete: the correct scaling has been identified as well as the scaling
limits. However, in the case of i.i.d. conductances the w;’s are not i.i.d. anymore, and the
phenomenology is actually very different, see the discussion in Section 1.3.

The first way of tilting the conductances (see Section 1.1) is to multiply the k-th con-
ductance by a factor €% for some § > 0. We call the related process random walk among
Biased i.i.d. Random Conductances (BiRC). Somewhat surprisingly, the behavior of sub-
ballistic BiRC has been studied only in dimension d > 2. In [Fril3], Fribergh shows that
the walk is ballistic if and only if the expectation of the conductances is finite and then
identifies the right order of rescaling in the sub-ballistic regime, depending on the tail of the
distribution of the conductances at 400 (finer results are given in [FK16], under stronger
assumptions). This represents one of the main differences with the one-dimensional model:
as it will be clear from Theorem 1.1, in our case both the integrability of the conductance
and the integrability of the inverse of the conductance play a role for determining the
ballisticity of the walk and the right rescaling exponent. Roughly speaking, this is due to
the fact that in higher dimension the walk will naturally go around traps generated by
edges with a small conductance, whereas for d = 1 it is not possible to avoid them.

The second way of adding a bias (see Section 1.2) is inspired from Physics: the present
work was motivated by the study of the sub-ballistic regime for the Mott variable-range
hopping (see [FGS16, FGS17] and references therein), a model for the description of the
movement of electrons in doped semi-conductors. The Mott walk is a long-range random
walk on a random point process on R (we can see it as a walk on Z by projecting it);
it may jump from its current position to any other site with a probability that decays
exponentially in the distance and depends on some random energies associated to each
point. One can then add an external electric field that induces a bias on the walk, but the
bias depends this time on the distance between points. We consider here a simplification
of this model, but we believe that our analysis captures the essence of the original one.
We ignore the energies and allow the walk to jump only to its nearest-neighbors. We call
it Range-1 Mott walk (R1M). We are not aware of any result for the sub-ballistic R1M
in any dimension. Interestingly, we find that the behavior of the R1M is very different
from that of the BiRC: the scaling of the walk depends this time on the distribution of
the conductances but also on the intensity of the bias.

1.1. Biased i.i.d. Random Conductances (BiRC) with heavy tails. We take an
ii.d. sequence {c}xez of random conductances under P and consider the biased random
walk among these conductances. This corresponds to taking conductances

& = ke (1.2)
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where § > 0 is the bias intensity. Then, (1.1) and the p;’s appearing in Theorem A become
d
e ¢ —26 Ck—1
W =—————— and =e “—. 1.3
K e5ck + e_‘sck_l Pk Ck ( )
We find that E[log po] = —20 < 0 so that Theorem A ensures that (X, )nen is indeed
transient to the right for any 6 > 0 and the asymptotic velocity is

—20

v(0) = —= with  E[S] =1+ 2E[¢o]|E[1/co] (1.4)

1—e 20"
Hence, v(§) > 0 if and only if E[cg] < +o0 and E[1/co] < +00. We realize that the zero
velocity regime can occur for two different reasons: either E[cg] = +00, i.e. ¢y has some
heavy tail at +00; either E[1/co] = +00, i.e. ¢p has some heavy tail at 0. This reflects the
fact that a slowdown of the random walk is usually due to the presence of traps, i.e. regions
of the space where it tends to spend the majority of the time, of two different kind (see
Figure 1). The first kind of trap is produced by an edge {k,k + 1} with conductance
¢k = M » 0 surrounded by two edges with conductances of O(1): in this case the walk
will tend to jump back and forth from point k to k + 1 several times (roughly a geometric
number of times of mean M) before hopefully escaping to the right. The other kind of
trap is represented by an edge {k,k + 1} with a conductance ¢ « 1: here the walk will
attempt to jump to k + 1 every time it finds itself on k, but it will manage to do it only
with, roughly, probability e.

o@1) M 0Q1) 0Q1) ¢

| l | ! | l | l l
=TT | | | I --l----l | |“"|"
k—1 k k+1k+2 k=1 k k+1Fk+2

FIGURE 1. On the l.h.s. a trap of the BiRC due to the presence of a large conductance,
¢, = M >» 1, surrounded by two conductances of O(1). On the r.h.s. a trap generated by
a small conductance c,, = € < 1 preceded by a conductance of O(1).

We therefore need to make some assumption on the tail of ¢y at +00 and 0 to understand
the asymptotic behavior of (X,,),en: we suppose that there are some a, g € [0, +00]
such that

. logP(co > M) . logP(¢p <€)
lim ————— = —ay, lim ————~
M—+0 log M e—0 loge
We denote @ := min(ag, ao), so that if the random walk is sub-ballistic then necessarily
ae[0,1].

Theorem 1.1. Let 6 > 0 and assume that (1.5) holds with & = min(ag, o) < 1. Then
we have

= Qp. (1.5)

. log X,
im
n—o logn

= PR PY — a.s.

We stress that, in order to find a finer scaling for X,,, the assumption (1.5) on the
conductances needs to be strengthened. A natural way of doing so is to assume that there
are slowly varying functions Lo () and Lg(-) such that

M—o0

P(co > M) X% Lo (M)M ==, and P(co < ) = Lo(e)e™ . (1.6)

In [FK16], the authors consider the dimension d > 2, and use this assumption (for the tail
at +00, since only large conductance traps exist in that case) to show that the properly
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rescaled walk converges in law to the inverse of a stable subordinator. In dimension 1, the
situation is fairly complicated due to the existence of several types of trap. When oy # aq
then the deepest traps are of one of the types presented in Figure 1. But when ag = aq, a
third kind of trap may be predominant (depending on the slowly varying functions L., and
Ly), as a combination of two consecutive edges, one with high and the other with small
conductance — we refer to Section 1.3 for further discussion. This more subtle landscape
is beyond the scope of this paper, and we postpone its study to a subsequent work.

1.2. The range-one Mott hopping model (R1M) with an external field. We
consider a random sequence of positive random variables (Z;);cz that are ergodic and shift
invariant under P. The (Z;);cz determine the position of points {z;};cz on R such that
x9 =0, 23, = Zf:_ol Z;ifk > 1 and x5, = —Zle Z_; if k < — 1. The range-one Mott
random walk (Y;,)nen is the process starting in zero and jumping from point z, to point
. - -2z
T4 1 with probability equal to m
can also see this walk as the RWRC on the set of points {z}} with conductance associated
to the edge {xy, 2141} equal to c; := e~?k. We introduce an external electrical field of
intensity A € (0,1). From a physical point of view, this will result in a modification of the

conductances which are given now by
= ¢ - NERFTRLL) (1.7)

We will stick to the symbol cﬁ when dealing with the conductances of the biased R1M,
while we will use ci for the BiRC and ¢ when dealing with both models at the same

time. It will be convenient to look at a projection of (Y, )neny on Z: we let (Yy,)n >0 be
the random walk on Z such that Y,, := wzy,. Studying the asymptotics of the two chains

and to z;_1 with the remaining probability. We

is equivalent, since in the transient case we have the relation % — E[Zy] as n — o« by
the ergodic theorem.

For k € Z, the probability of jumping from k to k+ 1 for (Y, )nen and the pg’s appearing
in Theorem A are, respectively,

wr. = o~ (1-2)Z and — o~ (N Zp 1 +(1-N) Z; (1.8)
k= e_(l_A)Zk + e—(1+>\)Zk._1 pk - . .
It follows that E[logpo] = —2AE[Zp] < 0, so that part (i) of Theorem A guarantees
gp o

that (Xp)nen is transient to the right for any A > 0. Part (ii) of the theorem and a
straightforward computation also show that the limiting velocity is
E[e—(l—i-/\)ZO]

1 — E[e=2*0]°
Hence, v(\) > 0 if and only if E[e(!~Y%0] < 400 (note that this condition is equivalent to

the condition for ballisticity for the full-range Mott random walk, cfr. [FGS16, Theorem
1]). We define

with  E[S] = 1 + 2E[e(—N%0] (1.9)

Ae i=inf {X: E[e(ImM%0] < +oo}, (1.10)
so that v(A\) = 0 if A < Ac and v(A) > 0 if A > A.. Notice that from the definition of
A it follows that P(Zy > t) = e~ (1-A)t(1+o(1)  Interestingly, by (1.9) we see that v is
continuous at A = . if and only if E[e(!=*)%0] = 400,

Theorem 1.2. For any A < A, define a()) := 1=3¢. Then,
log Yy,

lim
n—w logn

a(N) P® P* — a.s.
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We stress once more that a notable difference with Theorem 1.1 is that here the scaling
a(-) depends on the intensity of the bias A\, whereas & does not depend on 4.

1.3. Discussion about the traps and products of heavy-tail random variables.
In order to give a mathematical sense to the notion of traps, Sinai introduced in [Sin82]
the potential function V', canonically associated to the environment w. It can be defined
as V (k) := Zf;l log p; for k € Z (for k € Z_ add a minus sign, and V(0) = 0) and it is a
powerful and intuitive tool, since “valleys” in the potential landscape correspond to traps
for the random walk. The notion of valleys as traps has then been extended in [ESZ09]
to the case of transient random walks on Z (say to 4+00). Since in this case E[log po] < 0,
one has that the potential has a negative drift (V (k) — —o0) and traps correspond to
portions where V increases by a large amount. In particular, when the w;’s are i.i.d., the
potential is a random walk with independent increments and the valleys are associated to
its excursions: they are large regions with a large deviation behavior of the sum of log p;,
see the discussion in Section 3 of [ESZ09]. This is in sharp contrast with our framework:
in the BiRC (an analogous reasoning can be made for the R1M), the increments of V' are
strongly correlated, and as a matter of fact we have V (k) = log co — 26k —log ¢, for k > 1.
Valleys, i.e. large increases in the potential, will then be caused by isolated large values
of V(k) — V(k —1) = log pg. For us, it is therefore crucial to understand the tail of the
distribution of py = e 2%¢_1/co.

The following general result goes in this direction and will be useful throughout the
paper. From now on, when treating the two models at the same time, we will use « for &
or a(\) as defined in Theorems 1.1 and 1.2 respectively.

Lemma 1.3. Let X,Y be two independent, positive, random variables. Assume that there
1s some a > 0 such that, ast — o0,

P(X >t)=t°"W agnd PY >t) <t ot

1.e. Y has a lighter tail than X. Then we have that
P(XY >t) =t"0  ast— 0.

Proof For the lower bound, let yg = inf{y : P(Y < y) > 1/2}; then

P(XY >t) = P(Y < yo)P(X > t/yo) =t o).
For the upper bound, we fix some ¢ € (0, ), and we write

P(XY > 1) <P(Y >t) +E[P(X > /Y | Y) 1y < 4]
<o) 4 e TRV Ly gy ]

where we used the fact that there is a constant c. such that P(X > z) < c.x™* for
all > 1. Then, because of our assumption on Y, we easily get that for all ¢ > 0,
E[Y®¢] < +0. Therefore, we get that there is a constant C. such that

P(XY > t) < t—oto) 4 o gmate

so that P(XY > t) < t~**+°(1) since ¢ is arbitrary. O
Thanks to this lemma, we are able to obtain the tail of pg: we have that for both models
P(py > t) = t~>+o0) (1.11)

Indeed, for the BiRC we have that pg is the product of two independent random variables:
X := e 2¢_;, which has a tail P(X > t) = t~*0+°(1) and Y := 1/¢, which has a tail
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P(Y > t) = t—*0+°(1) (we might have to exchange the role of X and Y to properly apply
Lemma 1.3). Analogously, for the RIM, po is the product of X := e(1=)20 which has
a tail P(X > t) = P(Zy > 135 logt) = exp{ — ¢ logt (1 + o(1))} = t~eW+e) and
Y := e~ (1+MZ-1 which is not larger than 1 (and therefore satisfies P(Y > t) < t~@MN+o(1)),
Note that this proof gives an indication on the easiest way to create a large trap, i.e. a
large log p;: the tail of py comes from having either a large c¢_; (with ¢y of order one), or

a small ¢y (with c_; of order one), depending on which one is the easier.

Remark 1.4. In the case where ¢y has a regularly varying tail at 0 and +o0, as in (1.6),
[EG80] gives that pg = c_1/co has a regularly varying tail with exponent @ = min(ay, ay),
and [Cli86, Corollary 5] provides the sharp behavior of P(py > t) as t — o0. Let us stress
here that in the case oy = g, the main contribution to P(py > t) will come from a
combination of having c_; large and ¢y small, therefore suggesting a new type of trap,
different from those of Figure 1. As an example, if P(cy > t) ~ t~% and P(cg < &) ~ e~ @
n (1.6), a straightforward calculation gives that P(py > t) ~ (logt)t~®, and the main
contribution comes from all possibilities of having c_; = t* and ¢y = t*~1 with a € [0,1].

2. PROOF OF THEOREMS 1.1 AND 1.2

2.1. A fundamental preliminary result. A central tool for the study of the walks are
the hitting times

T, = inf{k, X;, = n}. (2.1)
We will also use the notation T, for the hitting times of the R1IM (Y}, )nen. Understanding
the behavior of T, is the key to finding the right scaling for X,, (respectively, Y,). In fact,
the following proposition, in loose terms, shows that the increasing map n — T}, is the
inverse of the map k — Xp, up to an error of at most a constant times logn. Corollary 2.2
shows the relation between the asymptotics of T,, and that of the position of the walker.

Proposition 2.1. There exists a constant C > 0 such that, for P—almost every w we have
that, P¥—-a.s., there exists ng € N such that, for all n > ng,

X7, 45 =2n—C logn,
The same result holds for the R1M process (Yp)nen-

Proof We set f(n) := n — Clogn, with C > 0 to be determined later on. We call
Ay, = {Wy < f(n), for some k > T,}, where W}, can be taken equal to X} or Y, and
control

where P is the law of the random walk in random environment w, starting from n. Here 7;
is the first time the walk hits j € N, while Ceg(A < B) indicates the effective conductance
between set A and set B, that is Ceg(A <> B) 1= inf{>, ., cx(f(k + 1) — f(k))?, fla =
0, flp = 1}. For the equality in (2.2) we have used the well known formula for walks
among conductances (see, e.g., [LP16, Exercise 2.36])

Ceri({k} < A)
Ce({k} > AuB)’

and then we have used the explicit expression of Ceg for conductances in series and in
parallel (detailed later on in formulas (2.8) and (2.9)).

PP(ta<71B) = (2.3)
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In the BiRC model case ¢} = c? and (2.2) becomes

o0

Pw(An) < 6725(n7f(n))cf(n) Z e—26j 1 _. e—25(nff(n))Kn(w) )
: Cn+j
7=0

We use Lemma 1.3 with X = cy,) and Y = Z;O:o e 29 /¢, 1; (by Lemma 2.5 we have
P(Y > t) = t—*+°()) or the other way around if a > ag: we obtain P(K, > t) =
t—a+e(l) | By a Borel-Cantelli argument it follows that for any ¢ > 0, P-a.s., there exists
an mo = mo(w) such that K, < m(+e)/& for each m > mg. As a consequence, P—
a.s. there exists ng such that, for each n > ng, we have P¥(A4,,) < p(ite)/ag=26(n=f(n)) —

n(1+e)/a=26C " Gince this probability is summable for C' big enough, again by a Borel-
Cantelli argument we have that A, happens only a finite number of times and the claim
follows for (X,,)nen-

For the R1M, one has ¢} = c?‘ = e~ %M@ +2511) in (2.2) and therefore

2 oZi —X( x]—xf(m)

o0
PY(A,) < e ZrmA@ e +esm)+1) 2
n= 0

e %j +)\(xj +x541)

Now, P-a.s. there exists ng = ng(w) such that, for each n > ng and j > n, we have
T — Ty = (J — f(n))E[Z0]/2 and also Z; < (j — f(n))AE[Zo]/4. Tt follows that
PY(A,) < n~CXEZl/4 and for C big enough this probability is summable. It follows
that A, happens only a finite number of times and the claim follows for (Y;,)nen, too. O

An easy and important consequence of Proposition 2.1 is the following corollary, which
says that in order to prove Theorems 1.1-1.2, we simply need to focus on T},, and prove
log7, 1

lim — P® P¥ — a.s. (2.4)
n-o logn o

for both models (recall that « indicates either @ or a(\)).

Corollary 2.2. For P-almost every w we have that, P¥—-a.s.,
logT,, 1 . log X,

lim - — lim
n—00 logn a n—o logn

with a : Q x (ZH)®N — Ry. The same result holds for the R1M process (Yp)nen-

(2.5)

Proof Throughout the proof we will use the fact that 7T, — oo almost surely as n — o,
which comes from the transience to the right of the walk. As in [TZ04, Lemma 2.1.17],
for n € N we define k,, to be the unique integer such that 7T}, < n < T}, 41 and note
that k, — o0. We first prove “=”. By Proposition 2.1 we have that, for n big enough,
k, — Clogk, < X, <k, + 1. Hence, almost surely,

log(k,, — Clogk log X,
a = liminf 0g(kn — C'log kn) < liminf&
e T e logn
log X, log(k 1
< limsup o8 An < limsupM =
n—oo logn n—00 log T},

The direction “<” of (2.5) is easily proved by noticing that, almost surely,

log T, .. JJdogT, . log T, . log T, 1
= liminf < limsup = limsup =—.
a n—w log X, n—o logn n—oo logn noow log X, a
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2.2. Lower bound in (2.4). Firstly we show that there are many traps deeper than
n'/®=¢ between 0 and n with high probability; secondly we show how to use this fact to
conclude that lim,,_,4 log T, /logn > 1/a.

Step 1: There are many deep traps. From the tail probability of py given in (1.11) and the
fact that the pg have only a range-two dependence, we get for both models the following
lemma, as a standard application of the Borel-Cantelli lemma.

Lemma 2.3. For every e > 0 we get that, P-a.s., there exists some ng(e,w) such that, for
any n = ng the events

A, = Ay(e) = {Card{l <k<n: pp> nl/o‘_a} > 2/5}
are verified.

Proof We may reduce to a sequence of i.i.d. random variables p; by separately proving
the statement for the sequences of i.i.d. r.v.’s (p2;)ien and (p2i+1)ien. In the following, we
therefore assume that (pg)x >1 is a sequence of i.i.d. r.v.’s which satisfy (1.11). By the
independence of the p, we have that

P(AS) < P(H U<k, kye <ntopp < 0o forall k¢ {ki,.. .,kz/g})
< n2/€IP’(p0 < nl/a75>N—2/€ < n2/e exp{ _ gp(po - nl/afs)}’
the last inequality holding for n > 4/e, using also that (1 — z)™? < e "#/2. Then, we use
(1.11) to get that nP(pg > n/*~%) = n=ec+°(1) Therefore,
P(AS) < oxp { — o=}
which is summable; the conclusion follows by Borel-Cantelli’s lemma. O

Step 2: Deep traps slowdown the walk. We are now ready to prove the lower bound in
(2.4): we show that, for both models,

> — P® P¥ — a.s. (2.6)

Let us fix € > 0 (we assume for simplicity that 2/ is an integer). Thanks to Lemma 2.3,
it will be sufficient to control P¥(T,, < n'/*~2) only on the event A, that there are at
least 2/e points k such that pp > n/e=¢: let us denote them by ki, ... kyje. On A, we
have that

2/e

Pw(Tn < nl/a—25) < HPw (le < nl/a—2€) ’

i=1
where G}, are geometric random variables with respective parameter pp = wp < 1/pg. In
fact, every time the walk is in k, it tries to overjump the edge {k, k+1} and has a probability
pi of succeeding: G}, represents the random number of attempts the random walk has to
make before crossing {k, k+ 1} for the first time. Since we have that py, < 1/pg, < n~1/o+e
for all i = 1,...,2/e, we get that, provided that n is large enough,

1/a—2e
PY(Gy, < nl/a_QE) =1-(1- pki)n <2n7°.

Therefore, on the event A, and for n big enough, we get that

pv (Tn < nl/a—Za) < 41/871_2.
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Since by Lemma 2.3 we know that A, is realized for n big enough P-a.s., an application
of Borel-Cantelli’s lemma gives that

P —a.s., P¥ — a.s. one eventually has T}, > n'/*7%

This proves that for any € > 0, a.s. logT,/logn > 1/a — 2¢ for n large enough, and (2.6)
follows.

2.3. Upper bound in (2.4). Also for the upper bound we divide the proof in two steps.
First we show that, P-a.s., E¥[T},] < n'/**¢ as n — o0; then we use this estimate to obtain
a bound on P¥(T}, > n'/®*¢/2) which in turn gives the upper bound in (2.4).

Step 1: Estimates on E“[T,]. A central tool of our analysis will be the the following
representation for the expectation of the hitting times (cfr. [Bov06, Formula (3.22)])

1
= Calo) o ) 2 "R (0 < ) (27)
)

where 7 (k) := ¢ | +¢? is a reversible measure for (X,,),en (analogously, 7(k) := cp_, +cp
for the RIM), 7; denotes the first time the walk hits point j € Z and Ceg is the effective
conductance introduced after (2.2). We notice that in (2.7) the quantity Py (r9 < 7,) is
equal to 1 for k < 0, while for the other k’s we can use (2.3). Moreover Ceg is very easy
to handle in our case: for i < k < j we have

E¥[Tn]

Cot ({0} < {k}) = S(i,j = 1) (2:8)

Conr({k} < {i} v {7}) = SG k=) + Sk, j = 1), (2.9)

where S(7,j) := z:i C% For the first formula we have used that we have conductances in
(4

series, while for the second formula we have two sequences of conductances-in-series that
are in parallel. Therefore, using (2.8) and (2.9), we get that for both our models

-1
E¥[T,] = %( Y w)+ Y] kg 50,k —1) )

S(0,n — 17T\ & L 0,k —1)~1+ S(k,n — 1)1
= D (G + eSO =1+ > (chy+ci)Skn—1). (2.10)
k<O O<k<n

This formula allows us to prove the following.
Proposition 2.4. For any > 1/a, we have that
]P;(Ew[Tn] > nﬁ) < n17a6+o(1) )

As a consequence, for every € > 0, we get that, P-a.s., there exists some ng(e,w) such
that, for any n = ng,

E¥[T,] < natete) (2.11)
Proof The second part of the lemma comes as an easy consequence of the first part.
Indeed, we have P(E“[T,] > n'/**¢) < n=e+°() 5o an application of Borel-Cantelli
lemma gives that, P-a.s., E¥[Ty] < (2F)Y/2*¢ for k > ko(w). Then, since E[T}] is
non-decreasing, we can set k, = |logy n| and see that

E¥[T,] < E¥[Tyrnir] < (2FnFh)leate < (2n)é+5

for all n > 2+0(@) =: ng(w), P-a.s.
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We therefore focus on the first part of the lemma. We start from equation (2.10), which
admits as an easy upper bound

n—1 1 n—1 n—1 1
E[Tn] <2 ). i > +2> k> — =24 +2B.
k<0 =0 k=0 =k
Hence we get
P(E“[T,] = n®) <P(A=nP/4) + P(B > n"/4), (2.12)

and we want to control the two probabilities. As a preliminary, we give an estimate on
the tail of the two random variables of interest. We postpone the proof of the lemma to
the end of Step 1.
Lemma 2.5. Set X :=3, . jc; andY =3, 1/c;. We have:

(i) For the BiRC

P(X >t) =t gnd P(Y >t)=t"%"0 g5t — 0. (2.13)
(ii) For the RI1IM (recall that a(X) = (1 —Xo)/(1 — X))
P(X >t) <t WM gnd P(Y > t) =t oW+l g5t 0, (2.14)

We can deal now with the first term (Term A) and second term (Term B) in the r.h.s. of (2.12).
Term A. We pull out the term £ =0 and & = 0 in A, so that we can write

1 S 1
A= (cB—l—X)(—*—i- > —*> <1+ X +qY +XY,
o 5% o
=1
with X and Y defined as in Lemma 2.5. Hence, we get that
P(A > nP/4) <P(X/cf = nP/16) + P(cfY > n/16) + P(XY > n”/16). (2.15)

Using Lemma 1.3 (note that X, Y and ¢, are mutually independent), we therefore get
that P(A > nf/4) < n~=ofto),

Term B. For the term B, we pull out the terms ¢ = k, so that we can write

n—1 1
>*
k=0 (>k ¢

Hence, setting Vi, := ¢ Do s ci*, and for n so large that n®/4 —n > n?/5, we get that
4

n—1
P(B >n?/4) < ]P( NV n5/5) . (2.16)
k=0
Note that the V}’s are not independent, but they have the same distribution as Vp = Y.

Moreover, Lemma 2.5, combined with Lemma 1.3 (possibly exchanging the roles of cf; and
Y') gives that

P(Vo>t)=P(cqY >t) =t "W ast - oo, (2.17)
Now, going back to (2.16), we split the sum of the V}’s into two parts, writing

n—1 B8 n—1 8 n—1 8
P(];)Vk = %) < P(ICZ:OVICI{V]CZTLB/N} = %) + P<]€Z:0Vk1{vk<n6/10} > %) . (2'18)
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For the first term, we notice that the event is realized if and only if one of the indicator
function is non-zero. Using a union bound, the first term is therefore bounded by

P(3ke{0,1,....,n—1}: Vi >n/10) <nP(Vy > n?/10) = n!=o7+eh),

For the second term, we simply use Markov’s inequality to get

n—1 8
n 1— 1—afB+o(1
P( D Vil vcnsjiop = ﬁ> <100 PE[Volyyy<psjioy] = n' -7 +oM
k=0

where we used that E[Volqy,<y] = tr=ato(l) a5t — oo, thanks to (2.17).

Plugging the last two estimates in (2.18) and going back to (2.16) proves that P(B >
nP/4) = nt=f+e(l)  This and (2.15), inserted into (2.12), conclude the proof. O

Proof of Lemma 2.5 For item (i), we focus on P(X > t¢), since the tail of Y can be
found in a similar way. On the one hand, since X > 05_1, we simply have that P(X >

t) = P(cog > t) = t~@=*+°() On the other hand, X = k<1 ) > t implies that there

exists some j > 1 such that o ;> de 97 t, so that a union bound gives

o0 o]
P(X > 1) < ). Pag > 6e¥t) = Y (eMt) @ Foll) — gawtoll)
j=1 j=1

For item (i1), for X, we get that by Markov inequality and the independence of the Z;’s

_ 1 AZolk -

A Z++Z_— AZ, A 1

]p(X>t)<P(Ze (Zp+-+ 1)>t)<ZZE[e 0] <ta()+o()
k<1 k> 1

since E[e~*%0] is clearly smaller than 1 and a()\) < 1. We now turn to the tail of Y. First,

we have the lower bound

P(Y > t) > P(e(l_)\)zl—Q/\Zz - t) >P(Zy > b)P(e(l_)‘)Zl > te2’\b) _ —aN)Fo(1)

For the first inequality we have restricted the sum in Y to the first summand. For the
secon inequality, we used the independence of the Z;’s, and we used some constant b > 0
such that P(Z; < b) > 0. Finally, for the last identity, we just used that for a > 0,
P(Z; > alogt) = t~2(1=A)+o(1) "see (1.10) and below.

For the upper bound, we take a constant n > 0 to be determined later, and call K :=
e /(1 —e™"). We notice that Y = >, 1/c) > t implies that there exists at least some

¢ > 1 such that 1/c) > te /K. A union bound therefore gives
P(Y >1) < Y P(eUNZm2A Gt i) 5 et /K
£>1
We fix some ¢ > 0 and we use Markov inequality (with the (a(A)—¢)-th moment) to obtain

P(Y > t) < Z (thezn)a(A)—eE[(6(14)2@72,\(20+...+ZH))a(A)—s]

£>1
<t oW+ p n(a(N)—e) [ e=2Ma(N)-2)Zo ¢
PG K /)

where B = E[e(17Ac—e(1=0)Z0] (N =¢ i5 5 finite constant for each ¢ > 0. The geometric
sum is also finite if we choose 17 small enough. It follows that P(Y > t) < t~¢(M+eto(l) for
arbitrary € > 0, and this concludes the proof. ]
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Step 2: Conclusion of the argument. We finally prove that
log T, 1

lim sup 98 “n < — P® P¥ —a.s. (2.19)

n—oo logmn o
Let us fix ¢ > 0. Thanks to Markov inequality and Proposition 2.4-(2.11), we get that,
P-a.s., for n large enough, we have
pv (Tn = (n/2)1/a+2€) < (n/2)—1/a—2sz[Tn] < 21/a+2€n—€ ]

Hence, by an application of Borel-Cantelli lemma, we get that, P“-a.s., there exists some
ko = ko(w) > 1 such that Thr < (2"3_1)1/&”E for all k& > kg. We therefore conclude by
observing that T, is increasing, so that for any n such that k,, := |logy n| = ko we get that
1/a+2¢e

Ty < Tokn+1 < (2’“”) <nat®  foralln> no(w) := 2k,

This proves that for any € > 0, one eventually has log T},/logn < 1/a + 2¢ a.s., and (2.19)
follows.
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