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Interactive leader-follower consensus of multiple
quadrotors based on composite nonlinear feedback

control
Zhicheng Hou, Isabelle Fantoni, Member, IEEE

Abstract—In this paper, an interactive L-F configuration of
multiple quadrotors is considered, which means that the leaders
can react with respect to the followers. In order to analyze
the consensus of such a multi-quadrotor system, an interaction
matrix is proposed. The convergence condition of the trajectory
tracking error is then proven to be related to the smallest
eigenvalue of the interaction matrix. In order to achieve an
aggressive formation, we develop a bounded composite nonlinear
feedback based formation controller with hyperbolic functions
as a main contribution. Simulation and real-time experimental
results show that the formation task is achieved with small
overshoot and rapid response speed. Real-time experiments show
four quadrotors following a circular reference trajectory with
high linear velocity up to 2.7m/s.

Index Terms—quadrotors, consensus, leader-follower, aggres-
sive formation, bounded composite nonlinear feedback control

I. INTRODUCTION

THE natural behavior of animals operating as a team has
inspired scientists in different disciplines to investigate

the possibilities of networking a group of systems to ac-
complish a given set of tasks without requiring an explicit
supervisor [1]. Therefore, multi-agent systems have broadly
appeared in several applications including multi-vehicle sys-
tem [2] [3], formation flight of unmanned air vehicles (UAVs)
[4] [5] [6], sensor networks [7], self-organization, automated
highway systems, and congestion control in communication
networks [8].

The guidance of quadrotors with a formation pattern to
track a given trajectory has potential applications. Researchers
in [9] develop a tele-operation strategy for multi-robot sys-
tem. Within this scope, they investigate the strategies such
as selection of leaders in the group of mobile robots, in
order to achieve some optimization goals. Researchers in [10]
investigate the connectivity maintenance problem in multi-
quadrotor systems. They have proposed a method to maintain
the topology graph connected through changing the weights
in adjacency matrix. They use the second smallest eigenvalue
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of the Laplacian as a measurement of the graph connectivity.
Then, they develop a controller to increase this eigenvalue,
which is estimated with a decentralized method.

The usage of multiple quadrotors to transport large payloads
is considered in [11], [12] and [13]. The flexible payload
transportation using the cooperation of multiple quadrotors is
investigated [6], where the control with prediction is proposed
to reduce the deformation of the payload. The applications
such as search and rescue are covered in [14]. The problem
of cooperative surveillance in large outdoor areas by a fleet
of micro aerial vehicles is studied in [15]. The visibility
maintenance problem of the multi-robot system with obstacle
environments are investigated through using vision [16]. The
aggressive formation of quadrotors is considered in [17],
where the leader-follower configuration is used. However,
in order to deal with the delay of the communication over
network, the leading robot computes its desired trajectory and
broadcasts to all follower robots a message containing the
polynomial coefficients and time intervals that fully specify
its trajectory. Cooperative quadrotors are also used for archi-
tecture [18].

In our work, the condition of connectivity is not necessarily
needed, we just need a positive-definite interaction matrix. Fur-
thermore, a leader’s states can only be used by its neighboring
quadrotors instead of all the quadrotors. Our main goal is here
to propose an efficient controller, which contains a rapid rising
response and small overshoot during aggressive manoeuvers,
as it will be explained below.

The use of UAVs able to maintain hovering flight for
surveillance implies that the power of actuators is sufficient.
In practice, the motors of a quadrotor have a limited power.
Therefore, the inputs of a quadrotor are subject to actuator
saturations. The saturated control is progressively implemented
on quadrotors in order to prevent the control signal from
hitting the actuator saturations. For example, authors in [19]
introduce a nested saturation controller on PVTOL aircraft,
which globally stabilizes the PVTOL aircraft around the origin
((x, y, θ) ≡ (0, 0, 0)). The design of the nested saturation
controller is based on the linearization around the origin by
calculating the Jacobian matrix. In [20], the nested saturation
controller is proposed to generate bounded inner-loop inputs,
assuming that the inner-loop dynamics can perfectly track
its input. However, in these two cases, the use of standard
saturation functions can cause control problems, because the
standard saturation functions have non-differentiable points.
Furthermore, the controller design is based on the linearization
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of the nonlinear dynamics. The linearization may probably
make the performance of the quadrotor getting worse when the
quadrotor behaves aggressively. In [21], the authors propose
an algorithm of feasible trajectories planning, considering the
input constraints of the quadrotors. This method has limits on
the given trajectories, which sometimes dissatisfy the practical
requirement.

To the best of our knowledge, the input saturations are not
frequently considered in the multi-quadrotor systems control.
In [22], a low gain feedback control is proposed to avoid
the saturation of the system, such that a semi-global leader-
follower consensus of linear multi-agent system is achieved. In
the formation control of multi-UAV systems, a large formation
error can generate a large control output. This could lead to big
attitude angles for the UAVs of the formation. The low gain
controller [22] can guarantee the control output to be small,
however, the response speed of the closed-loop system is low.

In recent years, authors in [23] [24] have proposed and
implemented a “composite nonlinear feedback” (CNF) control
to improve the performance of a system. The objective of this
control method is to reduce the overshoot and meanwhile, keep
a rapid rising response. We have been inspired by the CNF
approach in our proposed strategy.

In this paper, a new type of leader-follower formation
is considered, where the leader(s) has interactions with the
followers. Only part of the followers can sense the leader(s).
A UAV, although the leader, interacts with its neighbors instead
of all the agents. Among the quadrotors, the one who uses the
states of the reference formation trajectory in its controller
is a leader. The consensus is analyzed in terms of a proposed
“interaction matrix” instead of a “Laplacian”. The connectivity
of the graph is not necessarily required, while we only need
to show that the interaction matrix is invertible.

Based on added saturation control, we develop a bounded
formation controller with CNF. We replace the standard sat-
uration function by the hyperbolic tangent function, which is
always derivable w.r.t time. Furthermore, a composite non-
linear feedback is added in order to improve the formation
performance in transient period. We detail the procedure of the
CNF for the consensus of multiple quadrotors and implement
the controller in simulations and in real-time on four quadro-
tors with a satisfactory performance. The formation control
strategy is designed to achieve a fixed formation pattern while
accomplish an aggressive trajectory tracking of the formation.
According to [25], the aggressive flight means that a quadrotor
flight in regimes beyond hover conditions. The experimental
results in [25] show that the pitch and roll angles can be up to
±15 degrees. In this paper, the aggressive flight of quadrotors
in formations can fly with pitch and roll angles greater than
5 degrees but less than 30 degrees. The investigated bounded
formation controller is differentiable and makes the closed-
loop system to have fast response speed and small overshoot.

The paper is organized as follows. Some preliminaries are
shown in section II. The consensus control of a formation
of quadrotors are presented in section III. Simulation and
experimental results are given in section IV. Finally, some
conclusions are stated in section V.

II. PRELIMINARIES

A. Interaction matrix

In multi-agent systems, the interaction topologies of agents
are represented using a graph G = (V, E) with the sets of
vertices V and edges E . The set of vertices V = {1, 2, . . . , n}
is composed of the indices of agents. |V| represents the
cardinality of the set V , which satisfies |V| = n. The set of
edges is represented by E ⊆ V ×V . If an edge exists between
two vertices, the two vertices are called adjacent. A graph
is simple if it has no self-loops or repeated edges. In other
words, the edge (i, i) does not exist. The graph G is said to
be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E . In this work, simple
and undirected graphs are considered.

A path between two vertices i, j is a sequence of edges
in a graph of the form (i, i1), (i1, i2), . . ., (ik, j). A graph
G is connected if there is a path between any two vertices,
otherwise it is disconnected. The adjacency matrix of G is
denoted by GA = [ωaij ] ∈ Rn×n, where ωaij represents the
entry on the ith row jth column of matrix GA. Since the
simple graph is considered, we have ωaii = 0. Since the graph
is undirected, we have ωaij = ωaji and ωaij = 1 if (i, j) ∈ E ,
otherwise, ωaij = 0. The degree matrix of G is denoted by
GD = diag{

∑n
j=1 ω

a
1j , . . . ,

∑n
j=1 ω

a
nj}.

The neighbor set Ni = {j ∈ V : (i, j) ∈ E} of agent i, is
composed of the indices of the agents j, which has interaction
with the agent i. In other words, if ωaij > 0, then, agent j is a
neighbor of agent i. The number of the neighbors of the agent
i is equal to |Ni|.

We also define a diagonal matrix GL = diag{ωl1, . . . , ωln}
representing the status of agents. If ωli = 1, then agent i is a
leader. Otherwise, if ωli = 0, agent i is a follower, for i ∈ V .
Then, the leader set is defined as VL = {i ∈ V : ωli > 0}. The
leader set VL ⊂ V is a subset of V , which contains the indices
of the leaders. Particularly, all the quadrotors are leaders, when
VL = V . The indices of the followers are contained in the
complementary set of VL, namely, V − VL.

The interaction matrix G for L-F formation is defined as
follows

G = GD −GA +GL (1)

Let us note that the part GD − GA is normally called the
Laplacian in graph theory. Since we are concerned by the
L-F formation here, we use the interaction matrix G to
represent the interactions of agents. The interaction matrix G is
symmetric. Obviously, if no leader exists in the group, namely,
leaderless formation structure, the matrix GL will be equal to
zero. In this case, the matrix G is equal to the Laplacian of
the graph.

B. Decentralized consensus algorithm

According to Olfati [26], a consensus algorithm (or pro-
tocol) is an interaction rule that specifies the information
exchange between an agent and all of its neighbors on the
network. Specifically, if the neighbors of an agent are local,
then, the consensus algorithm is decentralized. On the contrary,
if each agent has information exchange with all the other
agents, the consensus algorithm is centralized. Furthermore,
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any global information should not be used by all the agents,
otherwise, the consensus algorithm is also centralized.

Let us denote the “tracking error” by

ei = xi − r − di0 (2)

between agent i and a sufficient smooth reference trajectory
r(t) of the formation. The scalar di0 represents the desired
distance between agent i and the reference trajectory. Different
assignments of the scalars di0 lead different formation shapes.
The scalars di0 can be constant or variable. In this paper,
without loss of generality, we consider a formation with
constant shape, i.e. di0, i ∈ V are constants. We call this kind
of formation “rigid formation”. The objective of the neighbor-
based consensus algorithm for the leader-follower formation
of multiple agents is to guarantee that the errors ei, i ∈ V
converge to zero.

C. Properties of interaction matrix

In this subsection, we introduce two important properties
of the interaction matrix through two propositions. These
properties will be used in the following sections.

Proposition 1. Let G be an undirected simple graph, then the
interaction matrix G in equation (1), is positive-definite, if i)
G is connected; ii) the multi-agent system has at least one
leader.

Proof. Since G is connected, we have GD − GA ≥ 0.
Considering the definition of GL, we have GL ≥ 0. We prove
this proposition by contradiction. Firstly, we suppose that there
exists a nonzero vector x ∈ Rn, which renders

xTGx = xT (L+GL)x = xTLx+ xTGLx = 0

Therefore, we must have xTLx = 0 and xTGLx = 0.
Since xTLx = 0, we obtain that x = α1n, where α is

a nonzero scalar. According to the fact that a leader exists,
then, GL 6= 0. As a result, xTGLx = α21TnGL1n > 0, which
contradicts xTGLx = 0. Therefore, such a nonzero vector x
does not exist. Thus, for any nonzero vector x, xTGx > 0,
namely, G is positive-definite.

When the condition i) is not satisfied such that G is not
connected, the graph can be divided into several connected
sub-graphs. In that case, according to the proposition 1, we
have the following corollary.

Corollary 1. The interaction matrix G is positive-definite,
if each sub-group of the agents, which is described by a
connected sub-graph, has at least one leader.

Proof. If a multi-agent system contains several connected sub-
groups of agents, then, the interaction matrix is block diagonal.
Since each sub-group is connected and has at least one leader,
then, the block in the interaction matrix is positive definite.
Hence, the interaction matrix is positive definite.

Proposition 2. The minimum eigenvalue of the interaction
matrix G for an undirected connected graph G will increase,
if extra edges are added.

Proof. The graph can be represented by G = (V, E). The
corresponding interaction matrix is G. We construct another
graph Ge = (V, Ee), where the vertices set is the same as
the graph G, while the edge set is composed by extra added
edges. Its interaction matrix is denoted by Ge. Then, the graph
G becomes G′ = G ∪ Ge after extra edges have been added.
The interaction matrix for graph G′ is denoted by G′, then,
we have

G′ = G+Ge

According to Courant-Fischer theorem [27],
λmin(G′) = min‖x‖=1 x

TG′x = min‖x‖=1 x
T (G + Ge)x >

min‖x‖=1 x
TGx + min‖x‖=1 x

TGex = λmin(G) +
λmin(Ge) ≥ λmin(G). Then, the result is obtained.

Corollary 2. The minimum eigenvalue of the interaction
matrix for an undirected connected graph G will increase, if
more agent(s) are assigned as leader(s).

Proof. The proof is similar to the proof of proposition 2.

The normalized interaction matrix is defined by Ḡ =
(GD +GL)−1G. The normalized interaction matrix Ḡ is not
symmetric, but it has the following property.

Proposition 3. The normalized interaction matrix Ḡ has real
eigenvalues, if G is undirected.

Proof. Since Ḡ is a normalized interaction matrix, then, Ḡ =
(GD +GL)−1 ·G. We recall that G is symmetric.

Using (GD+GL)−
1
2 , we apply similarity transformation to

Ḡ, then, we obtain that (GD + GL)
1
2 · Ḡ · (GD + GL)−

1
2 =

(GD + GL)−
1
2 · G · (GD + GL)−

1
2 is symmetric, because

GD +GL are diagonal and G is symmetric.
Since Ḡ is similar to (GD + GL)−

1
2 · G · (GD + GL)−

1
2 ,

the eigenvalues of Ḡ are real, moreover, they are equal to the
eigenvalues of (GD +GL)−

1
2 ·G · (GD +GL)−

1
2 .

III. CONTROLLER DESIGN

In this section, the formation of a group of quadrotors with
L-F configuration is considered. Among the UAVs, one or
several UAVs are leader, while other UAVs are followers. The
objective of the formation is to track a given reference forma-
tion trajectory (RFT), i.e. guidance of multiple quadrotors. We
firstly show that such a formation trajectory tracking problem
is an L-F consensus problem. Then, considering actuator
saturation and formation performance, the basic consensus
algorithm is developed and implemented on the formation of
quadrotors.

A. L-F consensus of quadrotors

The rigid formation problem is investigated in this paper. A
formation is rigid if the desired inter-distance between each
pair of UAVs does not change over time. The UAVs keep a
certain pattern and track a RFT. This type of formation has
applications such as object transportation [4] and surveillance
of area of interest [15].

We consider the planar formation of UAVs, since the altitude
control is decoupled with the planar motion control. We denote
by xi = [Xi, Yi]

T and ẋi = [Ẋi, Ẏi]
T the planar position
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and velocity vectors for UAV i. The formation controller
of each UAV uses the relative positions and velocities with
respect to its neighbors, which can be represented by vectors
[(xi − xj)T , (ẋi − ẋj)T ]T , j ∈ Ni. If the UAV is a leader,
besides the foregoing measurements, its formation controller
also uses the relative position and velocity with respect to
the reference trajectory [(xi − r(t))T , (ẋi − ṙ(t))T ]T , where
we denote by r(t) = [rX(t), rY (t)]T the reference formation
trajectory (RFT).

The objective of the rigid formation is to guarantee that
all the quadrotors track the RFT with some constant biases
di0 = [dXi0, d

Y
i0] ∈ R2, such that the quadrotors keep a constant

formation pattern.
We are now ready to state a (slightly modified) version of

the L-F consensus scheme proposed in [28].

Definition 1. The L-F consensus of multiple quadrotors is said
to be achieved if, for each UAV i ∈ V ,

lim
t→∞

‖xi − r(t)− di0‖ = 0

lim
t→∞

‖ẋi − ṙ(t)‖ = 0
where i = 1, . . . , n (3)

for some initial condition xi(0), i = 1, . . . , n.

Therefore, the desired position of UAV i ∈ V evolves
according to xdi (t) − r(t) = di0 and ẋdi (t) − ṙ(t) = 0, then,
we obtain

xdi (t) = di0 + r(t) and ẋdi (t) = ṙ(t)

Then, the rigid formation task contains two parts, i) the desired
trajectory RFT r(t); ii) the biases away from the RFT. An
example of four UAVs with rigid formation task is shown
in Fig.1(a), where the solid red circle represents the RFT at
time ta. The dashed red circles represent the desired positions
xdi (ta) for the UAVs i ∈ V at ta. The solid black circles
represent the quadrotors real positions at ta, i.e. xi(ta), i ∈ V .

However, the RFT r(t) is not available for the followers,
therefore the desired trajectory xdi (t) for UAV i is not avail-
able, in other words, xdi (t) cannot be used in the formation
controller design for the followers. For the followers, only
the neighbors states are available for the formation controller
design, as shown in Fig.1(b). Then, the formation problem
becomes: how to find the available trajectories for UAVs i ∈ V
in order to attain the formation task.

Let us firstly make a sum of the relative position state
vectors. Note that we drop the explicit expression of time in
the expressions for the sake of simplicity.∑

j∈Ni

(xi − xj − dij) if i ∈ V − VL∑
j∈Ni

(xi − xj − dij) + xi − r − di0 if i ∈ VL
(4)

The desired inter-distance of UAV i and j is given by dij =
di0 − dj0. Then, equations (4) can be rewritten as follows∑

j∈Ni

(xi − r − di0 − (xj − r − dj0)) if i ∈ V − VL∑
j∈Ni

(xi − r − di0 − (xj − r − dj0)) + xi − r − di0 if i ∈ VL

(a) Rigid formation task

(b) Available trajectory for each UAV

Fig. 1: Rigid formation task for four UAVs, where UAV 1 is a leader.
The objective is to track the trajectory r(t) with constant
biases d10 = [0,

√
2]T , d20 = [−

√
2, 0]T , d30 = [0,−

√
2]T

and d40 = [
√

2, 0]T .

Let us denote “formation error” by

ei =


xi − 1

|Ni|
∑
j∈Ni

(xj + dij) if i ∈ V − VL

xi − 1
|Ni+1|

( ∑
j∈Ni

(xj + dij) + r + di0

)
if i ∈ VL

(5)
We rewrite the equation (4) in matrix form for all the quadro-
tors as follows e1

...
en

 = (Ḡ⊗ I2)

e1

...
en

 (6)

where Ḡ represents the normalized interaction matrix. Accord-
ing to proposition 1, corollary 1, we know that λmin(Ḡ) > 0
if the graph of the multi-UAV system is connected with at
least one leader or each connected subgraph has at least one
leader. We suppose these conditions are satisfied. Thus, if
the formation error ei for each UAV converges to zero, the
formation task is achieved. Note that dij is constant in a rigid
formation task. The goal is to design a formation controller,
which guarantees the convergence of ei.

B. Attitude and altitude control

The dynamics of a quadrotor can be generally divided
into two parts, namely, the rotational dynamics in inner-loop,
and the translational dynamics in outer-loop respectively. The
inputs of the translational dynamics are the attitude angles and
the total thrust force, while the outputs of the translational
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dynamics are the positions and velocities of the quadrotor in
the inertial frame.

According to [29], the attitude controller is given in the
following process. We firstly define two matrices as follows

Ti =

1 0 − sin θi
0 cosφi cos θi sinφi
0 − sinφi cos θi cosφi


and

T̃i =

tan θi 0 cos θi + tan θi sin θi
0 − cos θi 0

sec θi 0 tan θi

 ,
We define a map S(·) : R3 → R3×3, which satisfies the
property S(v1) · v2 = v1 × v2, for two given arbitrary vectors
v1, v2 ∈ R3. Then, the torque vector τi is designed as follows

τi = JTiτ̄i − JTiT̃i

 φ̇iθ̇iφ̇iψ̇i
θ̇iψ̇i

− ST
(
Ti · Θ̇i

)
JTi · Θ̇i (7)

where

τ̄i = Θ̈d
i −

k2Θi

ε
(Θ̇i − Θ̇d

i )−
k1Θi

ε2
(Θi −Θd

i ) (8)

In (8), k1Θi
and k2Θi

represent two diagonal positive-definite
gain matrices. Notations Θd

i , Θ̇d
i and Θ̈i

d
represent the desired

Euler angles vector and their derivatives. The scalar ε ∈ (0, 1].
According to [29], we have two remarks on the use of the

attitude controller (7).
a) Remark 1: If the scalar “ε” in (8) is selected suffi-

ciently small, the dynamics of a quadrotor has a two time-scale
property. The model of the quadrotor can be decomposed into
the slow (reduced) model, i.e. translational dynamics and fast
(boundary-layer) model, i.e. rotational dynamics. We use the
following example to illustrate this fact.

Example 1. The trajectory tracking of a single quadrotor is
studied. The objective is to track a circular trajectory. The
tracking curves of the quadrotor with different ε are given in
Fig.2.

We can observe from Fig.2 that the real outputs of the
complete model approach the outputs of the reduced model
faster, if ε is selected smaller. Thus, by selecting some proper
“ε”, we can use the reduced model instead of the complete
model in the study of the formation controller design, which
will greatly simplify the problem.

b) Remark 2: The dynamics of pitch, roll and yaw are
decoupled.

In this work, the desired altitude Zdi of each UAV is
constant. In other words, the formation takes place in oexeye
plan. The thrust force is given as follows

FTi =
mg +m · uZi
cos θi cosφi

(9)

where uZi represents the altitude controller.
By using (9), the altitude control is decoupled with the

planar translational dynamics (Xi and Yi). Thus, we give the
altitude controller as follows

uZi = σb(−k2ZŻi − k1Z(Zi − Zdi )) (10)
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Fig. 2: Navigation control based on singular perturbed theory

Function σb(·) represents a standard saturation function.

σb(a) = sgn(a) min{b, |a|} (11)

where “sgn” represents the sign function. We select b = 1.
The controller (10) asymptotically stabilizes the altitude.

Since the altitude control is decoupled with the planar
translational dynamics, the convergence of Zi do not depend
on the other states of the quadrotors except Zi and Żi. When
the altitude of the quadrotors gets stabilized, uZi ≈ 0.

Now, we give the formation controller design in the follow-
ing part of this section.

Since the planar translational motions are generated by the
attitude angles, the formation controller is to obtain the proper
desired attitude angles Θd

i . If we design the desired attitude
angles as follows

θdi = arctan
(
uX
i

g

)
φdi = arctan

(
−uY

i cos(arctan(uX
i /g))

g

)
ψdi = 0

(12)

where uXi and uYi represent the formation controllers in
direction xe and ye in the inertial frame. Then, the planar
translational dynamics of UAV i yields

Ẍi =uXi + δXi

Ÿi =uYi + δYi
(13)
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The terms δXi and δYi have the following expression.

δXi = (g + uZi )·

(
sin ∆ψi ·

tan(φdi + ∆φi)

cos
(
θdi + ∆θi

)+

cos ∆ψi · tan
(
θdi + ∆θi

)
− g

g + uZi
tan θdi

)
δYi = (g + uZi )·

(
− cos ∆ψi ·

tan(φdi + ∆φi)

cos(θdi + ∆θi)
+

sin ∆ψi · tan
(
θdi + ∆θi

)
+

g

g + uZi

tanφdi
cos θdi

)
where ∆φi, ∆θi and ∆ψi represent the tracking error of the
attitude angles Θi − Θd

i = [∆φi,∆θi,∆ψi]. We can observe
that δXi and δYi are in terms of uZi , and Θi−Θd

i . According to
[29], the attitude tracking error Θi −Θd

i is bounded, if Θd
i is

bounded. Furthermore, Θi−Θd
i exponentially converges to the

origin. Additionally, |uZi | ≤ 1 and uZi → 0 when the altitude
is stabilized. Thus, we obtain that δXi and δYi are bounded.

C. Formation control

We firstly consider the nominal model of (13) by setting
δXi and δYi null. The dynamics of Xi and Yi are similar,
thus, we consider the dynamics of Xi for example. Note that
in the sequel, the superscript “X” is omitted for the sake of
simplicity. Then, we have

Ẍi = ui (14)

Let us denote by eiX = Xi− X̄d
i the formation error in xe

direction. Let us define a nonlinear function ρi : R2 → R. We
propose the formation controller as follows

ui = −M tanh (k2ėiX +k1eiX)

−M tanh(ρi(eiX , ėiX)) + ¨̄Xd
i

ρi(eiX , ėiX) = kN ėiX

(15)

where M represents a positive constant scalar. k1 and k2

are two positive constant gains. The symbol kN represents
a positive nonlinear gain. For example, we can select kN as
follows

kN = η1 exp−η2e
2
iX (16)

where η1 ≥ 0, η2 > 0. The selection of kN in (16) has
a physical meaning. When the formation error eiX is large,
the effect of ρi(eiX , ėiX) is small. In contrary, when eiX
approaches zero, the nonlinear gain kN increases, which can
reduce the approaching velocity, such that the overshoot is
small.

Proposition 4. The formation controller ui (15) is bounded.

Proof. According to (5), the desired trajectory X̄d
i for UAV i

satisfies

X̄d
i =


1
|Ni|

∑
j∈Ni

(Xj + dij) if i ∈ V − VL

1
|Ni+1|

( ∑
j∈Ni

(Xj + dij) + rX + di0

)
if i ∈ VL

where dij , di0 ∈ R (recall that the subscript “X” has been
omitted here) represent some constant offset scalar. Then,

˙̄Xd
i =


1
|Ni|

∑
j∈Ni

Ẋj if i ∈ V − VL

1
|Ni+1|

( ∑
j∈Ni

Ẋj + ṙX

)
if i ∈ VL

Let us denote by ūi = k2ėiX +k1eiX . Then, if i ∈ V − VL,

¨̄Xd
i =

1

|Ni|
∑
j∈Ni

(
−M tanh ūj −M tanh ρj + ¨̄Xd

j

)
such that

¨̄Xd
i −

1

|Ni|
∑
j∈Ni

Ẍd
j = − 1

|Ni|
∑
j∈Ni

(M tanh ūj +M tanh ρj)

if i ∈ VL,

¨̄Xd
i =

1

|Ni + 1|

∑
j∈Ni

(
−M tanh ūj −M tanh ρj + ¨̄Xd

j

)
+ r̈X


such that

¨̄Xd
i −

1

|Ni + 1|
∑
j∈Ni

Ẍd
j

= − 1

|Ni + 1|

∑
j∈Ni

(M tanh ūj +M tanh ρj)− r̈X


Without loss of generality, we assume that UAVs 1 ∼ i are

leaders, while i + 1 ∼ n are followers. Then, we rewrite the
foregoing equations for all the quadrotors in matrix form as
follows


¨̄Xd
1

...
¨̄Xd
n

 = G−1·



− 1
|N1+1|

( ∑
j∈N1

(M tanh ūj +M tanh ρj)− r̈X

)
...

− 1
|Ni+1|

( ∑
j∈Ni

(M tanh ūj +M tanh ρj)− r̈X

)
− 1
|Ni+1|

∑
j∈Ni+1

(M tanh ūj +M tanh ρj)

...
− 1
|Nn|

∑
j∈Nn

(M tanh ūj +M tanh ρj)


(17)

The RFT is usually selected such that its derivatives are
bounded. Then, we observe that ¨̄Xd

i , i ∈ V are bounded, since
the function tanh(·) is bounded by 1. Therefore, we conclude
that ui, i ∈ V are bounded.

Substituting (15) into the first equation in (14), we obtain

ëiX = −M tanh ūi −M tanh ρi (18)

Proposition 5. The origin of (18) is globally asymptotically
stable, if i) kN is given by (16); ii) the gains in ūi satisfy
k1 ≥ η1k2M .

Proof. Let us define a continuously differentiable, radially
unbounded positive-definite function as follows

Vi = ln cosh(k2ėiX + k1eiX) +
k1

2M
ė2
iX (19)
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Vi = 0, if and only if eiX = 0 and ėiX = 0.
Then, the derivative of Vi yields

V̇i = tanh ūi · ˙̄ui +
k1

M
ėiX ëiX

= tanh ūi (k2ëiX + k1ėiX)

+
k1

M
ėiX(−M tanh ūi −M tanh ρi)

= tanh ūi (k2(−M tanh ūi −M tanh ρi) + k1ėiX)

− k1ėiX (tanh ūi + tanh ρi)

=− k2M tanh2 ūi − k2M tanh ūi tanh ρi

− k1ėiX tanh ρi

(20)

Then, we have

V̇i ≤ −k2M tanh2(ūi)− k1ėiX tanh ρi

+ k2M | tanh ūi|| tanh ρi|
According to (15), ρi has the same sign as ėiX . Then,
−k1ėiX tanh ρi ≤ 0.
• Case 1: If |ρi| ≤ |ūi|, | tanh ρi| ≤ | tanh ūi|. Then,
| tanh ρi|| tanh ūi| ≤ tanh2 ūi. Therefore,

V̇i ≤ −k1ėiX tanh ρi ≤ 0 (21)

We obtain that V̇i is semi-definite negative. We then
invoke here the LaSalle’s invariance principle. Let us
compute the largest invariant set where V̇i = 0, such that
equation (20) equal to zero. We consider the following
cases.

– Case a: if ėiX 6= 0, then, according to (21), V̇i < 0,
which contradicts V̇i = 0.

– Case b: if ėiX = 0, then, according to (20), V̇i =
−k2M tanh2(k1eiX) = 0, which implies eiX = 0.

Therefore, in Case 1, the largest invariant set contains
only the origin.

• Case 2: If |ρi| > |ūi|, |ρi| > | tanh ūi| ≥ 0. Since k1 ≥
η1k2M , then, we have k2M | tanh ūi| < k1|ėiX |. Thus,

V̇i ≤ −k2M tanh2 ūi ≤ 0 (22)

We obtain that V̇i is semi-definite negative. As mentioned
before, we compute the largest invariant set where V̇i = 0,
such that equation (20) equal to zero. We consider the
following cases.

– Case a: if |ūi| 6= 0, then, according to (22), V̇i < 0,
which contradicts V̇i = 0.

– Case b: if |ūi| = 0, then, according to (20), V̇i =
−k1ėiX tanh ρi = 0, which implies ėiX = 0. Since
ūi = 0, we obtain that eiX = 0.

Therefore, in Case 2, the largest invariant set contains
only the origin.

Since the largest invariant set contains only the origin, then,
according to the LaSalle theorem, the origin of the system (18)
is globally asymptotically stable.

Remark 1. The decoupled property of X and Y dynamics
permits us to design the formation controller separately, the
design procedure of uYi is the same as uXi , such that

uYi = −M tanh(k2ėiY + k1eiY )−M tanh ρi(eiY , ėiY ) + ¨̄Y di
(23)

Remark 2. The desired attitude angles for each UAV are
obtained by substituting (15) and (23) into (12). Owing to
the use of the hyperbolic tangent function, uXi and uYi are
high-order differentiable, such that the derivatives θ̇di , θ̈di and
φ̇di , φ̈di are bounded.

Let us reconsider the terms δXi and δYi in (13) caused by the
tracking error of the attitude angles. We introduce our main
result in the following theorem.

Theorem 1. Let G be the interaction matrix of an L-F
formation of quadrotors with constant topology. The forma-
tion controllers are given in (15) and (23). The attitude is
controlled by (7). The altitude is controlled by (9) where
uZi is given in (10). Then, eiX and eiY converge to zero
asymptotically, if i) G is invertible, ii) the initial velocity of
each UAV is finite.

Proof. The terms δiX and δiY are in terms of the tracking
errors of the attitude angles (∆φi, ∆θi and ∆ψi) and uZi .
According to (17), (15), (23) and (10), the controllers uXi , uYi
and uZi are bounded. Then, according to (12), we know that
θdi , φdi and ψdi are bounded. The attitude angles are controlled
by (7), then, ∆φi, ∆θi and ∆ψi are bounded. Therefore, δiX
and δiY are bounded.

We take eiX for example. Then, (18) becomes

ëiX = −M tanh ūi −M tanh ρi + δiX (24)

The derivative of the positive semidefinite function Vi in (19)
yields

V̇i = tanh ūi · ˙̄ui +
k1

M
ėiX ëiX

= tanh ūi (k2ëiX + k1ėiX)

− k1

M
ėiX(M tanh ūi +M tanh ρi − δiX)

= tanh ūi (k2(−M tanh ūi −M tanh ρi + δiX) + k1ėiX)

− k1ėiX(tanh ūi + tanh ρi +
δiX
M

)

=− k2M tanh2 ūi − k2M tanh ūi tanh ρi − k1ėiX tanh ρi

+ k2 tanh ūiδiX −
k1

M
ėiXδiX

≤− k2M tanh2 ūi − k2M tanh ūi tanh ρi − k1ėiX tanh ρi

+ (k2| tanh ūi|+
k1

M
|ėiX |)|δiX |

Since the states of a linear system will not diverge to in-
finite within finite time interval with bounded control in-
put, then, if the initial condition is in the compact set
{(eiX(t0), ėiX(t0))|ėiX(t0) < ∞}, we obtain that ėiX is
bounded in finite time interval [t0, t1), where t1 < ∞. As
analyzed in [29], the rotational dynamics of a quadrotor is
in the fast time scale t̄ with controller (8). Then, there exists
a finite time t̄a � t1 such that the attitude errors eΘi enter
the neighborhood of the origin, which renders |δiX(t̄a)| ≤ ζ,
where ζ is a scalar. Then, for t > t̄a, we have(

k2| tanh ūi|+
k1

M
|ėiX |

)
|δiX | ≤

|k2M tanh2 ūi + k2M tanh ūi tanh ρi + k1ėiX tanh ρi|
(25)
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Then, V̇i ≤ 0, when t > t̄a. Therefore, the semi-global
asymptotic stability of the origin of system (24) is derived,
when t > t̄a.

Remark 3. In theorem 1, if the condition (25) is satisfied
when t̄a = t0, the semi-global stability of the system (24) is
obtained.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In order to illustrate the advantage of the proposed forma-
tion controller, we give several simulation and experimental
results in this section. In these tests, we consider the formation
of four UAVs as shown in Fig.1(b).

A. Simulation results

In the simulations, we consider a scenario of a formation
of four UAVs aggregating to a stationary point.

Note that we use the same attitude and altitude controllers
(8), (10) and the gains in all of the tests of comparison in the
sequel. We suppose that g = 10m/s2. To better illustrate our
proposed control, we give a series of simulation results with
different formation controllers in table I,

No. Formation controllers k1 k2
1 −4 tanh(ūi) + Ẍd

i 0.5 0.5
2 −4 tanh(ūi) + Ẍd

i 3 10
3 −2 tanh(ūi) − 2 tanh(exp−20e2iX ėiX) + Ẍd

i 0.1 0.5
4 −2 tanh(ūi) − 2 tanh(5 exp−20e2iX ėiX) + Ẍd

i 0.5 0.5
5 −4 tanh (0.5 tanh (ūi) + 2ėiX) + Ẍd

i 10 5
6 −2 tanh (ūi) − 2 tanh (4.5ėiX) + Ẍd

i 8 6.5

TABLE I: Formation controllers for comparison

In Table I, the controllers 1 and 2 represent bounded PD
controllers with different gains, where the hyperbolic tangent
functions are used but without CNF. Controllers 3 and 4 are
our proposed formation controller in (15), where the CNF is
added. The comparison of controllers 1, 2, 3 and 4 shows the
effects of the CNF and gives an idea of tuning the gains.

Controller 5 and 6 represent two bounded controllers with
hyperbolic tangent functions in both nested and added forms.
Through the comparison of controllers 5 and 6 with controller
4, which is proposed in this paper, we can observe the
advantage of adding the CNF in the formation control of
quadrotors.

When we use the bounded PD controllers 1 and 2, high
gains should be selected in order to obtain a fast rising
response. For instance, we can observe from Fig.3 that by
augmenting k1 the rising response time decreases and by
augmenting k2 the overshoot is reduced. However, we find that
the output curves have small and high-frequency oscillations
when high gains in controller 2 are used. In this case, the
system will be very sensitive to sensor noise.

The bounded formation control with CNF is given in Fig.4.
We observe that by enhancing the effect of CNF, the overshoot
can be reduced, while the response speed keeps rapid. In these
formation controllers, we avoid a very high selection of gains
k1 and k2.
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Fig. 3: Bounded PD controllers 1 and 2 with different gains (shown
in table I) in four UAVs formation control.
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Fig. 4: Formation of four UAVs with controllers 3 and 4 in table I.

It is worth to note that the selection of the variable gain
kN is not fixed on equation (16). It only needs to satisfy
constrains in proposition (5). In this paper, the selection of
kN has a physical meaning. We observe that kN is small if
the formation error eiX is large such that the rapid rising re-
sponse is guaranteed. When eiX becomes small, the quadrotor
approaches the desired position. Then, kN increases in order
to increase the damping of system, such that large overshoot
can be avoided.

The comparison of formations with the controller 5, which
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is in nested form, and our proposed controller (controller 4)
is given in Fig. 5. The gains of controller 5 are selected such
that the response speed is as fast as controller 4. We observe
that although the response speed of controller 5 is also rapid,
the settling time is nevertheless longer and the overshoots are
a little bit bigger. Furthermore, we observe that the output of
the quadrotors using controller 5 has small and high-frequency
oscillations. That is caused by the choice of high gains, which
are selected to have a high bandwidth for the system. If we
plot the control signals, we can observe that control signals
greatly oscillate, as seen in Fig.6 on the top. Then, if we
continue increasing the gains for having a bigger bandwidth,
the outputs will oscillate more seriously. However, owing to
the added CNF, smaller gains in controller 4 can achieve a very
satisfactory performance while control signals are much less
oscillating than that of controller 5, see Fig.6 on the bottom.
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Fig. 5: Comparison of controller 4 and controller 5 used in formation
of four UAVs

We also compare the proposed controller 4 with the con-
troller 6, which is in added form. By tuning the gains of
controller 6, we can also obtain a satisfactory performance
such as for controller 4, as shown in Fig.7. However, when we
observe their steady states, we see small and high-frequency
oscillations in the quadrotors positions using controller 6.

According to the foregoing simulation results, we can
observe that the proposed formation controller performs rapid
response and small overshoot at the same time in transient
period for multi-UAV formations. Therefore, the proposed
controller is suitable for aggressive guidance of quadrotors
formations. We will show this aggressive guidance in the
following experimental subsection.

B. Experimental results

Heudiasyc laboratory has developed a PC-based simulator-
experiment framework for controlling a quadrotor and also
a formation of quadrotors. It is important to note that within
this framework, the control signals are calculated on the UAVs
rather than on a PC in real-time experiments. The quadrotors
are Parrot AR Drone 2. Some techniques in the Paparazzi
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Fig. 6: Control outputs of controller 5 (top) and controller 4 (bottom)
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Project1, such as communication protocol, are applied here in
order to implement our algorithms on the drones. We can use
the available sensors and the materials of the Parrot drone.
We have completely changed the software in the Parrot. We
delete the on-board Linux system and implement the Poky 12.0
system. Therefore, we can implement our control algorithm
both on low level (such as attitude and altitude control) and
high level (such as the formation controller).

Fig. 8: The experimental setup of the real-time experiments

The experimental setup is shown in Fig.8. In the experi-
ments, the motion capture system Optitrack is used to localize
the UAVs in the formation. The system Optitrack collects the
positions and attitude angles of the quadrotors and broadcast
to all of the quadrotors. Nevertheless, each UAV only uses
its neighbors’ states (position, velocity) for formation control.
Therefore, the formation algorithm is distributed.

The proposed formation controller for multi-quadrotor sys-
tems is implemented in the following two tasks. The interact-
ing relation of the UAVs are represented in Fig.1.b.

1) Aggregation to a destination point: We give two ex-
periments of four quadrotors formation with bounded PD
controller (i.e. controller 1 in table I with gains M = 4,
k1 = 0.5, and k2 = 0.3) and the proposed formation controller
(15) with gains M = 2, k1 = 0.5, k2 = 0.1, η1 = 0.4, and
η2 = 10. For both controllers, the term Ẍd

i = 0. The outputs
curves are shown in Fig.9 and Fig.10 respectively. We note that
these two controllers have similar bounds. We observe that in
both tests, the quadrotors are able to converge to the desired
positions with hyperbolic tangent function-based bounded PD
controller. However, after adding CNF, the output curves with
the proposed controller has smaller overshoot and more rapid
response, as shown in Fig.10.

Furthermore, if we plot the inter-distances between quadro-
tors in Fig.11 and Fig.12, we can observe that the for-
mation pattern is more satisfactorily maintained when the
CNF is added. The corresponding video is available on the
site https://www.youtube.com/watch?v=1rO04JkTl5I&index=
8&list=PLlJVTLqwkzA8B4ZHPoPH44g0wQmsV2lt &t=5s.

2) Circular trajectory tracking: The objective is to track a
circular trajectory whose radius is 2m and the linear velocity
is up to 2.7m/s, which is the RFT. The gains of controller

1http://wiki.paparazziuav.org/wiki/Main Page
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Fig. 9: Real-time experiment: Bounded PD controller in aggregation
of four quadrotors formation
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Fig. 10: Real-time experiment: The proposed formation controller in
aggregation of four quadrotors formation. (We should note
that the curve of UAV 3 (purple-dashed line) has a sharp
peak near 10s at the beginning of the formation. This is
caused by the OptiTrack system, which is perturbed by the
light, but not caused by the controller. )

(15) are selected as follows: M = 3, k1 = 1.5, k2 = 0.1,
η1 = 1, and η2 = 10. In this scenario, the group of UAVs
has one leader and three followers. Only the leader knows the
RFT, while the followers follow the leader or other followers.

The output curves of the four UAVs are shown in Fig.13.
We can observe that the outputs of UAV 3, which has no
interaction with UAV 1 (the leader), have very small delay
with respect to the leader. According to Fig.14, the pitch and
roll angles of the four UAVs are up to 20 degrees. The UAVs
keep a formation pattern and perform an aggressive guidance,
according to [25]. The corresponding video is available on
https://www.youtube.com/watch?v=639z0GLb8cM&index=

https://www.youtube.com/watch?v=1rO04JkTl5I&index=8&list=PLlJVTLqwkzA8B4ZHPoPH44g0wQmsV2lt_&t=5s
https://www.youtube.com/watch?v=1rO04JkTl5I&index=8&list=PLlJVTLqwkzA8B4ZHPoPH44g0wQmsV2lt_&t=5s
http://wiki.paparazziuav.org/wiki/Main_Page
https://www.youtube.com/watch?v=639z0GLb8cM&index=9&list=PLlJVTLqwkzA8B4ZHPoPH44g0wQmsV2lt_&t=5s
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Fig. 11: Real-time experiment: The inter-distances of quadrotors with
bounded PD controller in aggregation of four quadrotors
formation
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Fig. 12: Real-time experiment: The inter-distances of quadrotors with
proposed formation controller in aggregation of four quadro-
tors formation. Note that the sharp peaks on d23 and d34 near
10s are caused by the instantaneous wrong location of UAV
3 from OptiTrack system.

9&list=PLlJVTLqwkzA8B4ZHPoPH44g0wQmsV2lt &t=5s.

V. CONCLUSION

In this paper, the interaction matrix is proposed to describe
the “interaction relations” in a leader-follower multi-agent
formation. The hyperbolic tangent-based bounded control with
composite nonlinear feedback is developed for quadrotors
formation control. By using this controller, the performance of
the formation is improved, which is illustrated by simulation
results. The proposed formation controllers are also validated
by real-time experiments, where the aggressive guidance of
four quadrotors formation is realized.
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Fig. 13: Real-time experiment: guidance of four UAVs. The RFT is
a circle. The delay between UAV 1 (the leader) and UAV 3
(the follower without interaction to the leader) is very small.
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Fig. 14: Real-time experiment: guidance of four UAVs. The RFT is a
circle. The roll angles of the four UAVs are up to 20 degrees.
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