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A new freq uency–time domain procedure, the dynamic Lagrangian mixed freq uency–time method 
(DLFT), is proposed to calculate the non-linear steady state response to periodic excitation of structural 
systems subject to dry friction damping. In this formulation, the dynamic Lagrangians are defined as the 
non-linear contact forces obtained from the eq uations of motion in the freq uency domain, with the 
adjunction of a penalization on the difference between the interface displacements calculate by the non-
linear solver in the frequency domain and those calculated in the time domain from the non-linear contact 
forces, thus accounting for Coulomb friction and non-penetration conditions. The dynamic Lagrangians 
allow one to solve for the non-linear forces between two points in contact without using artifacts such as 
springs. The new DLFT method is thus particularly well suited to handling finite element models of 
structures in frictional contact, as it does not require a special model for the contact interface. Dynamic 
Lagrangians are also better suited to frequency-domain friction problems than the traditional time-domain 
method of augmented Lagrangians. Furthermore, a reduction of the non-linear system to relative interface 
displacements is introduced to decrease the computation time. The DLFT method is validated for a beam 
in contact with a flexible dry friction element connected to ground, for frictional constraints that feature 
two-dimensional relative motion. Results are also obtained for a large-scale structural system with a large 
number of one-dimensional dry-friction dampers. The DLFT method is shown to be accurate and fast, and 
it does not suffer from convergence problems, at least in the examples studied.
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1. Introduction

In the field of turbomachinery, considerable efforts have been devoted to the formulation of
predictive models to describe the non-linear behavior of rotor blades with dry friction dampers
attached. While the vibration response of these systems can be obtained using a time integration
of the equations of motion, this approach often carries a prohibitive cost, particularly for systems
with small damping. Hence over the years various methods have been developed to calculate
efficiently the steady state response of dry-friction-damped structural systems to periodic
excitation.
Frequency-domain methods such as the harmonic balance method (HBM) allow for significant

reduction in computational cost compared to time-domain numerical integration. The HBM and
its variation, the incremental HBM, have been used extensively to predict the forced response of
structural systems with attached friction dampers [1–3]. These studies have typically been
conducted for a few simple friction dampers (with one-dimensional motion at the contact point)
and have usually accounted for a single temporal harmonic of the motion. Some researchers have
considered multi-harmonic response, but the HBM quickly becomes cumbersome, as it requires
significant analytical work to capture transitions between sticking and slipping states accurately
[1]. In 1989, Cameron and Griffin [4] pioneered the development of the alternating frequency/
time-domain (AFT) method, which circumvents this difficulty by evaluating the non-linear
contact forces in the time domain. This way Coulomb conditions can be applied in a
straightforward way, by estimating the stick–slip transitions at each iterative step. Nevertheless,
all these methods (HBM, IHBM, AFT) may suffer convergence problems when a Newton–
Raphson algorithm is used to solve the strongly non-linear frequency-domain equations,
particularly for complex damper configurations (e.g., three-dimensional motion of the contact
point). More recently, Guillen and Pierre [5] modified the AFT method by integrating exactly the
non-linear contact forces in the time domain and using a robust non-linear Broyden solver. Their
method was shown to produce rapid convergence for large-scale systems with large numbers of
one-dimensional friction dampers. Finally, Poudou [6] achieved excellent convergence for
complex damper models (e.g., with variable normal load and separation at the contact point) by
using a hybrid Powell non-linear solver programmed by Garbow et al. [7]. The hybrid Powell
algorithm was selected for use in the present work (see Ref. [8] for details of the Powell method).
For problems involving two structures with a common contact interface where dry friction

occurs, a contact element is usually defined by a (set of) linear spring(s) and a (set of) friction
element(s). Note that in turbomachinery, the two structures in contact may consist of a blade and
a friction damper, or of two blades in the case of direct contact at a shroud, or of a blade and the
disk in the case of a dovetail attachment. In most studies performed to date, the friction damper
models considered have been simple enough that the damper itself can be included in the contact
element, with the linear springs then representing the damper’s flexibility, thereby eliminating the
need to represent the damper as a separate structure. For instance, one-directional springs are
routinely included in contact elements in order to capture the flexibility of one-dimensional
dampers [9–13].
In recent years, however, friction dampers with complex motion at the contact interface have

been considered, for example dampers featuring two- and three-dimensional motion with variable
normal load and separation [6,14–19] and wedge dampers [20,21]. Also, researchers have studied
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the influence of microslip on the response of blade/damper systems, using continuous contact
models that assume a contact shear layer with a given normal pressure profile (constant or
parabolic) [22–24]. These methods rely on the judicious choice of microslip model parameters to
agree with experimental data. In the context of the finite element method, Berger et al. [25] has
proposed to improve the microslip description by defining an interpolation on the effective
friction coefficient (the tangential to normal contact force ratio). Note that in finite element
models, microslip can be studied using a set of contact elements on the interface. However, in
the frequency domain, the springs included in the contact elements lead to a degradation of the
interface model. Note that if the method of augmented Lagrangians [26–29] were used, the
inclusion of springs in the contact elements would be unnecessary, and the finite element
models of the two structures in frictional contact could be used to solve directly for the non-linear
forces.
While the method of augmented Lagrangians is a popular one in time-domain formulations of

contact problems, to date this type of approach has not been used for frequency-domain response
predictions. In this paper, a new dynamic Lagrangian mixed frequency–time method (DLFT) is
introduced to calculate the steady state forced response of dry-friction-damped systems. This
approach is essentially based upon the augmented Lagrangians methodology, but adapted to a
frequency-domain framework. However, it is important to note that our new DLFT method does
not make specific use of augmented Lagrangians, although they could have been incorporated in
the approach and can give good results. This is because in order to avoid prohibitive computation
time, the augmented Lagrangians at a given frequency need to be updated using the non-linear
contact forces at the previous frequency, hence requiring a fairly large penalty coefficient. This
means that the range in which the penalty coefficient can be chosen to achieve good precision and
avoid numerical stability problems is very limited, making the method somewhat impractical.
Therefore, in order to ensure robust and fast convergence, dynamic Lagrangians, which are based
explicitly on the equations of motion in the frequency domain and do not suffer updating
problems are introduced.
In this paper, an elastic, homogeneous, and isotropic structure subject to periodic external

excitation is considered, in which sets of points are in frictional contact. The structure is subject to
small, periodic deformations around an equilibrium state. Also, gyroscopic effects are neglected
and Coulomb’s law is used to model dry friction, without considerations of wear mechanisms. In
Section 2, the new DLFT algorithm is presented, along with the introduction of the dynamic
Lagrangians. A reduction of the number of non-linear equations is also described, based on
relative displacements of nodes at the interface. In Section 3, the DLFT method is validated for a
beam attached to a two-dimensional friction damper with variable normal load, and numerical
results are presented for a large-scale system with many one-dimensional friction dampers
attached. Finally, conclusions are given in Section 4.

2. Method of analysis

A general elastic structure with N degrees of freedom (d.o.f.) is considered. The linear structural
model may be derived using the finite element method or any other method, such as component
mode synthesis, but all degrees of freedom where friction takes place must be retained as physical
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co-ordinates. A contact element is defined as a set of two nodes between which frictional contact
may occur. The nodes for all the contact elements in the structure are called the non-linear nodes,
and the remaining nodes are referred to as the linear nodes. For such a structure, the equations of
motion can be written as

½M�f .Ug þ ½C�f ’Ug þ ½K�fUg þ fFcg ¼ fFexg; ð1Þ

where the linear structure is defined by its mass matrix ½M�; stiffness matrix ½K� and viscous
damping matrix ½C�: The vectors fUg; f ’Ug and f .Ug are, respectively, the displacement, velocity,
and acceleration of the structure, fFexg is the vector of the external forces (periodic excitation at
frequency o), and fFcg represents the non-linear contact forces due to friction. Herein, vectors are
boldfaced with braces, and matrices are boldfaced with brackets.
Next, assuming steady state periodic response, these equations are transformed to the frequency

domain. The Fourier series expansion of the displacement fUg is

fUgðtÞ ¼
XNh

k¼0

fUgc
k cosðkotÞ þ

XNh

k¼1

fUgs
k sinðkotÞ; ð2Þ

where Nh is the number of temporal harmonics retained.
The multi-harmonic displacement vector in the frequency domain is defined as:

f *Ug ¼ ffUgcT
0 fUgcT

1 fUgsT
1 yfUgcT

Nh
fUgsT

Nh
gT; ð3Þ

where the tilde refers to a multi-harmonic frequency-domain vector. The multi-harmonic vectors
for the non-linear contact forces, f *Fcg; and the external forcing, f *Fexg; can be defined in the same
way. Then, the equation of motion (1) can be written in the frequency domain as

½K�f *Ug þ f *Fcg ¼ f *Fexg; ð4Þ

where

½K� ¼
½K� ½0�

½0� ½Kh�

" #
; and

½Kh�k ¼
	ðkoÞ2½M� þ ½K� ko½C�

	ko½C� 	ðkoÞ2½M� þ ½K�

" #
; k ¼ 1;y;Nh

where ½Kh� is the block-diagonal dynamic stiffness matrix, whose kth block ½Kh�k defines the
dynamic stiffness matrix for the kth harmonic. Since the contact force is null for a linear node,
Eq. (4) can be organized according to the linear (subscript ln) and non-linear (subscript nl) node
displacements, as

½K�ln;ln ½K�ln;nl

½K�nl;ln ½K�nl;nl

" #
f *Ugln

f *Ugnl

( )
þ

f*0gln

f *Fcgnl

( )
¼

f *Fexgln

f*fexgnl

( )
: ð5Þ

Note that f *Fcgln is null by definition.
Eq. (5) can be reduced to the non-linear d.o.f.’s only as

Kredf *Ugnl þ f *Fcgnl ¼ f *Fredg; ð6Þ

4



where ½Kred � and f *Fredg are, respectively, the reduced dynamic stiffness matrix and the reduced
external force vector:

½Kred � ¼ ½K�nl;nl 	 ½K�nl;ln½K�	1ln;ln½K�ln;nl ; ð7Þ

f *Fredg ¼ f *Fexgnl 	 ½K�nl;ln½K�	1ln;lnf *Fexgln: ð8Þ

Eq. (6) is a set of Nnlð2Nh þ 1Þ non-linear equations, where Nnl is the number of non-linear
d.o.f.’s corresponding to the non-linear nodes (i.e., the contact d.o.f.’s).
Once the displacements of the non-linear d.o.f.’s, f *Ugnl ; are known, f *Ugln can be simply solved

as

f *Ugln ¼ ½K�	1ln;lnðf *Fexgln 	 ½K�ln;nlf *UgnlÞ: ð9Þ

Because the computational time required increases rapidly with the number of non-linear
unknowns, a secondary reduction is proposed to divide by two the size of the non-linear problem.
For each contact element defined previously as a set of two nodes, one node is selected

arbitrarily to be a reference in the observation of the motion of the other node. Thus, the relative
displacement can be introduced as (see Fig. 1):

f *Urg ¼ f *Ugnl;obs 	 f *Ugnl;ref ; ð10Þ

where the subscripts ref and obs refer to the reference and the observed nodes, respectively, and
the ith elements of these vectors correspond to the ith contact element.
In addition, the inverse matrix of ½Kred � is defined as

½S� ¼ ½Kred �	1 ð11Þ

and the multi-harmonic vector of Lagrange multipliers f *kg as

f *kg ¼ f *Fcgnl;obs ¼ 	f *Fcgnl;ref : ð12Þ

The Lagrange multipliers can be described as the tangential contact forces caused by friction and
the normal contact forces that ensure there is no interpenetration.

Fig. 1. Relative displacement representation for the ith contact element.
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Using Eqs. (6), (11), and (12), the displacement vector f *Ugnl is organized according to the
reference and the observed nodes, as

f *Ugnl;obs

f *Ugnl;ref

( )
¼

½S�obs;obs ½S�obs;ref

½S�ref ;obs ½S�ref ;ref

" #
f *Fredgobs 	 f *kg

f *Fredgref þ f *kg

( )
: ð13Þ

Using Eqs. (10) and (13), a reduced equation of motion in the relative displacements of the
observed nodes of the contact elements can be obtained in the frequency domain, as

½Kr�f *Urg þ f *kg ¼ f *Frg; ð14Þ

where ½Kr� ¼ ½½S�ref ;ref þ ½S�obs;obs 	 ½S�ref ;obs 	 ½S�obs;ref �
	1 and f *Frg ¼ ½Kr�ðð½S�obs;obs 	 ½S�obs;ref Þ

f *Fredgobs	ð½S�ref ;ref 	 ½S�ref ;obsÞf *Fredgref Þ:
The subscript r refers to the system reduced to the relative displacements of the observed nodes.
In order to solve Eq. (14), a non-linear solver based on the hybrid Powell algorithm [8] is used

to find the zeros of the non-linear vector function:

fðf *UrgÞ ¼ ½Kr�f *Urg þ f *kg 	 f *Frg: ð15Þ

Once f *Urg is solved for, f *kg is known, and then f *Ugnl can be obtained from Eq. (13). A
flowchart of the dynamic Lagrangian mixed frequency–time (DLFT) algorithm is shown in Fig. 2.
It is difficult to develop a method in which non-linear forces are handled in the frequency

domain, because a large number of temporal harmonics are required to evaluate them accurately.
Therefore, non-linear contact and friction forces are generally calculated using a time-marching
procedure in the time domain, with criteria for the states of sticking, slipping, separation, and
non-penetration. In the DLFT method developed here, this necessary time-marching procedure is
implemented for the non-linear contact forces via the introduction of a ‘‘dynamic Lagrangian’’
formulation, which relies on penalizing the difference between the relative interface displacements
obtained from the non-linear solver in the frequency domain, f *Urg; and those calculated in the

Fig. 2. Implementation of the DLFT.
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time domain from the non-linear contact forces evaluated from f *Urg; checking for Coulomb
friction and non-penetration conditions. This vector of relative displacements calculated in the
time domain will be referred to as fXrg; and the corresponding Fourier transformed vector as
f *Xrg: Note that in traditional formulations, the corrections applied to non-linear force
calculations depend on the hypothesis made for the states of the contact elements. In the DLFT
method, however, the states of the contact elements result from the applied corrections, hence
constituting an indirect approach to define these states. When convergence is reached, Eq. (14) is
satisfied and one then has

f *Xrg ¼ f *Urg: ð16Þ

This means that the interface displacements obtained from the non-linear solver then match those
integrated in the time domain using the friction and non-penetration conditions.
At each iteration, the non-linear solution algorithm require the evaluation of the function

fðf *UrgÞ; which itself calls for the evaluation of f *kg: Using Eqs. (14) and (16), a new formulation
for f *kg; is proposed, in which the dynamic Lagrangians is defined as

f *kg ¼ f *Frg 	 ½Kr�f *Urg þ eðf *Urg 	 f *XrgÞ; ð17Þ

where e is a penalty coefficient chosen arbitrarily as positive, which influences the speed of
convergence.
Note that if the reduction to the relative interface displacements were not performed, the

dynamic Lagrangians could still be defined using the equations of motion for the non-linear
displacements in Eq. (6). Also note that Eq. (17) ensures that if one of Eqs. (14) or (16) is verified,
then the other one is satisfied as well. There are several benefits to the use of dynamic
Lagrangians: first, they do not require consideration of the non-linear contact forces as
unknowns, as Lagrange multipliers do; second, the dynamic Lagrangians formulation is better
suited than an augmented Lagrangians formulation in the frequency domain, because there is no
problem with their update; third, the penalty coefficient for dynamic Lagrangians can be chosen
to be smaller than for augmented Lagrangians, which allows for faster convergence.
In order to compute f *kg at a given iteration, one needs to determine f *Xrg; while f *Urg is

provided by the non-linear solver. Now separate the expression for f *kg; Eq. (17), into two parts.
The first one, f *kgopt; will be referred to as the optimization force vector:

f *kgopt ¼ f *Frg 	 ½Kr�f *Urg þ ef *Urg: ð18Þ

Note that f *kgopt can be evaluated in the frequency domain because f *Urg is provided by the
hybrid Powell solver. The second part, f *kgcor; will be referred to as the non-linear corrective force
vector:

f *kgcor ¼ ef *Xrg: ð19Þ

Note that f *kgcor is unknown because f *Xrg is undefined at this stage. Using Eqs. (17)–(19), f *kg can
be rewritten as

f *kg ¼ f *kgopt 	 f *kgcor: ð20Þ
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Performing an inverse Fourier transform, fkg can be expressed in the time domain. Eq. (20)
becomes

fkgn ¼ fkgopt
n 	 fkgcor

n ; ð21Þ

where the subscript n denotes the nth time step tn:
Next, fkgcor

n is calculated simply by using the Coulomb friction and non-penetration conditions.
It is important to note that while fXrgn allows one to justify the theoretical approach, it is not
necessary to calculate it in the case of node-to-node contact elements. The calculation of fkgcor;
which is proportional to fXrg; is sufficient. An iterative formulation for the corrective force fkg

cor
n

is defined in the time domain as:

fkgcor
n ¼ fkgcor

n	1 þ Dnfkg
cor: ð22Þ

Here Dnfkg
cor is the correction applied on fkgopt

n 	 fkgcor
n	1 in order to take into account the

constraint conditions at the interfaces, where Dn is an operator of finite difference between the nth
and ðn 	 1Þth time steps.
The initialization of fkgcor

n¼	1 can be chosen as

fkgcor
n¼	1 ¼ 0: ð23Þ

Next, Dnfkg
cor
i is expressed for the ith contact element in order to ensure non-penetration and

satisfy Coulomb friction conditions. In the case of separation of the interfaces, one simply has to
impose fkgcor

i;n ¼ fkgopt
i;n to obtain fkgi;n ¼ 0: Then Dnfkg

cor
i is given by

Dnfkg
cor
i ¼ fkgopt

i;n 	 fkgopt
i;n	1: ð24Þ

In the case of sticking interfaces, the condition is also very simple, namely

Dnfkg
cor
i ¼ 0: ð25Þ

Using Eq. (19), it is easily deduced that DnfXrgi ¼ 0:
In the case of sliding interfaces, some additional derivations are necessary, as follows. In the

normal direction, there still exists the sticking condition:

Dnfkg
cor
N;i ¼ 0; ð26Þ

where the subscript N indicates the normal direction. However, in the tangential direction, one
needs to express the contact force as

fkgT ;i;n ¼ fkgopt
T ;i;n 	 fkgcor

T ;i;n	1 	 Dnfkg
cor
T ;i; ð27Þ

where the subscript T indicates the tangential plane (2-D) or direction (1-D).
The quantity Dnfkg

cor
T ;i must be chosen such that the tangential contact force, fkgT ;i;n; has the

same orientation as the relative velocity, fWrgn; and has the magnitude mjflgN;i;nj; where m is the
coefficient of friction. An approximation of fWrgn can be obtained by finite difference as

fWrgn ¼
fXrgn 	 fXrgn	1

Dnt
: ð28Þ

Using Eqs. (19) and (22), the relative velocity fWrgn can be expressed as

fWrgn ¼
Dnfkg

cor
T

eDnt
: ð29Þ
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When the contact element i is undergoing slipping, the basic formulation for the tangential non-
linear forces is given by

fkgT ;i;n ¼ mjlN;i;nj
fWrgi;n

jjfWrgi;njj
; ð30Þ

where jj:jj is the Euclidian norm. This means that the tangential force for the contact element i is
aligned with the relative velocity, fWrgi;n; because the tangential force, fkgT ;i;n; is defined as the
opposite of the frictional force. Using Eq. (29), Eq. (30) can be rewritten as

fkgT ;i;n ¼ mjlN;i;nj
Dnfkg

cor
T ;i

jjDnfkg
cor
T ;i jj

: ð31Þ

Substituting Eq. (31) into Eq. (27), one deduces Dnfkg
cor
T ;i as

Dnfkg
cor
T ;i ¼

jjDnfkg
cor
T ;i jj

jjDnfkg
cor
T ;i jj þ mjlN;i;nj

ðfkgopt
T ;i;n 	 fkgcor

T ;i;n	1Þ: ð32Þ

Then, Dnfkg
cor
T ;i has the same orientation as fkgopt

T ;i;n 	 fkgcor
T ;i;n	1:

The norm of Dnfkg
cor
T ;i is obtained simply using the norm of Eq. (32):

jjDnfkg
cor
T ;i jj ¼ jjfkgopt

T ;i;n 	 fkgcor
T ;i;n	1jj 	 mjlN;i;nj: ð33Þ

Using last two equations, one can calculate the norm and the orientation of Dnfkg
cor
T ;i :

Consequently, one can able to calculate fkgcor
n using Eq. (21) and fkgn using Eq. (22).

The above correction procedure is depicted in Fig. 3 for the case of a 2-D relative motion.
Next, the conditions of transition between the different states (stick, slip, separation) must be

defined. For the transition between contact and separation, a test on the sign of the normal
contact force, lN;i;n; is sufficient. The normal orientation of the contact element is important in
this case.

Fig. 3. Schematic of the correction procedure for the tangential force at time steps n 	 1 and n:
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For the transition between sticking and slipping, one notes that Dnfkg
cor
T ;i;n verifies

Dnfkg
cor
T ;i;n ¼ f0g if jjfkgopt

T ;i;n 	 fkgcor
T ;i;n	1jjomjlN;i;nj;

Dnfkg
cor
T ;i;naf0g if jjfkgopt

T ;i;n 	 fkgcor
T ;i;n	1jj > mjlN;i;nj:

According to Eq. (19), it follows naturally that

Dnfkg
cor
T ;i;n ¼ f0g if the ith contact element is sticking;

Dnfkg
cor
T ;i;naf0g if the ith contact element is slipping:

Then, the transitions are deduced from the violation of the following conditions:

jjfkgopt
T ;i;n 	 fkgcor

T ;i;n	1jjomjlN;i;nj if the ith contact element is sticking;

jjfkgopt
T ;i;n 	 fkgcor

T ;i;n	1jj > mjlN;i;nj if the ith contact element is slipping:

3. Results

In order to evaluate the validity and accuracy of the DLFT method, three numerical examples
are considered. In the first two examples, the DLFT results are compared with those of a time
integration performed with the commercial software ABAQUS [30] using the Lagrange
multipliers method. The system considered is a beam with an attached flexible friction damper,
constrained to have one-dimensional relative motion in the first case and two-dimensional relative
motion in the second case. In the third example, results are obtained with the DLFT method for a
large-scale system with a large number of beams, each being attached to a one-dimensional
flexible friction damper.
The first system considered is a steel beam with a flexible dry-friction damper attached at three

tenths of its length, as represented in Fig. 4a. The only retained d.o.f.’s are in the X and Z

directions.

Fig. 4. (a) Geometry of the beam and damper system, (b) sketch of the dry friction damped beam, for a 2-D flexible

damper model with mono-directional stiffnesses in both tangential and normal directions.
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The cross-section of the beam in the X–Y plane is 0:01 m� 0:1 m and its length is 0:5 m: The
platform where the damper is attached has the same cross-section in the Z–Y plane as the beam in
the X–Y plane, but its length in X direction is only 1 mm: The finite element model of the beam
consists of B21 beam elements with rectangular cross-section in ABAQUS [30]. This model is
condensed out using Craig–Bampton component mode synthesis [31], retaining four active d.o.f.’s
and the lowest two modes of free vibration of the beam fixed at the active d.o.f.’s. The four active
d.o.f.’s correspond to two retained nodes (d.o.f.’s in X and Z directions for each node), the first
one at the damper location and the second one at the free tip of the beam. A contact element is
defined between the beam and the flexible damper, where the first d.o.f. corresponds to the
tangential direction and the second to the normal direction. The coefficient of friction is m ¼ 0:1
and the viscous damping x ¼ 0:01: The flexible damper is defined by two mono-directional
stiffnesses: kT ¼ 2:4� 107 N=m in the X direction and kN ¼ 2:4� 103 N=m in the Z direction. A
pre-load of 1500 N is applied to the damper in the Z direction. Notice that the normal d.o.f.’s are
retained as unknowns. Although the displacements of the normal d.o.f.’s are small, they
are required in the contact element definition of ABAQUS. Finally, a periodic excitation
FX ¼ 50 sinðotÞ is applied at the free end of the beam (see Fig. 4b).
The time responses of the beam and the damper at the frequency o ¼ 124 Hz are shown in

Fig. 5a using the DLFT and time integration. Excellent agreement between the two methods is
observed. The beam frequency response depicted in Fig. 5b shows a similar agreement at
additional frequencies. For these calculations, 21 temporal harmonics of the response were
retained in the DLFT method, which seemed sufficient to represent the response accurately.
However, it is important to notice that there is no systematic way of selecting a priori the

appropriate number of harmonics. No convergence problem was encountered for either the
DLFT or the time integration.

Fig. 5. (a) Beam displacement at the damper location, and damper displacement, compared using the DLFT method

and time integration (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼ 50 sinðotÞ; Nh ¼ 21 and e ¼ 8� 107). (b) Beam frequency

response at the damper location (x ¼ 0:01; m ¼ 0:1; FX ¼ 50 sinðotÞ; Nh ¼ 21 and e ¼ 8� 107).
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It is difficult to compare the computational times of the DLFT and time-integration methods
because there is no test of convergence on the steady state response in ABAQUS. However, an
approximate comparison was made at the frequency o ¼ 124 Hz; in the case where the DLFT is
performed with a zero initial solution at that frequency. The initial conditions were taken equal to
zero as well for the ABAQUS time integration, which was carried out over 30 periods in order to
obtain a sufficiently accurate steady state response. In this case, the time-integration method
needed 342 s compared to 0:45 s for the DLFT. In addition, for this calculation at a single
frequency, the DLFT method required 260 evaluations of the Jacobian matrix in the non-linear
solver. If the same calculation were realized over a wide frequency range, the DLFT would need
only two evaluations of the Jacobian at each frequency, thus reducing the time of calculation to
0:042 s per frequency.
The beam depicted in Fig. 4a is used in the second example as well. The finite element model of

the beam consists of B31 beam elements with rectangular cross-section in ABAQUS [30]. This
model is condensed out using Craig–Bampton component mode synthesis, now retaining six
active d.o.f.’s and the lowest three modes of free vibration of the beam fixed at the active d.o.f.’s.
The same two nodes as in the first example are retained, with three d.o.f.’s at each node. A
stiffness element is added to model the flexible damper in the Y direction. The value of this
stiffness is 2:4� 107 N=m; which is the same as that in the X direction. A comparison of the
DLFT and the time integration methods was realized at the frequency o ¼ 124 Hz for two cases
of excitation, using 21 harmonics in the DLFT computation.
In Fig. 6, both the displacements of the blade at the damper location and that of the damper are

compared in the X–Y plane with the time integration results, for a nearly rectilinear excitation:
FX ¼ 50 sin ðotÞ and FY ¼ 500 sinðotÞ:
The blade and damper time responses are given in Fig. 7 for the X direction and Fig. 8 for the Y

direction. Additional frequencies were checked, as shown in Fig. 9.

Fig. 6. Blade motion at the damper location, and damper motion, in the tangential plane, for case of a rectilinear

excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼ 50 sinðotÞ; FY ¼ 500 sinðotÞ; Nh ¼ 21 and e ¼ 8� 107).
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In Fig. 10, the comparison is repeated in the X–Y plane for a circular excitation:
FX ¼ 50 sinðotÞ and FY ¼ 50 cosðotÞ:
The blade and damper time responses are given in Fig. 11 for the X direction and Fig. 12 for the

Y direction. Additional frequencies were checked, as shown in Fig. 13.
The displacements in the Z direction are not shown because they are small and are not of high

interest. Of course, there is no separation.
The agreement of the DLFT with the time integration is good even though small differences

may be noted due to numerical precision. The comparison in the time domain between the DLFT
results and the time integration shows that there are small errors in amplitude (especially in the Y

Fig. 7. Beam displacement at the damper location, and damper displacement, compared in the X direction using the

new DLFT method and time integration, for case of a rectilinear excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼
50 sinðotÞ; FY ¼ 500 sinðotÞ; Nh ¼ 21 and e ¼ 8� 107).

Fig. 8. Beam displacement at the damper location, and damper displacement, compared in the Y direction using the

new DLFT method and time integration, for case of a rectilinear excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼
50 sinðotÞ; FY ¼ 500 sinðotÞ; Nh ¼ 21 and e ¼ 8� 107).
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direction for the rectilinear excitation) and phase. The frequency responses (Figs. 9 and 13) show
that these errors introduce a small frequency shift. It is hard to conclude that the DLFT is more
accurate than the time integration of ABAQUS, although a problem in ABAQUS could be the
precision in handling transitions. Indeed, an internally scaled constant is probably used in
ABAQUS to detect numerically when the velocity is very close of zero. If this constant is too
small, problems of convergence can occur. Namely, the constant drives the accuracy of the stick–
slip transitions and yields a small error. In the DLFT, no such constant is used to detect the
transitions, and the accuracy is directly linked to the size of time step.

Fig. 9. Amplitude of the beam at the damper location for case of a rectilinear excitation (x ¼ 0:01; m ¼ 0:1; o ¼
124 Hz; FX ¼ 50 sinðotÞ; FY ¼ 500 sinðotÞ; Nh ¼ 21 and e ¼ 8� 107).

Fig. 10. Blade motion at the damper location, and damper motion, in the tangential plane, for case of a circular

excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼ 50 sinðotÞ; FY ¼ 50 cosðotÞ; Nh ¼ 21 and e ¼ 8� 107).
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In the third example, the response a mistuned system of 36 coupled beams (Fig. 14a) to a
travelling wave excitation is considered.
The engine order of the excitation is three, corresponding to a phase change of p=6 for the

harmonic force on adjacent beams. The beam system has 7% random mistuning, which means

Fig. 11. Beam displacement at the damper location, and damper displacement, compared in the X direction using the

new DLFT method and time integration, for case of a circular excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼
50 sinðotÞ; FY ¼ 50 cosðotÞ; Nh ¼ 21 and e ¼ 8� 107).

Fig. 12. Beam displacement at the damper location, and damper displacement, compared in the Y direction using the

new DLFT method and time integration, for case of a circular excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz; FX ¼
50 sinðotÞ; FY ¼ 50 cosðotÞ; Nh ¼ 21 and e ¼ 8� 107).
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that the individual beam natural frequencies are generated from a uniform random distribution
with 7% standard deviation, in order to mimic differences caused by manufacturing tolerances.
Each beam is condensed out using the Craig–Bampton component mode synthesis, retaining two
active d.o.f.’s and the lowest first mode of free vibration of the beam fixed at the active d.o.f.’s.
The mass and stiffness matrix of the beam components were provided by SNECMA Co. and are
given in [32]. A coupling stiffness of 4500 N is applied between the free tips of two adjacent
beams. There is no coupling through the disk in this particular system. One d.o.f. is retained for

Fig. 13. Amplitude of the beam at the damper location for case of a circular excitation (x ¼ 0:01; m ¼ 0:1; o ¼ 124 Hz;
FX ¼ 50 sinðotÞ; FY ¼ 50 cosðotÞ; Nh ¼ 21 and e ¼ 8� 107).

Fig. 14. (a) Bladed disk model with 36 beams, 36 ground-connected dampers, and 108 d.o.f.’s. (b) Beam displacements

at the damper locations for a 7% mistuned 36-beam system. The coupling stiffness is kc ¼ 4500 N=m and others

parameters are given by x ¼ 0:01; m ¼ 1; Nh ¼ 21 and e ¼ 8� 106:
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each friction damper, and the damper stiffness is k ¼ 2:4� 107 N=m: The normal pre-load
applied to each damper is 246:048 N and the amplitude of the excitation on the free tip of each
beam is 20 N: Finally, the coefficient of friction is m ¼ 1:
The frequency response of the beam system is presented in Fig. 14b, where a viscous damping of

x ¼ 0:01 is used for the beams and 21 harmonics are used in the DLFT.
Notice that no convergence problems were encountered, although a high level of accuracy was

imposed. The purpose of this paper is not to carry out an extensive parametric study of mistuned
systems, but rather to establish the validity of the DLFT on an arbitrarily mistuned large-scale
system. However, one can at least note that in the chosen configuration, there are large differences
in the peak resonant amplitudes of the various beams. For some frequencies, the factor between
the beams response amplitudes can be as large as 10, although the system is only 7% mistuned.
For this system, the blade magnification factor at the damper location, which is defined as the
ratio of the maximum blade resonant amplitude for the mistuned system to the resonant
amplitude for the tuned system, is 1.44. This means that energy can be strongly localized to a few
beams for such systems.

4. Conclusions

A new frequency-time domain method has been proposed for the efficient prediction of
the steady state forced response of dry-friction-damped structural systems: the dynamic
Lagrangian mixed frequency–time (DLFT) method. This formulation relies on the dynamic
Lagrangians, defined as the non-linear contact forces obtained from the equations of motion
in the frequency domain, with the adjunction of a penalization on the relative displacement
at frictional interfaces calculated two different ways: first, the interface displacements are
obtained in the frequency domain from the non-linear solver; second, they are calculated in
the time domain using Coulomb friction and non-penetration criteria for determining the states
at the interfaces. Note that a penalty procedure on the relative velocities could be carried
out in the same way, although its application in the frequency domain would be limited to
systems with a known mean position. Furthermore, with simple modifications, the
DLFT formulation could be used in dynamic problems of contact between elastic and rigid
structures.
The DLFT method allows one to suppress the springs generally used in the definition of

contact elements in time and frequency domain methods. This means that finite element models
can be used readily, without having to develop a special model for the frictional interfaces.
Furthermore, the general case of three-dimensional motion at frictional interfaces can be easily
handled with the DLFT method. This new approach retains the advantages of a time-integration
procedure, which uses Lagrange multipliers for example, while providing fast and accurate
calculation of the steady state forced response. The robustness of the algorithm and the lack of
convergence problems should also be noted, which makes the method suitable for large-scale
systems.
Since it does not require special modelling of the contact interfaces, the DLFT method has the

potential to be readily applicable to complex friction interface configurations such as shrouds and
dovetail attachments in bladed disks.
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