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Abstract We study a call center model with a postponed callback option.
A customer at the head of the queue whose elapsed waiting time achieves a
given threshold receives a voice message mentioning the option to be called
back later. This callback option differs from the traditional ones found in the
literature where the callback offer is given at customer’s arrival. We approx-
imate this system by a two-dimensional Markov chain, with one dimension
being a unit of a discretization of the waiting time. We next show that this
approximation model converges to the exact one. This allows us to obtain ex-
plicitly the performance measures without abandonment and to compute them
numerically otherwise. From the performance analysis, we derive a series of
practical insights and recommendations for a clever use of the callback offer.
In particular, we show that this time-based offer outperforms traditional ones
when considering the waiting time of inbound calls.
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1 Introduction

Call centers serve as the public face in various areas and industries: insur-
ance companies, emergency centers, banks, information centers, help-desks,
tele-marketing, just to name a few. The success of call centers is due to the
technological advances in information and communications systems. The most
used form of communication is the direct telephone contact. However in the
context of highly congested call centers, the use of alternative options can be
proposed to customers so as to better match demand and capacity. Alternative
options could be email, chat, blog, callback service, etc.

The callback offer allows the call center to change the nature of the channel
from an inbound call to an outbound one. For the call center manager, this
change is valuable because it reduces the congestion in the inbound queue.
Another important aspect in call centers is customers’ abandonment (e.g., see
[26], [9]). While waiting in the inbound queue, a customer may decide to leave
the system without being served. This customer is then lost for the call center
without possibilities to be recontacted. Instead, an outbound customer can be
reached later. Even with a long delay before being called back, this customer
is potentially not lost. From customers’ perspective, the willingness to accept
future processing depends on the urge to get an answer and the waiting cost.
If waiting is painful and getting an answer is not urgent, then a customer may
accept the callback offer.

In practice several types of callback offers are developed with the same pur-
pose of changing inbound calls into outbound ones. A large number of patents
reflects this wide variety and the technological challenges to implement this
option in the Automatic Call Distributor (ACD) [24,27,29,7]. Nevertheless,
from our discussion with our partner INTERACTIV GROUP, the effects of
the callback option are not well understood by managers and the implemen-
tation still needs to be improved to achieve some service level objectives.

In call centers, a percentile of the waiting time is the usually chosen as a
service level objective. This metric is often preferred to the average speed of
answer because the former was perceived to be more informative; see [4]. It
is therefore important for managers to develop a callback offer which can be
adjusted to this type of service level agreement. At the same time, the callback
offer should be carefully used. Even when the callback offer is accepted by a
customer, most customers would prefer being served directly. So, the callback
offer should not be automatically proposed but should be proposed in a way
which allows the call center to control the proportion of outbound calls. As
mentioned above, the other aspect is abandonment. In case of a too important
use of the callback offer the proportion of non-abandoning customers may
get too important which in turn may lead to the impossibility to ensure a
sufficiently short delay for callback customers. In summary, an efficient callback
offer should:

– Help the manager to achieve a service level objective for inbound calls;
– Control the proportion of outbound calls;
– Be easy to implement in the ACD;
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– Be sufficiently simple to develop staffing solutions and predict performance.

In the literature on operations research, different callback options have
already been studied and optimized [2,3,15,11,20]. These callback models will
be discussed in details below. A common element in these models is that the
decision to propose a callback offer is based on the system size. For instance,
above a threshold on the queue length, a callback option is proposed to all
arriving customers. Unlike these models, we propose a new callback option
given to the first customer in line when its experienced waiting time reaches a
given waiting time threshold; the service level objective. We call this callback
option the postponed call back offer.

This makes sense both from a theoretical and a practical point of view,
especially for objectives that are functions of the waiting time such as the
percentage of calls that have waited shorter than a specific threshold. One can
imagine, and it is indeed shown in this paper, that a policy that uses actual
waiting time information performs well for this type of objective.

The motivation to let customers wait before the callback offer in our model
is to avoid giving a callback offer to a customer who could have been served
in a reasonable time. If a callback offer is given at arrival based eventually on
the queue size, it may be possible due to the variability in the service times
to encounter a series of small service times which would have enable to serve
this customer in a reasonable time. By letting the customer wait before the
callback offer, the call center gives a chance to serve the customer without
using the callback option. Recall that most customers prefer being directly
served than being called back later.

In addition, we assume that customers have a probabilistic reaction to the
callback offer and that a non-preemptive priority is given to inbound calls
since these ones are more urgent. A precise definition of the queueing model in
given in Section 2. Another value of this callback model is that it is completely
tractable. Without abandonment, closed-form expressions of the performance
measures can be obtained. This allows for workforce management solutions
and a simple implementation of the callback offer.

In Section 3, we determine the proportion of customers who have waited
less than the waiting time objective and the proportion of callback customers.
In order to differentiate between inbound and outbound customers, we are
also interested in their respected expected waiting times. Closed-form expres-
sions of these performance measures are derived without abandonment and a
numerical method is developed with abandonment. The difficulty to compute
these metrics is that the decision to change a high priority customer into a
low priority one does not depend on a classical state definition like the num-
ber of high priority customers but on the experienced waiting time of a given
customer. To overcome this difficulty, we propose the following approach:

1. We develop an approximating model, in which the waiting time of the first
customer in line is modeled by a succession of exponential phases. The
number of waiting phases and the elapsing of time rate per phase are the
control parameters of the approximation.
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2. Since this new model is a Markov chain, the transitions rate can be obtained
and the stationary probabilities can be derived.

3. Finally, as the control parameters of the approximating model tend to
infinity, we show that this model converges to the exact one which in turn
leads to the exact performance measures.

The key operational findings derived in Section 4 are that (1) the callback
offer can be used as a tool to reduce a waiting time percentile, (2) the value of
a callback option is more apparent under intermediate loaded situations, with
abandonment, for small call center, or when customers react mostly positively
to the callback option, (3) two rational strategies are possible for customers;
either they all accept or they all reject the callback offer, (4) the time at
which the callback offer is proposed should be sufficiently postponed, especially
when the abandonment is significant or when customers do not have a rational
reaction to the callback offer, and (5) compared to a non-postponed callback
option, a postponed offer improves the waiting time of inbound calls and the
proportion of abandonment, especially in highly loaded situations.

In what follows we discuss the related literature.

Literature review. There is an extensive and growing literature on call centers.
We refer the reader to [12] and [1] for an overview. The main topics encoun-
tered in call center studies are routing decisions (e.g., see [14], [30], [22]),
staffing (e.g., see [8], [23]), or performance evaluation (e.g., see [17], [32], [31]).
Our article focuses on performance evaluation based on a particular routing
mechanism defined through a callback offer.

There are a few papers on different callback options in call centers. [2]
consider a model in which customers are given a choice of whether to wait
online for their call to be answered or to leave a number and be called back
within a specified time or to immediately balk. Upon arrival, customers are
informed (or know from prior experience) of the expected waiting time if they
choose to wait and the delay guarantee for the callback option. Their decision
is probabilistic and based on this information. Under the heavy-traffic regime,
[2] develop an estimation scheme for the anticipated real-time delay that is
asymptotically correct. They also propose an asymptotically optimal routing
policy that minimizes real-time delay subject to a deadline on the postponed
service mode. In [3], the authors develop an asymptotically optimal routing
rule, characterize the unique equilibrium regime of the system, and propose a
staffing rule that picks the minimum number of agents that satisfies a set of
operational constraints on the performance of the system.

There are two recent papers by [15] and [11]. [15] consider a call center
model with a callback option where the capacity of the queue for the inbound
calls is finite. Customer balking and abandonment are allowed. They provide
an efficient algorithm for calculating the stationary probabilities of the system.
Moreover, they derive the Laplace-Stieltjes transform of the sojourn time dis-
tribution of virtual customers. [11] consider a slightly different model, where
agents make outbound calls to those lost customers. There are two agent teams,
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one that handles in priority inbound calls, and another that handles in priority
outbound calls. They compute the stationary probabilities, and deduce from
that some performance measures. They also numerically address the staffing
issue of the two teams.

Finally, [20] consider in their callback model, a probabilistic customer re-
action to the callback offer. They show using a Markov decision process ap-
proach, that the optimal reservation policy for inbound calls is of switch type.
Thereafter, the system performance measures are computed under the optimal
policy. It appears from this study that the value of the callback offer is appar-
ent for congested situations and that the benefits of a reservation policy are
more apparent in large call centers, while they almost disappear in the extreme
situations of light or heavy workloads. Moreover, if balking and abandonment
are very high or if the overall treatment time spent to serve an outbound call
is very large compared to that of an inbound one, there is a value in delaying
the proposition of the callback offer.

Another stream of literature less closely related to our article deals with the
analysis of queueing multi-channel call center models with blending. This can
be related to callback models by assuming an infinite amount of customers
to callback at the next working period. Some papers focus on performance
evaluation, and others address the analysis of blending policies or staffing de-
cisions. [10] develop various continuous Markov chain models for a call center
with inbound and outbound calls. The authors consider a threshold policy
and characterize the rate of outbounds and the waiting time distribution of
inbounds. Other call center papers address the analysis of blending policies.
[13] and [6] prove that a threshold policy on the number of idle agents is op-
timal to maximize the outbound throughput under a service level constraint
on the inbound waiting time. Similar results are also found in [19], for a non-
stationary model where inbound calls arrive according to a non-homogeneous
Poisson process. [28] consider a large call blending model and propose a loga-
rithmic safety staffing rule, combined with a threshold control policy to ensure
that agents utilization is always close to one with always idle agents present.

2 Setting

In this section we define the queueing model and present an approximation
model which can be studied through a Markov chain analysis.

2.1 Queueing model

We consider a multi-server single queue with s identical, parallel servers. The
arrival process of customers is Poisson with rate λ. Service times are inde-
pendent and exponentially distributed with rate µ. When a customer calls, if
at least one agent is available then this customer is directly served, otherwise
he/she is routed to a first-come-first-served queue called Queue 1. After having
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waited K time units, the first customer in line waiting in Queue 1 hears a voice
message, proposing to be called back later. We assume that a proportion r of
customers accepts the callback offer and becomes then outbound calls. These
calls are routed to another queue called Queue 2. Since inbound calls are more
urgent, a non preemptive priority is given to Queue 1. Another reason for the
priority of inbound calls is the cost of waiting. In many call centers inbound
customers pay per waiting time unit whereas an outbound customer would
not pay. A priority for inbound calls would then help to reduce their waiting
cost.

Moreover, customers patience is limited. We assume that the patience of
a customer in Queue 1 is exponentially distributed with rate β. Customers
in Queue 2 are infinitely patient since they are outbound calls. Our queueing
model is equivalent to a particular V-queueing model with two queues; Queue 1
and Queue 2, where customers in Queue 1 have a non-preemptive priority over
customers in Queue 2. The arrival process in Queue 1 is Poisson with parameter
λ and the arrival process in Queue 2 is generated by customers in Queue 1
who have waited exactly K time units without being served and accept the
callback offer. This equivalent queueing model is depicted in Figure 1. For this
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Fig. 1 Queueing Model

queueing model, we are interested in the proportion of callback customers, Pc,
the proportion of abandonment, Pa, the expected waiting time of customers
served from Queue 1, E(W1), the expected waiting time of callback customers,
E(W2) (it includes the time also spent in Queue 1) and the probability of
waiting less than the instant at which the callback option is proposed, P (W <
K), where W is the waiting time of an arbitrary customer. Note that without
abandonment, this queueing model can be seen as an M/M/s queue where the
queue discipline has been modified.

2.2 An approximating model

In order to have a Markov chain, one may only have exponential durations
between two successive events. Yet, the time at which the callback offer is given
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is deterministic. To overcome this difficulty, we develop here an approximating
model in which all durations are exponential. The resulting Markov chain will
be studied in Section 3 to obtain the performance measures of the exact model.

The approximation is based on a Markov chain where the states constitute
a discrete representation of the waiting time of the first customer in line (FIL)
in Queue 1 when one or more customers are waiting. The waiting time of the
FIL in Queue 1 is modeled by a succession of exponential phases with rate γ
per phase as proposed in [18]. Instead, Queue 2 is modeled as in most queueing
models by its number of customers. The number of waiting phases in Queue
1 after which the callback offer is proposed to the FIL is denoted by n. After
leaving this waiting phase a customer -if not served- is routed to Queue 2 with
probability r or stays in Queue 1 with probability 1− r. The queue discipline
in both queues is still FCFS.

After giving a state definition and the transition rates we will explain how
this approximation converges to the real model.

State definition. The system is modeled using a two dimensional continuous-
time Markov chain. We denote by (x, y) a state of the system for x ≥ −s and
y ≥ 0, where x represents the servers state or the waiting time in Queue 1 and
y represents the number of customers in Queue 2. More precisely, states with
−s ≤ x ≤ 0 correspond to an empty Queue 1 and s + x busy agents. States
with x > 0 correspond to the phase at which the FIL in Queue 1 is waiting
and all agents are busy.

Transitions. We next describe the 7 possible transitions in the Markov chain.
When the FIL changes, because of a service completion or an abandonment
(see transition Type 5), or because of the current FIL moving to Queue 2 (see
transition Type 8), the waiting time phase changes from x > 0 to x− h with
probability qx,x−h. This means that either the new first in line is in waiting
phase x − h > 0 or that Queue 1 is empty if x − h = 0, for 0 ≤ h < x. The
probabilities qx,x−h are given in Theorem 2 of [21] by

qx,x−h =

1−

[
1 +

λ

γ

(
γ

γ + β

)x−h
]−1

 ·
x∏

k=x−h+1

[
1 +

λ

γ

(
γ

γ + β

)k
]−1

for 0 ≤ h < x and

qx,0 =
x∏

k=1

[
1 +

λ

γ

(
γ

γ + β

)k
]−1

.

Moreover, the probability of abandonment after a given waiting phase is β
γ+β

(see Table 1, Line 3 in [21])

1. An arrival with rate λ while Queue 1 is empty (−s ≤ x ≤ 0, y = 0), which
changes the state to (x+ 1, 0). If x < 0, then he number of busy servers is
increased by 1. Otherwise if x = 0, then the FIL entity is created.
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2. A service completion with rate (s + x)µ while Queues 1 and 2 are empty
(−s < x ≤ 0, y = 0), which changes the state to (x− 1, y). The number of
busy servers is reduced by 1.

3. A service completion with rate sµ while Queue 1 is empty, Queue 2 is not
empty and all servers are busy (x = 0, y ≥ 1), which changes the state to
(0, y − 1). The number of customers in Queue 2 is reduced by 1.

4. A service completion with rate sµqx,x−h or an abandonment with rate

γ β
γ+β while Queue 1 is not empty (x > 0, y ≥ 0), which changes the state

to (x− h, y), that is, the new FIL is in waiting phase x− h.
5. A phase increase without abandonment with rate γ γ

γ+β while Queue 1 is

not empty and the FIL is not in waiting phase n (0 < x < n, y ≥ 0), which
changes the state to (x + 1, y). The waiting phase of the FIL is increased
by 1.

6. A phase increase with rate (1 − r)γ while the FIL is in waiting phase n
(y ≥ 0), which changes the state to (n + 1, y). The waiting phase of the
FIL is increased by 1.

7. A phase increase with rate rγqx,x−h while the FIL in Queue 1 is in waiting
phase n (x = n, y ≥ 0), which changes the state to (x − h, y + 1), that
is, the new FIL is in waiting phase x− h and the number of customers in
Queue 2 is increased by 1.

Convergence to the real system. We approximate the deterministic duration
before giving the callback offer by an Erlang random variable with n phases

and rate γ per phase. We choose n and γ such that n
γ

∆
= K. The Laplace

transform of the Erlang distribution with parameters n and γ is
(

γ
γ+s

)n
. We

have (
γ

γ + s

)n

= en ln((1+s/γ)−1) ∼
γ→∞

en ln(1−s/γ) ∼
γ→∞

e−ns/γ = e−sK ,

where we write f(a) ∼
a→a0

g(a) to express that lim
a→a0

f(a)
g(a) = 1, for a0 ∈ R. Ap-

plying the Levy continuity theorem for Laplace transforms, this result ensures
that as n and γ go to infinity, the considered Erlang random variable converges
in distribution to the deterministic duration K.

The other approximation is the transition from Queue 1 to Queue 2. It is
assumed in our modeling that after one γ-transition from state x = n only one
customer is routed to Queue 2. However, more than one customer could be in
phase n (as in any other phase). More precisely (with no abandonment), given
that one customer is in phase n, this customer is the only one with probability
γ

λ+γ , or two customers or more are in phase n with probability λ
λ+γ . Again,

as γ tends to infinity, the probability that only one customer is in one phase
is equal to one.
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3 Performance Analysis

In Section 3.1, we derive explicitly the performance measures without aban-
donment. The method developed here is adapted numerically in Section 3.1.2
to include abandonment.

3.1 Explicit performance measures without abandonment

In Section 3.1, we give the stationary probabilities of the discretized system.
Next, in Section 3.1.2, we let the elapsing of time rate tends to infinity in order
to obtain the exact performance measures.

3.1.1 Stationary probabilities

Recall that in the case with no abandonment (β = 0), we simply have

qx,x−h =

(
λ

λ+ γ

)(
γ

λ+ γ

)h

for 0 ≤ h < x and

qx,0 =

(
γ

λ+ γ

)x

as in Theorem 2.1 of [18]. Let us introduce the notations a = λ
µ and aγ =

s · a+γ/µ
s+γ/µ . The ratio a represents the traffic intensity of the system and aγ is

a modified version of the traffic intensity. The parameter aγ is an increasing
function of γ which is equal to a for γ = 0 and equal to s for γ = ∞. Proposition
1 gives the stationary probability px,y to be in state (x, y) for x ≥ −s and
y ≥ 0.
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Proposition 1 Under the stability condition λ < sµ, we have

p−s,0 =

s−1∑
x=0

ax

x!
+

as

s!

(
1 + a

s
λ
γ − r a

s

(
1 + λ

γ

) (aγ

s

)n)
(1− a/s)

(
1− r a

s

(aγ

s

)n)
−1

,

px−s,0 =
ax

x!
· p−s,0, for 0 ≤ x ≤ s,

px,0 = p0,0
λ

γ

(aγ

s

)x
(sµ− λ(1− r))− rλ

(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n , for 1 ≤ x ≤ n,

px,0 = p0,0(1− r)
λ

γ

(sµ− λ)
(aγ

s

)x−n

sµ− λ(1− r)− rλ
(aγ

s

)n , for x > n,

px,y =
λ

γ
p0,0

(aγ

s

)x
(sµ− λ(1− r))− rλ

(aγ

s

)n
sµ− λ

(aγ

s

)n sµ− λ(1− r)
(aγ

s

)x − rλ
(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n
×

(
rλ

sµ

sµ− λ
(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n
)y

, for 1 ≤ x ≤ n, y ≥ 1,

px,y = (1− r)
(aγ

s

)x−n

pn,y, for x > n, y ≥ 1.

Proof. We adopt the following approach to derive the stationary probabilities.
First, we determine a set of equilibrium equations. Next, using these equilib-
rium equations we derive a simple explicit expression of the probability that

the FIL in Queue 1 is in waiting phase x; px =
∞∑
y=0

px,y for x ≥ 0. Considering

this probability leads to a one-dimensional problem which in turn allows us to
compute the probability of an empty system using the normalizing condition.
Finally, we derive the other stationary probabilities.

Equilibrium equations. Let S be the state space. Consider the cut between

A1 = {(−s, 0), · · · , (x, 0)} and S\A1, where x ≥ −s. Observing that
(

γ
λ+γ

)x
+

x−1∑
l=h

(
λ

λ+γ

)(
γ

λ+γ

)l
=
(

γ
λ+γ

)h
, we deduce that the cumulative transition rate

from state (x, y) to states (0, y), (1, y) · · · (x − h, y) is sµ

(
γ

λ+ γ

)h

, for 0 ≤

h < x < n and y ≥ 0. Therefore, by equating flows across the cut, one may
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write

λpx,0 = (s+ x+ 1)µpx+1,0, for − s ≤ x < 0, (1)

λp0,0 = sµp0,1 + sµ

∞∑
i=1

pi,0

(
γ

λ+ γ

)i

, (2)

γpx,0 = sµp0,1 + sµ
∞∑

i=x+1

pi,0

(
γ

λ+ γ

)i−x

, for 0 < x ≤ n, (3)

γpx,0 + rγpn,0 = sµp0,1 + sµ
∞∑

i=x+1

pi,0

(
γ

λ+ γ

)i−x

, for x > n. (4)

Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where y ≥ 0.
This leads to

rγpn,y = sµp0,y+1, for y ≥ 0. (5)

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where
x ≥ 0 and y ≥ 1, we get

(sµ+ λ)p0,y = sµp0,y+1 + sµ

∞∑
i=1

pi,y

(
γ

λ+ γ

)i

(6)

+ rγ

(
γ

λ+ γ

)n

pn,y−1, for y ≥ 1,

γpx,y + sµp0,y = sµp0,y+1 + sµ
∞∑

i=x+1

pi,y

(
γ

λ+ γ

)i−x

(7)

+ rγ

(
γ

λ+ γ

)n−x

pn,y−1, for 0 < x ≤ n and y ≥ 1,

γpx,y + sµp0,y = sµp0,y+1 + sµ

∞∑
i=x+1

pi,y

(
γ

λ+ γ

)i−x

+ rγpn,y−1, (8)

for x > n and y ≥ 1.

Probability of an empty system. Summing up Equations (4) and (8) for y ≥ 1,
yields

γpx = sµ
∞∑
k=1

(
γ

λ+ γ

)k

px+k,

for x > n. Let us denote by z, a root of the related homogeneous equation.
We then have

γ = sµ
∞∑
k=1

(
γ

λ+ γ

)k

zk,
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which leads to γ(λ + γ(1 − z)) = sµγz. This equation has a unique solution;
z = λ+γ

sµ+γ =
aγ

s . Therefore we have px+n+1 =
(aγ

s

)x
pn+1, for x ≥ 0. Summing

up now Equations (3) and (7) for y ≥ 1 and x = n, yields

(1− r)γpn = sµ

∞∑
k=1

(
γ

λ+ γ

)k

pn+k,

so we deduce that px+n = (1 − r)
(aγ

s

)x
pn for x ≥ 0. We now prove by

induction on x that pn−x =
(

s
aγ

)x
pn, for 0 ≤ x < n. This relation is clearly

true for x = 0. Assume now that this relation holds for pn, pn−1, · · · , pn−x.
Summing up now Equations (3) and (7) for y ≥ 1, yields

γpn−(x+1) = sµ

(
γ

λ+ γ

)(
s

aγ

)x

pn + sµ

(
γ

λ+ γ

)2(
s

aγ

)x−1

pn + · · ·

+ sµ

(
γ

λ+ γ

)x(
s

aγ

)
pn + (rγ + sµ)

(
γ

λ+ γ

)x+1

pn

+ sµ(1− r)
∞∑
k=1

(
γ

λ+ γ

)x+1+k (aγ
s

)k
pn

= sµ
x+1∑
i=1

(
γ

λ+ γ

)i(
s

aγ

)x+1−i

pn + γr

(
γ

λ+ γ

)x+1

pn

+ γ(1− r)

(
γ

λ+ γ

)x+1

pn.

Using
(

γ
λ+γ

)(
s
aγ

)−1

= γ
sµ+γ , we may write

γpn−(x+1) = sµ

(
s

aγ

)x+1 x+1∑
i=1

(
γ

sµ+ γ

)i

pn + γ

(
γ

λ+ γ

)x+1

pn

= sµ

(
s

aγ

)x+1
γ

sµ+ γ

1−
(

γ
sµ+γ

)x+1

1− γ
sµ+γ

pn + γ

(
γ

λ+ γ

)x+1

pn

= γ

(
s

aγ

)x+1

pn,

which proves the induction step. Using Equation (6), with the same approach

we also obtain p0 = γ
λ

(
s
aγ

)n
pn, therefore px = λ

γ

(aγ

s

)x
p0 for 1 ≤ x ≤ n

and px = (1 − r)λγ
(aγ

s

)x
p0 for x > n. From the last expression, the stability

condition is
aγ

s < 1. This is equivalent to λ < sµ as for a simple M/M/s queue.
Moreover, summing up Equations (5) for y ≥ 0, leads to sµ(p0−p0,0) = rγpn.
So, p0 =

p0,0

1−r a
s (

aγ
s )

n . Using now Equation (1), we finally deduce that p0 =

as

s! p−s,0

1−r a
s (

aγ
s )

n . Using the fact that the overall sum of the stationary probabilities
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is equal to one, we obtain the probability of an empty system as in Proposition
1.

Other stationary probabilities. We can show that pn+x,0 = (1 − r)
(αγ

s

)x
pn,0

for x > 0. The proof is identical to the proof for pn+x above. We now show by
induction on x that

pn−x,0 = pn,0

{(
s

aγ

)x

+
rλ

sµ− λ

((
s

aγ

)x

− 1

)}
, (9)

for 0 ≤ x < n. This relation is clearly true for x = 0. Assume now that this
relation holds for pn,0, pn−1,0, pn−x,0. One may write using Equation (3) that

γpn−(x+1),0 = sµp0,1 + sµ

x∑
k=0

(
γ

λ+ γ

)x+1−k

pn−k,0

+ sµ(1− r)

∞∑
k=1

(
γ

λ+ γ

)x+1+k (αγ

s

)k
pn,0.

We now replace pn,0, pn−1,0, · · · , pn−x,0 by their expressions as a function of
pn,0 and sµp0,1 by rγpn,0 (Equation (5)). We obtain

γpn−(x+1),0 = rγpn,0 + sµ(1− r)
∞∑
k=1

(
γ

λ+ γ

)x+1+k (αγ

s

)k
pn,0

+ sµpn,0

x∑
k=0

(
γ

λ+ γ

)x+1−k
{(

s

aγ

)k

+
rλ

sµ− λ

((
s

aγ

)k

− 1

)}
.

Using now
x∑

k=0

(
γ

λ+γ

)x+1−k

= γ
λ

(
1−

(
γ

λ+γ

)x+1
)
,

x∑
k=0

(
γ

λ+γ

)x+1−k (
s
aγ

)k
=

γ
sµ

((
s
aγ

)x+1

−
(

γ
λ+γ

)x+1
)
, and

∞∑
k=1

(
γ

λ+γ

)x+1+k (αγ

s

)k
= λ+γ

sµ

(
γ

λ+γ

)x+2

,

we prove the induction step. Observe that Equation (2) is almost identical
to Equation (3) in which we would replace x by 0. The only difference is the
multiplicative coefficient on the left hand side of Equation (2). This one is
λ instead of γ. Therefore, using the corrective coefficient γ

λ , we deduce the
explicit expression of p0,0;

p0,0 =
γ

λ
pn,0

{(
s

aγ

)n

+
rλ

sµ− λ

((
s

aγ

)n

− 1

)}
.

This last equation relates p0,0 and pn,0. By substituting the expression of pn,0
as a function of p0,0 into Equation (9), we get

px,0 = p0,0
λ

γ

(
s
aγ

)n−x

+ rλ
sµ−λ

((
s
aγ

)n−x

− 1

)
(

s
aγ

)n
+ rλ

sµ−λ

((
s
aγ

)n
− 1
)

= p0,0
λ

γ

(aγ

s

)x
(sµ− λ(1− r))− rλ

(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n ,
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for 1 ≤ x ≤ n, and

px,0 = p0,0(1− r)
λ

γ

(sµ− λ)
(aγ

s

)x−n

sµ− λ(1− r)− rλ
(aγ

s

)n ,
for x > n.
With the same approach one can show by induction that pn+x,y = pn,y(1 −
r)
(aγ

s

)x
, for x > 0 and

pn−x,y = pn,y

{(
s

aγ

)x

+
rλ

sµ− λ

((
s

aγ

)x

− 1

)}
(10)

+
rλ

sµ− λ
pn,y−1

[
1−

(
s

aγ

)x]
,

for 0 ≤ x < n. Combining now Equation (6) with Equation (10), we get

p0,y = pn,y
γ

λ

{(
s

aγ

)n

+
rλ

sµ− λ

((
s

aγ

)n

− 1

)}
+

rλ

sµ− λ
pn,y−1

γ

λ

[
1−

(
s

aγ

)n]
.

This last equation relates p0,y, pn,y and pn,y−1. Since sµp0,y = rγpn,y−1 for
y ≥ 1 (Equation (5)), we obtain a relation between p0,y and pn,y;

p0,y = pn,y
γ

λ

{(
s

aγ

)n

+
rλ

sµ− λ

((
s

aγ

)n

− 1

)}
+

λ

sµ− λ
p0,y

sµ

λ

[
1−

(
s

aγ

)n]
.

This last equation can be finally simplified into

pn,y =
λ

γ
p0,y

sµ− λ
(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n ,
for y ≥ 1.

Equation (5) gives an expression of pn,y−1 as a function of p0,y. Inserting
these two results into Equation (10) leads to an expression of px,y as a function
of p0,y;

px,y =
λ

γ
p0,y

sµ− λ(1− r)
(aγ

s

)x − rλ
(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n ,

for 0 < x ≤ n and y ≥ 1. Finally, from Equation (5) we get

pn,y =

(
rλ

sµ

sµ− λ
(aγ

s

)n
sµ− λ(1− r)− rλ

(aγ

s

)n
)y

pn,0.

This finishes the proof of the Proposition. �
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3.1.2 Performance measures

In Theorem 1, we derive the performance measures. In order to relate the
performance measures to those of an M/M/s queue, we introduce the notation
C(s, a) = P (W > 0) (i.e., probability of queueing in an M/M/s queue). Recall

from [16] page 103 that C(s, a) =
as

s!
s−1∑
x=0

ax

x! +
as

s!
1

1−a/s

· 1
1−a/s .

Theorem 1 We have

Pc = r · C(s, a) · (1− a/s)e−sµ(1−a/s)·K

1− r a
s e

−sµ(1−a/s)·K ,

P (W > K) = C(s, a)
(1− r a

s )e
−sµ(1−a/s)·K

1− r a
s e

−sµ(1−a/s)·K ,

E(W1) =
as

s!

sµ
· 1− re−sµ(1−a/s)·K(1 + sµ(1− a/s) ·K)

(1− a/s)
2

((
1− r a

s e
−sµ(1−a/s)·K

) s−1∑
x=0

ax

x! +
as

s!
1−re−sµ(1−a/s)·K

1−a/s

) ,

E(W2) =
1 + sµ ·K
sµ(1− a/s)

.

Proof. The approach to derive the performance measures first consists of
defining the embedded Markov chain at specific instants chosen in order to
reach the performance measures at arbitrary instants. Next, by letting γ and
n tend to infinity we obtain the results.

The embedded Markov chain. Arriving customers either enter service upon
arrival, enter service from Queue 1 after some wait, or are routed to Queue
2. Call the instants when one of these three events occurs Q-instants. Since
the events at Q-instants all occur one at a time, in the long-run the system is
identical at arrival instants and Q-instants. Since the Poisson arrival process of
customers is independent of the system state, the system is identical at arrival
instants and arbitrary instants. So, the system is also identical at arbitrary
instants and Q-instants. We therefore choose to consider the system at Q-
instants to obtain the performance measures (the arrival instants cannot be
seen in our Markov chain).

The Q-instants are determined by λ-transitions from state with a va-
cant server, sµ-transitions from the other states except in states (0, y) and
γ-transitions from states (n, y), for y ≥ 0. The overall customer flow at Q-
instants is identical to the customer flow at arrival instants and has a rate λ.
Therefore, the probability at Q-instants that x servers are busy for 0 ≤ x < s
is λ

λp−s+x,0 = p−s+x,0. The probability that the FIL is in waiting phase x and
y customers are in Queue 2 is sµ

λ px,y for 0 < x < n or x > n, 0 for x = 0

and sµ+rγ
λ pn,y for x = n. The stationary probabilities at Q-instants are then

completely known. This allows us to derive the performance measures.
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Performance measures. The approach to obtain the performance measures is
to let γ and n tend to infinity with respect to n

γ = K. First, we have

lim
n,γ→∞

(aγ
s

)n
= e−sµ(1−a/s)·K .

We now derive the proportion of customers who are routed to Queue 2, Pc. A
customer moves from Queue 1 to Queue 2 due to a γ-transition from states
(n, y), y ≥ 0. The proportion of customers which are moved from Queue 1 to
Queue 2 is therefore

Pc = lim
n, γ → ∞

r
γ

λ
pn.

Recall from the proof of Proposition 1 that pn = λ
γ

(aγ

s

)n
p0 and p0 =

as

s! p−s,0

1−r a
s (

aγ
s )

n .

Therefore,

r
γ

λ
pn = r

(aγ
s

)n as

s! p−s,0

1− r a
s

(aγ

s

)n . (11)

From the expression of p−s,0 in Proposition 1, we get the probability of an
empty system in an M/M/s queue:

lim
n, γ → ∞

p−s,0 =

[
s−1∑
x=0

ax

x!
+

as

s!

1

1− a/s

]−1

. (12)

By applying the last result in Equation (11), we obtain the explicit expression
of Pc.
We now derive the proportion of customers who waits less thanK, P (W < K).
A customer is served from Queue 1 due to a sµ-transition from states (x, y),
y ≥ 0. Therefore

P (W < K) = lim
n, γ → ∞

p−s,0+p−s+1,0+· · ·+p−1,0+
sµ

λ
(p1 + p2 + · · ·+ pn) .

Therefore we get

P (W < K) = lim
n, γ → ∞

p−s,0

s−1∑
x=0

ax

x!
+

as

s!

1− a/s

λ+ γ

γ

1−
(

λ+γ
sµ+γ

)n
1− r a

s

(
λ+γ
sµ+γ

)n
 ,

this in turn leads to the result of the Theorem.
Consider now the served customers from Queue 1. A served customer from
Queue 1 waits x γ-phases with probability sµ

λ px for x > 0 and each phase has
an expected duration of 1/γ. Therefore,

(1− Pc)E(W1) = lim
n, γ → ∞

sµ

λ

∞∑
x=1

x

γ
px

= lim
n, γ → ∞

p0
sµ

γ2

aγ
s

−r(n+ 1)
(
1− aγ

s

) (aγ

s

)n
+ 1− r

(aγ

s

)n(
1− aγ

s

)2 .
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In order to compute this limit, we separate the last expression in three parts.
First, we may write

lim
n, γ → ∞

p0 = lim
n, γ → ∞

as

s! p−s,0

1− r a
s

(aγ

s

)n =

as

s!

[
s−1∑
x=0

ax

x! +
as

s!
1

1−a/s

]−1

1− r a
s e

−sµ(1−a/s)·K . (13)

Second, we have

lim
n, γ → ∞

sµ

γ2

aγ
s

1(
1− aγ

s

)2 = lim
n, γ → ∞

sµ

(s− a)2

(
a+ γ

µ

)(
s+ γ

µ

)
γ2

(14)

=
1

sµ(1− a/s)2
.

Finally, one may write

−r(n+1)
(
1− aγ

s

)(aγ
s

)n
+1−r

(aγ
s

)n
= 1−r

(aγ
s

)n
−r

(n+ 1)(s− a)

s+ γ/µ

(aγ
s

)n
Applying the assumption n

γ = K yields

lim
n, γ → ∞

−r(n+ 1)
(
1− aγ

s

)(aγ
s

)n
+ 1− r

(aγ
s

)n
= 1− re−sµ(1−a/s)·K(1 + sµ(1− a/s) ·K). (15)

Combining Equations (13), (14) and (15) leads to the expression of E(W1).

We now consider the expected waiting time of customers who are routed
to Queue 2. The probability of having y customers in Queue 2 at Q-instants

(y ≥ 0) is
∞∑
x=1

sµ
λ px,y + rγ

λ pn,y. Using the results of Proposition 1, we can

compute explicitly this expression by letting n and γ tends to infinity. �

3.2 Numerical analysis with abandonment

The complexity of the transition structure does not allow us to obtain explicit
expressions for the performance measures with abandonment. However, since
the transition structure is completely known, using space state truncation with
a bound, D1, for the number of waiting phases in Queue 1 and a bound,D2, for
the number of customers in Queue 2, we can derive the performance measures
including the proportion of abandonment.
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Let S be the state space. Consider the cut betweenA1 = {(−s, 0), · · · , (x, 0)}
and S\A1, where −s ≤ x ≤ D1. By equating flows across the cut, one may
write

λpx,0 = (s+ x+ 1)µpx+1,0, for − s ≤ x < 0, (16)

λp0,0 = sµp0,1 +

(
sµ+ γ

β

γ + β

) D1∑
i=1

pi,0qi,0, (17)

γpx,0 = sµp0,1 +

(
sµ+ γ

β

γ + β

) D1∑
i=x+1

pi,0

x∑
k=0

qi,k, for 0 < x ≤ n, (18)

γpx,0 + rγpn,0 = sµp0,1 +

(
sµ+ γ

β

γ + β

) D1∑
i=x+1

pi,0

x∑
k=0

qi,k, for n < x < D1.

(19)

Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where
0 ≤ y ≤ D2. This leads to

rγpn,y = sµp0,y+1, for 0 ≤ y < D2. (20)

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where
−s ≤ x ≤ D1 and 1 ≤ y ≤ D2, we get

(sµ+ λ)p0,y = sµp0,y+1 +

(
sµ+ γ

β

γ + β

) D1∑
i=1

pi,yqi,0 + rγqn,0pn,y−1, (21)

for 1 ≤ y < D2,

γpx,y + sµp0,y = (22)

sµp0,y+1 +

(
sµ+ γ

β

γ + β

) D1∑
i=x+1

pi,y

x∑
k=0

qi,k + rγ
x∑

k=0

qn,kpn,y−1,

for 0 < x ≤ n, and 1 ≤ y < D2,

γpx,y + sµp0,y = sµp0,y+1 +

(
sµ+ γ

β

γ + β

) D1∑
i=x+1

pi,y

x∑
k=0

qi,k + rγpn,y−1

(23)

for n < x < D1 and 1 ≤ y < D2.

We then get a finite number of equations due to the state space truncation.
In addition with the normalizing condition (i.e., the sum of the overall proba-
bilities is equal to one), on may obtain numerically all stationary probabilities.

Arriving customers either enter service upon arrival, enter service from
Queue 1 or Queue 2 after some wait, abandon from Queue 1 after experiencing
some wait, or move from Queue 1 to Queue 2 after waiting n phases. The
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proportion of customers which accepts the callback offer, Pc is then given by

Pc = r
γ

λ

D2∑
y=0

pn,y.

The proportion of customers who have waited less than K time units, P (W <
K), is

P (W < K) =
−1∑

x=−s

px,0 +

D2∑
y=0

n∑
x=1

sµ+ γ β
γ+β

λ
px,y.

The proportion of abandonment, Pa, is

Pa =

D2∑
y=0

D1∑
x=1

γ β
γ+β

λ
px,y.

The expected waiting time in Queue 1, E(W1), is given by

(1− Pc)E(W1) =

D2∑
y=0

D1∑
x=1

sµ+ γ β
γ+β

λ

x

γ
px,y.

We now consider the expected waiting time of customers who are routed
to Queue 2. The probability of having y customers in Queue 2 (y ≥ 0) is
D1∑
x=1

sµ+γ β
γ+β

λ px,y + rγ
λ pn,y. This leads to the expected number in Queue 2.

Next, applying Little’s Law leads to E(W2).
One difficulty in the computation is the choice for the two parameters γ

and D1. The truncation parameter D1 introduces the risk of having a large
probability mass in the truncated state, particularly for large values of γ.
The value of γ has an important influence on the approximation. Increasing γ
means that more states are required for the truncation. At the same time, γ
should be sufficiently large to represent the continuous elapsing of time.

4 Operational Findings, Discussions and Insights

We investigate the issues related to a postponed callback offer. We derive
a series of insights which can be proven in the case without abandonment.
The proven results are next discussed with abandonment. More precisely, in
Section 4.1, we show how a postponed callback offer can improve a waiting
time percentile. In Section 4.2, we analysis how the customer’s behavior may
impact the system performance and what may be a customer rational strategy.
In Section 4.3, we investigate the impact of the control parameter K on the
performance measures to obtain recommendations to better control the system
performance. Finally, in Section 4.4, we conduct a comparison between our
postponed callback option and a callback option given at customer’s arrival
as developed in the literature (e.g., see [2], [20]).
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4.1 The callback offer, a tool to improve a waiting time percentile

We evaluate the impact of the callback offer on P (W < K).

Analysis without abandonment. We denote by R the ratio between P (W > K)
with the callback offer and P (W > K) without the callback offer. Without
the callback offer, we have P (W > K) = C(s, a) · e−sµ(1−a/s)·K . Therefore,
using the expression of P (W > K) in Theorem 1, we get

R =
1− r a

s

1− r a
s e

−sµ(1−a/s)·K ≤ 1.

So, as a first insight, we obtain

Insight 1 The callback offer allows the manager to reduce a waiting time
percentile.

In Figure 2, we represent P (W > K) and R as a function of the workload
for three different values for the callback acceptance parameter r. We observe
that the higher is r, the smaller are P (W > K) and R. This can be proven by

∂P (W > K)

∂r
= −C(s, a)e−sµ(1−a/s)·K

a
s (1− e−sµ(1−a/s)·K)(
1− r a

s e
−sµ(1−a/s)·K

)2 < 0, and

∂R

∂r
= −

a
s (1− e−sµ(1−a/s)·K)(
1− r a

s e
−sµ(1−a/s)·K

)2 < 0.

One would expect that the impact of accepting the callback offer is stronger
under high workload situations. Yet, the highest improvement is for interme-
diate workload situations as shown in Figures 2(b) and 2(d). This can be
explained as follows. For low workload situations, the probability of waiting
less that the threshold K is high. Therefore, most customers do not hear the
callback offer. Under high workload situations, most customers hear the call-
back offer but whether they accept it or not, they will wait more than K.
The comparison between Figure 2(a) and 2(c) illustrates that the absolute im-
provement is stronger in small call centers. The reason is related to the pooling
effect. It is well established that the pooling effect in large call centers reduces
the improvement that a good routing strategy could bring [5,19]. In summary,
our observations lead to a second insight:

Insight 2 The more customers are likely to accept the callback offer, the more
strongly P (W > K) can be improved. The maximal improvement is for inter-
mediate workload situations and for small call center size.
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(c) s = 50
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(d) s = 50

Fig. 2 P (W > K) (µ = 1, K = 0.5, β = 0)
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Fig. 3 P (W > K) (µ = 1, s = 10, K = 0.5, r = 90%)

Impact of the abandonment. The callback offer can be used to prevent some
customers with too long waiting time to leave the system. It is then interesting
to observe how abandonment may impact P (W > K). In Figure 3, we give
P (W > K) as a function of the ratio a/s for different values of the abandon-
ment rate. An interesting observation is that the abandonment feature strongly
helps to reduce P (W > K). This is particularly apparent in high workload sit-
uations. Callback customers then benefit from the abandonment of customers
in Queue 1 because the abandonment participates in the departure flow from
Queue 1.
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4.2 Customer’s behavior

We investigate here the customer’s reaction to the callback offer.

Impact of r on E(W2). The parameter r is assumed to capture the customer’s
behavior. An interesting observation is that this parameter r is not part of
the expression of E(W2) without abandonment. This means that the delay for
callback customers is insensitive to the willingness of customers to accept the
callback offer. Hence, we get the following insight:

Insight 3 Without abandonment, the delay for callback customers is insensi-
tive to the parameter r.

However, Figure 4 reveals that with abandonment, the parameter r influ-
ences the delay for callback customers. More precisely, as r increases, E(W2)
increases. This observation is intuitive. As r increases, the proportion of call-
back customers also increases. These customers do not abandon which in turn
leads to a higher congestion of the system.
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Fig. 4 E(W2) (µ = 1, s = 10, K = 0.5, λ = 9.9)

Rational customers. We study here customers’ rational behavior. First, with
rational customers, one may neglect the exponential patience. As shown in [25],
rational abandonments can occur only upon arrival (zero or infinite patience
for each customer).

We then investigate the willingness to accept the callback offer without
abandonment. The choice for a customer to accept the callback offer or not
can be seen as the result of a rational decision. When hearing the callback
offer at time K, a customer has the choice to stay in Queue 1 with a remaining
expected waiting time of 1

sµ (because the callback offer is given to the first

customer in line) or can choose to be called back later with an expected delay
of E(W2)−K. Of course, accepting the callback offer leads to higher waiting
time but waiting to be called back is less costly/annoying than continuing to
wait for an agent to be available. We capture by c1 and c2 the cost per time
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unit of waiting in the initial queue (Queue 1) or in the callback queue (Queue
2), respectively.

The parameter r should therefore be

r = arg min

(
(1− r)c1

1

sµ
+ rc2(E(W2)−K)

)
,

with c1 ≥ c2. Since E(W2) is insensitive to r, the optimal value for r is either
0 or 1. More precisely, we get:

Insight 4 Only two rational customer strategies are possible. Either all cus-
tomers who hear the callback offer accept this offer if c2

1+λ·K
1−a/s < c1, otherwise

they all reject the offer.

The condition c2
1+λ·K
1−a/s < c1 induces that the higher the workload is, the

more likely customers will refuse the callback offer. Intuitively, this can be
explained by the long delays for callback customers in case of high workload
situations due to their low priority. The second consequence is that the smaller
is K, the more likely a customer will accept the callback offer. The reason is
related to the proportion of callback customers. When K is small, a high
proportion of customers will hear the offer. Therefore if they all accept the
offer, the proportion of those who are in Queue 1 is small and the effect of the
low prioritization is reduced which in turn makes the callback offer attractive.

4.3 The control parameter K

The control parameter for the call center is the time at which the callback
offer is proposed, K.

With rational customers. As mentioned in Section 4.2, by choosing a too high
value for K, a call center with rational customers will induce a rejection of
the callback offer (r = 0). In this case, the value of K is irrelevant. Under
a waiting time threshold for the callback offer, all customers accept the offer
(r = 1). In the case r = 1, both E(W1) and E(W2), are strictly increasing
in K. This argue for a value of K = 0. However, in that case with r = 1
and K = 0, the call center manager may loose the control of the proportion of
callback customers and the inbound queue will always be empty. This might be
unwanted because inbound calls can be a source of revenue for the call center;
contrary to outbound calls they may pay a waiting cost per waiting time
unit. So, the choice of K also depends on the wanted proportion of callback
customers. This proportion, Pc, is strictly decreasing in K. This can be seen
by

∂Pc

∂K
= −sµr · C(s, a) · (1− a/s)2e−sµ(1−a/s)·K

(1− r a
s e

−sµ(1−a/s)·K)2
< 0.
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Fig. 5 E(W1) (s = 10, µ = 1, r = 0.8)

With irrational customers. In the case r < 1, the elements mentioned above
still hold except the monotonicity of E(W1). In Figure 5, we present E(W1)
as a function of K for different workload situations.

Proposition 2 If 0 < r < 1, there exists a unique value for K which mini-
mizes E(W1). It is the unique solution in K of

xA+ re−x = 1, (24)

with x = sµK(1− a/s) and A =

s−1∑
x=0

ax

x! +
as

s!(1−a/s)

a
s

s−1∑
x=0

ax

x! +
as

s!(1−a/s)

.

Note that in the case r = 0, E(W1) is insensitive to K.

Proof. We obtain Equation (24) from ∂E(W1)
∂K = 0. Consider the function

f(x) = xA+ re−x − 1. We want to show that f(x) = 0 has a unique solution.
We have f ′(x) = A−re−x. Since x > 0, r < 1 and A > 1, we have f ′(x) > 0 for
x ≥ 0. So, the function f is increasing in x for x ≥ 0. Moreover, f(0) = r−1 < 0
and lim

x→+∞
f(x) = +∞. This proves that there exists a unique solution of

Equation (24). �

One way to obtain the unique solution of Equation (24) is to apply the

Newton algorithm by defining recursively xk by x0 = 0 and xk+1 = xk− f(xk)
f ′(xk)

for k ≥ 0 and f defined as in the proof of Proposition 2. Note that since
f ′(x) > 0 for x ≥ 0, the recursion is well defined.

The reason which explains why E(W1) is not increasing in K is the defi-
nition of the callback offer. Increasing K does not necessarily mean that less
customers have the callback proposition. Recall that only the first customer
in line can hear the callback offer. In case of high workload situations and low
value for K, the probability to be the FIL at waiting time K is low (except if
r = 1). Most likely, at waiting time K a customer will have other customers
in front of him and will not have the callback offer. Increasing K in this case,
leads to a higher chance to be the FIL at waiting time K. Therefore, increasing
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K leads to a higher chance to leave Queue 1. This explains how E(W1) can
be decreasing in K. In case of low workload situations, increasing K reduces
the proportion of callback customers and therefore increases E(W1).

With abandonment. Figures 6(a) and 6(b) illustrate the impact ofK on E(W1)
and E(W2), for different values of the abandonment rate β. We observe that
with abandonment, the value of K which minimizes E(W1) is higher than
the one obtained without abandonment. With abandonment, the increasing of
the number of customers in Queue 1 increases also the departure rate (after
abandonment or service) of inbounds from the system, which makes the system
more efficient and may decrease E(W1). Therefore higher values for K may
lead to a better performance for inbound calls. We observe that E(W2) is
still increasing in K (Figure 6(b)) although the abandonment in Queue 1 also
reduces the waiting time in Queue 2.
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(b) E(W2)

Fig. 6 Impact of the abandonment (s = 10, r = 0.8, a/s = 0.95, µ = 1)

The abandonment plays a important role in the choice of K. Since by
definition outbound calls do not abandon, reducing K reduces abandonment,
which is positive. Yet, this may also increase the workload and lead to higher
waiting time. This leads to another insight.

Insight 5 The callback offer may help to reduce the proportion of abandon-
ment. However, the time at which the callback offer is proposed should be care-
fully chosen in order to avoid congestion.

4.4 Comparison with a non-postponed callback offer

The callback offer studied in this article differs from the one in the literature
by the instant at which it is proposed. In most callback models, the callback
offer is given at arrival of a new call if the expected waiting time is too high
(e.g., see [2], [20]). Instead, we consider in this article a callback offer given
after experimenting some wait. We propose to conduct a comparison between
these two strategies.
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We call Model A our postponed callback offer and by Model B a callback
offer proposed at arrival of a new call. For Model B, we assume that at and
above a given number of customers in Queue 1 (or equivalently at and above
a given expected waiting time for an arriving customer) the callback offer is
proposed to all arriving customers. Hence, in Model B, Queue 1 has a limited
capacity n. All arriving customers are routed to Queue 2 if Queue 1 size is
equal to n. Therefore n is the control parameter of Model B. The performance
measures in Model B can be obtained through a Markov chain analysis or can
be deduced from Proposition 3 of [20]. We obtain the following performance
measures for Model B:

Pc = C(s, a) ·
(1− a/s)

(
a
s

)n
1−

(
a
s

)n+1 ,

E(W1) =
as

s!

sµ
·

1−
(
a
s

)n
(1 + n(1− a/s))

(1− a/s)
2

((
1−

(
a
s

)n+1
) s−1∑

x=0

ax

x! +
as

s!

1−( a
s )

n

1−a/s

) ,

E(W2) =
1 + n

sµ(1− a/s)
.

The difficulty in the comparison is the customer’s reaction to the offer. It
may differ whether the callback offer is given at arrival or later. To avoid this
complexity, we assume that all customers accept the callback offer in both
Models. This corresponds to a rational behavior in Model A.

Comparison without abandonment. In Theorem 2, we consider a context for
which the call center manager wants to maintain the proportion of callback
customers at a given level. Under this constraint which forces the two models
to have the same proportion of callback customers we prove that our postponed
callback offer leads to a better expected waiting time for inbound calls and a
worse expected waiting time for outbound ones.

Theorem 2 Given that the control parameters K (Model A) and n (Model
B) are chosen such that the proportion of callback customers in identical in
both models, E(W1) is lower in Model A and E(W2) is lower in Model B.

Proof. To obtain the same proportion of callback customers in both models,
the control parameters n and K should be related by

(
a
s

)n
= e−sµ(1−a/s)K .

This equation is equivalent to n ln(a/s) = −sµ(1 − a/s)K. Let us denote by
E(W1)A and E(W1)B , the expected waiting time of inbound calls in Model A
and B. We have

E(W1)A − E(W1)B

=
as

s!

sµ
· e−sµ(1−a/s)·K(n− sµK)

(1− a/s)

((
1− a

s e
−sµ(1−a/s)·K

) s−1∑
x=0

ax

x! +
as

s!
1−e−sµ(1−a/s)·K

1−a/s

) .
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Thus, the sign of this difference depends on the sigh of n − sµK. One may
write,

n− sµK = − sµK

ln(a/s)
(ln(a/s) + 1− a/s).

Since a/s < 1, − sµK
ln(a/s) > 0. Thus, the sign of the expression depends on the

sign of ln(a/s) + 1− a/s. Consider the function in x, f(x) = ln(x) + 1− x for
x > 0. We have f ′(x) = 1

x − 1. So f ′(x) > 0 for 0 < x ≤ 1. Since f(1) = 0,
ln(a/s)+1−a/s < 0. This proves that E(W1)A−E(W1)B < 0. With the same
approach we can prove that the expected waiting time for outbound calls is
higher with Model A. �

In Figures 7(a) and 7(b), we represent E(W1) and E(W2) as a function of
the workload for Model A and Model B assuming a fixed value of K = 0.5
for Model A and n is adjusted in Model B with the relation n ln(a/s) =
−sµ(1 − a/s)K such that the two models achieve the same proportion of
callback customers. An interesting observation is that the improvement for
E(W1) with Model A is higher under high workload situations whereas the
improvement for E(W2) with Model B is higher under low workload situations.
This leads to a last insight.
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(b) E(W2)

Fig. 7 Comparison between the callback offers (s = 10, r = 1, µ = 1, β = 0, K = 0.5,
n ln(a/s) = −sµ(1− a/s)K)

Insight 6 A postponed callback offer is preferred under high workload situa-
tions.

Comparison with abandonment. In Figures 8(a), 8(b), and 8(c), we represent
Pa, E(W1) and E(W2) as a function of the arrival rate for Model A and
Model B assuming a fixed value of n = 5 for Model B and K is adjusted in
Model A such that the two models achieve the same proportion of callback
customers. We obtain the same qualitative observations as in Figure 7. As
mentioned in Insight 6, with abandonment the postponed callback offer is
preferred under high workload situation. In Addition, Figure 8(a) reveals that
for a given proportion of callback customers, the postponed callback offer
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achieves a lower proportion of abandonment. This is an essential value of the
postponed callback offer; it allows the call center to reduce the proportion of
lost customers.
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Fig. 8 Comparison between the callback offers (s = 10, r = 1, µ = 1, β = 10, n = 5)

5 Conclusion

In this article, we propose a new callback model. After experimenting some
wait the first customer in line receives a callback proposition and chooses to
accept it or not. This simple model differs from the one in the literature where
the callback offer is given at customers’ arrival. We first develop a Markov
chain analysis to derive the performance measures without abandonment. The
same approach is also applied to compute numerically the performance mea-
sures with abandonment. This allows us to better understand the effect of the
callback offer on the call center performance. We find that our callback offer
succeeds in reducing a percentile of the waiting time. In particular, the real-
ized improvement can be significant in intermediate workload situations, with
abandonment and small call center size. One surprising result is that the delay
for callback customers is insensitive to the willingness of customers to accept
the callback offer without abandonment. This result is however no longer valid
with abandonment. This leads to only two rational customer behaviors; either
they all accept or the all reject the callback offer. Next, we evaluate how to
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derive the optimal value ofK without abandonment and show how this param-
eter can be efficiently used to reduce the proportion of abandonment. Finally,
we show that our postponed callback offer outperforms the existing ones in
reducing the proportion of abandonment and the expected waiting time of
inbound calls.

Several avenues are open for future research. It would be interesting to
develop a callback offer with a state dependent starting time. This may give
a trade-off between the benefits of the postponed and non-postponed callback
offer. In addition, more complexity could be included in the model like retrials
and reconnections, time-dependent parameters or other type of service time
or patience distributions.
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