
HAL Id: hal-01635340
https://hal.science/hal-01635340

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Demo of Application Lifecycle Management for IoT
Collaborative Neighborhood in the Fog

Loic Letondeur, François-Gaël Ottogalli, Thierry Coupaye

To cite this version:
Loic Letondeur, François-Gaël Ottogalli, Thierry Coupaye. A Demo of Application Lifecycle Manage-
ment for IoT Collaborative Neighborhood in the Fog. Fog World Congress, Oct 2017, Santa Clara
(USA), United States. �hal-01635340�

https://hal.science/hal-01635340
https://hal.archives-ouvertes.fr

A Demo of Application Lifecycle Management for

IoT Collaborative Neighborhood in the Fog
Practical Experiments and Lessons Learned around Docker

Loïc Letondeur

Orange Labs, France

loic.letondeur@orange.com

François-Gaël Ottogalli

Orange Labs, France

francoisgael.ottogalli@orange.com

Thierry Coupaye

Orange Labs, France

thierry.coupaye@orange.com

Abstract— Regarding latency, privacy, resiliency and

network scarcity management, only distributed approaches

such as proposed by Fog Computing architecture can

efficiently address the fantastic growth of the Internet of

Things (IoT). IoT applications could be deployed and run

hierarchically at different levels in an infrastructure ranging

from centralized datacenters to the connected things

themselves. Consequently, software entities composing IoT

applications could be executed in many different

configurations. The heterogeneity of the equipment and devices

of the target infrastructure opens opportunities in the

placement of the software entities, taking into account their

requirements in terms of hardware, cyber-physical interactions

and software dependencies. Once the most appropriate place

has been found, software entities have to be deployed and run.

Container-based virtualization has been considered to overpass

the complexity of packaging, deploying and running software

entities in a heterogeneous distributed infrastructure at the

vicinity of the connected devices. This paper reports a practical

experiment presented as a live demo that showcases a “Smart

Bell in a Collaborative Neighborhood” IoT application in the

Fog. Application Lifecycle Management (ALM) has been put in

place based on Docker technologies to deploy and run micro-

services in the context of Smart Homes operated by Orange.

Keywords—Fog Computing; IoT; Application Lifecycle

management; Containers; Docker; Micro-services;

Orchestration; Deployment; Heterogeneity

I. INTRODUCTION

After a decade of continuous growth of Cloud
Computing, fueled by mega datacenters which concentrate
computing and storage resources for on-demand enterprise
and web applications, we can now witness the emergence of
more distributed paradigms, such as Fog Computing. Fog
Computing [1, 2] is typically motivated by Internet of Things
(IoT) applications (Smart Home, Smart City, Smart
Agriculture, Smart Car, Smart Grid, etc.) for which it appears
more adequate to distribute computing, storage, interaction
and control at the edge of the network and beyond, closer to

things of the physical world – where sensors and actuators
are – rather than only in remote mega datacenters. This is
especially appealing for applications that require, for
example, low latencies, data privacy enforcement, or the
control over the amount of data commuting by the core
network.

Fog Computing brings new challenges regarding
Application Lifecycle Management (ALM) [8, 12, 13]. ALM
covers all the stages from development to deployment and
reconfiguration of an application. Fundamentally, one core
issue of ALM in the Fog is how to place a set of software
entities defining a distributed application onto a Fog
infrastructure made of Fog nodes providing resources for the
execution (i.e. computing, storage, communication and
interaction). Major challenges of ALM in Fog environment
(compared to Cloud environment) are the following: scale
(we might expect the number of Fog nodes to be one or
several orders of magnitude higher compared to Cloud);
heterogeneity (Fog nodes exhibit a much higher variability
than Cloud nodes in terms of computing, storage, network
connectivity, energy consumption and electricity supply);
volatility (Fog nodes are not always connected or available
due to, for example, energy or connectivity shortage, or
because they are moving from one place to another); locality
(Fog nodes are sensible to geographical localization as they
tend to be placed at the vicinity of the sensors and actuators
hosted by the IoT devices). At the end of the day, the way
ALM could deal with concerns such as elasticity regarding
Cloud Computing, can just not be reused as they are in Fog
Computing. New models, algorithms, optimization methods
and technologies must be developed [7, 9, 10].

In order to get practical feedback on these issues, we
have built and made experiments on an industrial testbed for
Fog Computing and IoT that is deployed in several sites
within Orange Labs (i.e. infrastructures multiple sorts of Fog
nodes along with different set of sensors and actuators). This
paper reports some experiments that were presented as a live
demo during the Orange Research Exhibition in Paris,

France in December 2016. The demo showcases a “Smart
Bell” IoT application in a “Collaborative Neighborhood”
context as an extension of a Smart Home, that could be
representative of home services proposed and sold by Orange
in a near future. Section II introduces the “Smart Bell” demo
itself and its user story. Section III describes the physical
infrastructure of the demo, i.e. the various Fog nodes and
things deployed inside the different houses. Section IV
describes the software functional architecture of the IoT
“Smart Bell” distributed application. Section V details the
setup of the demo, i.e. how the application was actually
deployed onto the Fog infrastructure. Section VI provides
feedback and lessons learned from the realization of the
demo. Section VII concludes by proposing some
requirements on ALM for Fog that emerged from our
experiments. Note that since Docker, a virtualization
orchestration solution based on Linux containers, was
somehow the cornerstone of our ALM experiments, sections
V to VII deal quite a lot with the usage of Docker that was
made and practical feedback on this usage.

II. CONTEXT & PURPOSE OF THE DEMO

Connected things/objects, such as Netatmo [20] weather

stations, get people used to share data from their devices.

Not only the data, but also the devices themselves could be

shared to build high value personalized IoT applications as

mashups of objects and services [14, 15]. For example, in

the context of a neighborhood, people could be willing to

collaborate to create a “Smart Bell” application. The

application would tell the landowner, wherever s.he could

be, when someone is coming to ring the doorbell at her.is

usual home, especially when s.he is away in her.is

secondary house (see Fig. 1, Home #1) for the week end.

Sensors in the hallway will trigger an event when someone

is approaching the door of the main house (see Fig. 1, Home

#3). A connected light will then be turned on in white

nearby the landowner, in her.is secondary house, to

announce that someone is coming. A face recognition

service is engaged, using the video stream of the camera in

the hallway, to try to identify the person approaching the

door. If s.he is recognized, the light is turned to green, if not

the light is turned to red. At the time when the doorbell is

pushed, if the person has been properly recognized, a

welcome message is streamed to the speaker in the entrance

and the connected lock could be open if s.he is awaited. The

light is then turned to blue for a couple of seconds to say

that someone is entering the main house. If the person is not

recognized, the application will send a command to close

the lock, to enforce the closure of the lock, and a message

could be sent (possibly with the picture of the unrecognized

visitor) at the neighborhood level to tell the neighbors to be

vigilant on what is ongoing. Outdoor video cameras could

collaborate to follow the unidentified visitor up to the point

when s.he will be recognized by someone, or s.he will leave

the neighborhood. In both cases, a new message would be

sent to announce that the situation is safe again.

To create such an IoT “Smart Bell” application, a set of

sensors and actuators have to be “mashuped” with services.

The infrastructure in the vicinity of the objects is leverage to

run the software entities engaged in the mashups.

III. PHYSICAL INFRASTRUCTURE FOR THE DEMO

The infrastructure of the demo is made of a set of

connected devices. Some of them can be used as a “Fog

node”, i.e. they can dynamically host and run on demand

software entities. Fig. 1 depicts the infrastructure testbed

which is composed of 5 Raspberry Pi 3, 2 Arduino, 3

Livebox 4 (Orange home internet gateway, dual-core 32bits

ARM CPU) and 1 Ruggedpod [24] as a neighborhood

micro-datacenter (the RuggedPod is basically a “data center

in a box”: it is a water-proof passively cooled hardened

server with four 8 cores Xeon CPUs that can be placed on a

roof top or any collective place in a neighborhood).

These Fog nodes reproduce typical home environments

of Orange customers. For the demo, three homes are

involved. Each of them is connected to Internet with an

Orange Livebox 4. All the homes have one or more

Raspberry Pi 3 connected to the home gateway through

WiFi. Each home has its own specificities regarding

connected things. In Home#1, Philipps Hue connected lights

are present in addition to one Awox StreamLight [25], a

WiFi connected light able to play sounds. In Home#2, a

WiFi motorized camera is connected to the Livebox 4. A

thermometer (used in another part of the application/demo

not described in this paper) is also linked to a Raspberry Pi 3

through Bluetooth thanks to an Arduino. In Home#3,

entrance door has a connected lock with APIs exposed via

Internet. Bluetooth connected things are also present in

Home#3 such as a connected doorbell button, a thermometer

and a connected speaker. To finish with Home#3, a WiFi

security camera is connected to the home internet gateway

(i.e. the Livebox 4). At “the level above”, that is the level of

the neighborhood, a collective and more powerful fog node

(the RuggedPod micro-datacenter) is in use. Such a micro-

datacenter could be placed in a collective area of the

neighborhood: typically near to actual mobile phone

antennas or in actual telecom operator Points of Presence

(PoP) for fixed internet network access.

This hierarchical Fog infrastructure has been used to

demo deployments as described in next section.

Fig. 1 Infrastructure of the demo

IV. APLLICATIVE FUNCTIONAL ARCHITECTURE

The “Smart Bell” application is based on a set of
software entities which are hosted and run onto a set of Fog
nodes. Fig. 2 depicts the functional architecture of the demo.
These software entities make use of different technologies
and have both configuration and functional dependencies
among them. The software entities of the “Smart Bell”
application are:

• A Message Oriented Middleware that permits
asynchronous communications and eventing among the
software entities. It is made of an MQTT broker based on
ActiveMQ with dependencies to Java Runtime
Environment (JRE).

• A Complex Event Processor (CEP) that operates as
an IoT event hub to aggregate, filter and trigger IoT events
according to business rules. Our CEP is an extension of
Esper [18] which requires JRE version 8 and depends on
an MQTT broker.

• A Mashup Engine called Cocktail, based on SNAP
[16], which permits the execution of a graph of actions on
actuators and services accessible via APIs, based on
contexts made of events from sensors and services. Using
Python, Cocktail has dependencies to an MQTT broker, a
media center and IP-capable connected things. Its
configuration requires external versioned scripts.

• An IoT Capillary Router called Sensonet [21] that
enlists heterogeneous connected things, collects data and
pushes them to the CEP. Sensonet is divided into two
different C-written software entities: Sensonet core and
Sensonet connectors. Sensonet connectors are dependent of
Sensonet core and must be run on a Fog node which
satisfies their hardware requirement (e.g. Bluetooth Low
Energy, Arduino physical connection). Sensonet core is
dependent to an MQTT broker.

• A Face Recognition enabler based on OpenCV. This
software entity requires a huge amount of computation
resources only available from the neighborhood micro-
datacenter.

To cope with production grade requirements, each software

entity is packaged into a Docker image and each instance is
an individual Linux container. Fig. 3 depicts the deployment
of the architecture. Placements have been determined
according to locations and resources capabilities.
Concerning locations, Cocktail runs mashups which are
built for a dedicated home: for privacy considerations, they
are run inside Fog nodes in their respective homes. On the
contrary, face recognition software entity is deployed on the
micro-datacenter of the neighborhood as it is the only place
where computation requirements could be satisfied.

This experiment highlights technical issues regarding ALM
in Fog Computing: (1) Software & hardware heterogeneity
(2) Software dependencies and (3) Software
(Re)Configuration.

(1) Software & hardware heterogeneity. From hardware
point-of-view, devices mix CPUs of different architectures
and manufacturers. Additionally, each node has its own
connectivity specificities with both IP and non-IP capabilities
for instance. On software side, deployed software entities are
very heterogeneous as they mix many implementation
languages

(2) Software dependencies. Each software entity can have
dependencies to software artifacts and/or libraries that must
be satisfied at runtime. Some software instances have even
hardware dependencies as in the case of the Media center
which depends to Bluetooth to connect the speaker in
Home#3.

(3) Software (Re)Configuration (elasticity). Software
architecture has to evolve due to changes in software (e.g.
varying applicative load, new features) and hardware
(failures, equipment that have moved, are disconnected or
are not available for any reason). Consequently, many
parameters are only known at runtime and hot
reconfigurations have to be supported.

Fig. 2 Functional architecture of the Smart bell application

Fig. 3 Deployment of the Smart bell application onto the physical infrastructure

V. DEMO SETUP : DEPLOYMENT OF THE APPLICATION ONTO

THE INFRASTRUCTURE

Virtualization thanks to containers is currently commonly
regarded as a “heterogeneity breaker” able to bring other
advantages like isolation, packaging facilities or lightness
compared to traditional virtual machines commonly used in
Cloud Computing [8, 10, 11, 13]. On top of containers
engines, orchestration tools can satisfy software entities
dependencies and automate applications deployments and
reconfigurations when infrastructure changes.

Docker, a virtualization container technology, has been
selected because of the easiness to use it, its availability over
multiple architectures (e.g. X86 and ARM) and its adoption
in industry and academy [5, 6, 12]. Additional tools like
Docker Compose or Docker Swarm seemed to meet our
requirements for automation of ALM as we need to reliably
reproduce this experiment several times in different
environments.

Because the infrastructure is highly reconfigurable, each
software pieces could be reconfigured on demand. Docker
Engine, in conjunction with Docker Swarm and Docker
Compose, is used to meet this purpose. Docker Engine is a
container solution widely used in industry to get DevOps
environment. Docker Swarm permits to manage a cluster
made of multiple Docker Engines as if it was a single
machine. Docker Compose allows for composition of
software entities into one application. Compose offers a
YAML formalism to describe Docker images to be used and
runtime parameters to be solved during deployment.
Compose is often used in industry on top of Swarm for
DevOps to easily address deployments on clusters. For our
demo, some extensions were added to Swarm & Compose to
address heterogeneity and hot deployment issues:

1- Docker hosts can be tagged to add extra metadata.
This feature is used to enable dependency checking. For
example, if a software entity requires a Bluetooth
connection, only nodes that have a “Bluetooth” tag can host
and run this software entity.

2- All images can be provided for different hardware
architectures. An smart mapping between CPU architecture
(e.g. ARM vs. X86) of the target Fog node and the name of
the Docker images is done, at runtime, to identify the Docker
image to select regarding the software entity to instantiate on
a targeted host.

VI. FEEDBACK FROM EXPERIMENT

The experiments that were made in building, deploying and
running the demonstration in front of a live audience brought
a lot of practical experience, especially on the use of Docker
that was the technical cornerstone of the ALM for the demo.

The Docker environment, in conjunction with several
extensions we developed (see section V), brings several good
properties.

• Docker Engine and extended Swarm/Compose are a
heterogeneity breaker: hardware heterogeneity is easily
addressed through the provisioning of specific Docker

images for each of the software entity. Software
heterogeneity is handled at the Docker image level.

• Docker engine enables isolation and resources
management at the container level.

• Software dependencies management can be
achieved thanks to packaging capabilities provided by
Docker images. Extensions made on Swarm and Compose
permit to satisfy, for example, placements constraints by
fulfilling the dependencies to hardware specificities (e.g.
presence of Bluetooth connectivity).

• Compose allows for the determination of runtime
parameters, and as a consequence provides a support for
the hot (re)deployments of the software entities.

Altogether, the Docker suite meets the expectations of
the demo regarding heterogeneity which is a major
requirement in ALM for Fog environment. However, it
appears that Docker technologies do not cover all the needs
of our use case. The experiments brought up several other
stringent requirements for ALM in the fog:

• Granularity of the lifecycle management of the
entities. It appears clearly from our experiments that the
granularity of lifecycle management in Docker, which is at
the container level, could be too coarse. The lifecycle of the
software entities embedded in a Docker image is hidden by
the lifecycle management of the Linux container associated
to it. In the demo, some extra processes must be added to
Docker to manage at a finer grain (i.e. at the software entity
level). As a first example, Cocktail needs some external
artefacts (e.g. scripts) which actually power the mashups to
orchestrate. These artefacts have to be packaged at runtime
as they can be updated, added or removed at any points. In
this case, a new image should be built each time a Cocktail
artefact is modified. This approach was banned because it
was too much time consuming and created too much
network traffic. Hot copies of external artefacts into freshly
created containers were preferred as depicted by part (a) of
Fig. 4. Nevertheless, this approach clearly violates Docker
image lifecycle by incorporating, at runtime, external
resources. Another issue occurs if software components
need to access hardware features as in the case of Sensonet
with Arduino or Bluetooth connections (Fig. 4 (b)). To
address this purpose, external wrappers are required which
imply additional mechanisms to manage their lifecycles. A
third example, that does not directly concern our
experiment, is related to databases persistence in general as
shown in Fig. 4 (c). Docker best practices recommend the
creation of a container that runs a database engine on data
hosted outside the container. The data have to be accessible

Fig. 4 Examples of Docker ALM restrictions

inside the container thanks to a mount point, which
requires additional ALM process for application migrations
for instance.

• Link between the lifecycles of software and
hardware entities (fog nodes and things). In the demo, a
connected door lock was used. It can be driven by a REST
API. The software state, or hardware lifecycle, of the lock
(i.e. open/closed and locked/unlocked) is supposed to be
known by the Cocktail software entity. The Docker
environment does not capture the lifecycle of the connected
lock. We believe that it would be of great interest to have a
common model that unifies the lifecycles of software
entities (e.g. IoT Fog micro-services), hardware entities
(e.g. Fog nodes) and physical world entities (e.g.
things/sensors/actuators of the IoT).

• Hierarchical distributed management. It is not
possible with Docker to distribute and hierarchically
organize the management of a large set of Fog nodes by
doing “cluster of clusters”, for example. The Docker suite
only permits flat architectures where one master drives all
Docker Engines. It has impacts on the topology of the
system as all Docker Engines must reside in the same
network domain, which could lead to scalability and
resiliency issues. Results of previous works on VAMP [4]
and Vulcan [3] highlighted the benefits of this kind a
distributed and hierarchical management for large
distributed applications.

• Reduced size of software packages (and network
traffic). Docker images stored in local Docker repositories
could be big (e.g. over 600Mb), particularly if they are
built without the respect of the best practices. Even if
Docker images can be very tiny (i.e. tens of Mb), there is
no warranty about Docker images lightness. This point is
quite impacting in dynamic environments such as targeted
by Fog Computing. It can massively impact the network
bandwidth available for application [12] in the case of
numerous reconfigurations. It is so important to minimize
data transfers associated to reconfigurations.

VII. CONCLUSION : REQUIREMENTS FOR FOG ALM

This paper reports a practical and realistic testbed and
demo in a Fog Computing environment that address the
lifecycle management of IoT applications. Dockers and
associated services helped a lot in the dynamic deployment
of the demo on a heterogeneous set of Fog nodes. However,
the practical experiments around the “Smart Bell” IoT Fog
application have shown that Docker suite alone is not
sufficient to manage all the expected properties of ALM for
Fog Computing. This finding and past experiments made
around Ansible [19], Vamp, Vulcan, or TOSCA [17] led us
to define the following properties (the “G.U.I.D.E.
properties”) that we think are desirable for ALM in Fog
Computing context:

• Granularity. A level-free granularity in the
management of the lifecycle of individual software entities
is required to enable a fine-grain (hierarchical)
management of the lifecycle of the overall application.

Typically, a granularity finer that the container is
mandatory to cover the whole spectrum of ALM
operations, especially those that occur at runtime as
encountered in our demo.

• Unification. ALM in IoT must unify knowledge
about software, hardware and cyber-physical interaction
capabilities to preserve the overall coherence of IoT
applications. The unification must ensure that the software
requirements would be supported by the capabilities and
the specificities of the hardware in use. A set of packaging,
deployment, and lifecycle management models and tools,
have to be unified, including standard device management
protocols, such as TR-069 [26] for Internet gateway, OMA
LwM2M [27] for mobile devices, or UPnP MD [28] for
home devices.

• Introspection. At each moment, states of software
entities, Fog nodes and connected things have to be
accessible thanks to introspection mechanisms. The ALM
needs to properly decouple the software entities from the
underlying infrastructure but it also needs to maintain a
consistent connection between these two views.
Accordance to architectural propositions from OpenFog
Consortium [29] would help to keep clarify those two
views. Thanks to introspection capabilities, ALM can
manage events like arrival or departures of software
entities or hardware nodes, and achieves consistent
placements and configurations. In this respect, previous
works on Models@Runtime [22, 23] could find interesting
developments in Fog Computing.

• Distribution. Regarding scalability and resiliency
issues, Fog applications, but also ALM platforms
themselves that manage Fog applications, must be
distributed across the whole infrastructure. To fully
leverage the whole hierarchy from connected things to
datacenters, ALM could/should be hierarchically
organized.

• Enrichment. Both hardware and cyber-physical
interaction capabilities are augmented/restricted by
software entities deployed inside Fog nodes. Knowledge on
the infrastructure and knowledge on the software entities
must enrich one another as they are mutually linked.

Future works will target the design and experimentation of
an ALM solution for IoT Fog applications in line with the
“G.U.I.D.E” properties. Ongoing works concern the
definition of an application model, an infrastructure model,
and algorithms to determine the placement of software
entities on Fog nodes, together with an execution engine able
to actually realize the actions of deployment. Next, elasticity
and other autonomic features would be considered.

ACKNOWLEDGMENTS

The authors wish to thank M. Belaunde, N. Ben Mabrouk,
S. Bolle, E. Bouvet, G. Bruneau, F. Cochet, S. Derrien, R.
Dupont, X. Etchevers, D. Excoffier, B. Herard, F. Roudet, C.
Seureau, and all contributors to Orange IoT Fog testbed and
demo.

 REFERENCES

[1] F. Bonomi et al., "Fog Computing and Its Role in the Internet of
Things", Proc. 1st MCC Workshop Mobile Cloud Computing, pp. 13-
16, 2012.

[2] L.M. Vaquero L. Rodero-Merino "Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing", Sigcomm
Computer Comm. Rev. vol. 44 no. 5 pp. 27-32 2014.

[3] L. Letondeur, X. Etchevers, T. Coupaye, F. Boyer and N. D. Palma,
"Architectural Model and Planification Algorithm for the Self-
Management of Elastic Cloud Applications," 2014 International
Conference on Cloud and Autonomic Computing, London, 2014, pp.
172-179.

[4] X. Etchevers, T. Coupaye, F. Boyer and N. de Palma, "Self-
Configuration of Distributed Applications in the Cloud," 2011 IEEE
4th International Conference on Cloud Computing, Washington, DC,
2011, pp. 668-675.

[5] O. Bibani et al., "A demo of a PaaS for IoT applications provisioning
in hybrid cloud/fog environment," 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN),
Rome, 2016, pp. 1-2.

[6] O. Bibani et al., "A Demo of IoT Healthcare Application Provisioning
in Hybrid Cloud/Fog Environment," 2016 IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), Luxembourg City, 2016, pp. 472-475.

[7] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu and M. Rovatsos, "Fog
Orchestration for Internet of Things Services," in IEEE Internet
Computing, vol. 21, no. 2, pp. 16-24, Mar.-Apr. 2017. M. Young, The
Technical Writer’s Handbook. Mill Valley, CA: University Science,
1989.

[8] C. Pahl and B. Lee, "Containers and Clusters for Edge Cloud
Architectures -- A Technology Review," 2015 3rd International
Conference on Future Internet of Things and Cloud, Rome, 2015, pp.
379-386.

[9] S. Yangui et al., "A platform as-a-service for hybrid cloud/fog
environments," 2016 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), Rome, 2016, pp. 1-7.

[10] M. S. D. Brito, S. Hoque, R. Steinke and A. Willner, "Towards
Programmable Fog Nodes in Smart Factories," 2016 IEEE 1st
International Workshops on Foundations and Applications of Self*
Systems (FAS*W), Augsburg, 2016, pp. 236-241.

[11] H. J. Hong, P. H. Tsai and C. H. Hsu, "Dynamic module deployment
in a fog computing platform," 2016 18th Asia-Pacific Network
Operations and Management Symposium (APNOMS), Kanazawa,
2016, pp. 1-6.

[12] R. Baig, F. Freitag and L. Navarro, "Fostering Collaborative Edge
Service Provision in Community Clouds with Docker," 2016 IEEE
International Conference on Computer and Information Technology
(CIT), Nadi, 2016, pp. 560-567.

[13] D. Pizzolli et al., "Cloud4IoT: A Heterogeneous, Distributed and
Autonomic Cloud Platform for the IoT," 2016 IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), Luxembourg City, 2016, pp. 476-479.

[14] M. Blackstock and R. Lea, "IoT mashups with the WoTKit," 2012
3rd IEEE International Conference on the Internet of Things, Wuxi,
2012, pp. 159-166.

[15] A. Kamilaris, V. Trifa and A. Pitsillides, "HomeWeb: An application
framework for Web-based smart homes," 2011 18th International
Conference on Telecommunications, Ayia Napa, 2011, pp. 134-139.

[16] M. Belaunde, F. Pinson and N. Pellen, "SNAP: An End User Service
Composition Tool Based on Recommendations," 2014 IEEE 18th
International Enterprise Distributed Object Computing Conference
Workshops and Demonstrations, Ulm, 2014, pp. 418-421.

[17] Tobias Binz, Gerd Breiter, Frank Leyman, and Thomas Spatzier.
2012. Portable Cloud Services Using TOSCA. IEEE Internet
Computing 16, 3 (May 2012), 80-85.

[18] M. B. A. P. Madumal, D. A. S. Atukorale and T. M. H. A. Usoof,
"Adaptive event tree-based hybrid CEP computational model for Fog
computing architecture," 2016 Sixteenth International Conference on

Advances in ICT for Emerging Regions (ICTer), Negombo, 2016, pp.
5-12.

[19] C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, "DevOps," in
IEEE Software, vol. 33, no. 3, pp. 94-100, May-June 2016.

[20] D. Wörner, T. von Bomhard, M. Röschlin and F. Wortmann, "Look
twice: Uncover hidden information in room climate sensor data",
2014 International Conference on the Internet of Things (IOT),
Cambridge, MA, 2014, pp. 25-30.

[21] B.Herard, M.Richomme, “Sensonet: a low-cost open-source objects
network framework”, W3C Workshop on the Web of Things, Berlin,
June 2014.

[22] J. Floch et al., “Using Architecture Models for Runtime
Adaptability,” IEEE Software, Mar. 2006, pp. 62-70.

[23] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and
Arnor Solberg. 2009. Models@Run.time to Support Dynamic
Adaptation. Computer 42, 10 (October 2009), 44-51.

[24] RuggedPod website. http://ruggedpod.qyshare.com/

[25] Awox website. http://www.awox.com/

[26] TR-069 specifications.

https://www.broadband-forum.org/technical/download/TR-069.pdf

[27] Lightweight M2M description on Open Mobile Alliance website.
http://openmobilealliance.org/iot/lightweight-m2m-lwm2m

[28] UPnP MD specifications.

https://openconnectivity.org/developer/specifications/upnp-
resources/upnp/device-management1

[29] OpenFog Consortium Reference Architecture.

https://www.openfogconsortium.org/ra/

