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Development and adaptation of the Composite Rigid
Body Algorithm and the Weak-Scatterer approach
In view of the modeling of marine operations

P-Y Wuillaume?®®, F. Rongéré, A. Babarit?, M. Philippe®, P. Ferrant®

a. Ecole Centrale de Nantes, LHEEA - pierre-yves.wuillaume@ec-nantes.fr
b. INNOSEA

Résumeé :

La simulation des opérations marines, en particulier des opérations de remontée ou de
descente de colis, nécessitetilisation d’une théorie de dynamique multicorps pour les différents
corps mis en jeu (bateau, cable et coligune théorie hydrodynamique consistanteet d’une
modélisation des cables. Ce papier présente une nouvelle approche pour simuler ce type d’opération
basée sur le couplage entre une théorie multicorps et une théorie hydrodynamique.

La théorie multicorps utilise un formalisme issu de la robotique et un algorithme de
dynamique directe adapté aux arbres cinématiques pour résoudre les équations de Newton-Euler. La
modeélisation des cables suit le méme procédé. La flexion et la torsion dans le cablepas poises
en compte. Cette approche multicorps est comparée a la théorie cable dite « lumped mass ».

Les efforts hydrodynamiques sont calculés en supposant un fluide parfait et en faisant une
hypothése de type « weak-scatterer ». Cette hypotheése suppose que la composante @arturbée
potentiel de vitesse du fluide est petite devant sa composante incidgmeeled conditions limites de
surface libre sont linéarisées par rapport/ &lévation de la surface libre incidente. Cet outil est
couplé au solveur mécanique. Cette nouvelle stratégie de couplage est présentée dans ce papier.

Abstract:

The simulation of marine operations, in particular of lifting or lowering operatiorngires
the modeling of the whole system (ship, cable and payload) along with a theory of multibody
dynamics an appropriate hydrodynamic theory and cable’s modeling. This paper presents a new
approach to achieve this type of simulation based on a coupling between a multibody theary and
hydrodynamic one.

The multibody theory uses a robotics formalism and a direct dynamic algorithm based on
recursive techniques for kinematic trees to solve the Newton-Euler equations. The cablegn®deli
based on the same multibody approach. There is neither bending nor torsion effeanodei is
compared to the classical lumped mass theory.

Hydrodynamic loads are computed using a weakly nonlinear potential flow salsed lon
the weak-scatterer hypothesiBis approximation assumes the perturbation component of the fluid
velocity potential is small compared to the incident one and the free surfacgabp@onditions are
linearized with respect to the incident wave elevation. This solver is couipeth&mechanical one
in order to perform the simulation. iBhnew strategy to manage the coupling is presented in this
paper.

Keywords: marine operations, coupling, weak-scatterer, multibody, cable
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1 Introduction

With the development of the offshore wind industry, the simulation of the marineiopsrdr the
installation of wind turbines is required. This paper focuses on the operaftidcowering and lifting

of apayload. DNV published some norms iistfield [1]. They are based on a simplified approach of
the problem (characteristic quantities, regular design wave). Regarding the tlssatyin the
commercial tools as Orcaflex [2] or Deeplines [3] for the modeling efofberations of lowering or
lifting, they use a linear potential flow solver which assumes small tutelmotions of both the ship

and the payload and cannot solve the unsteady hydrodynamic loads. But their multibodylend cab
solvers are consistent. On the other side, Hannan [4] developed a model based on a fullgr nonline
potential flow solver but without an appropriate multibody or cable solver siidy presented in this
paper wishes to have the best for the both approaches: an appropriate multibedobadl and a
consistent hydrodynamic solver. To reach this objective, a weakly nonlinear potemtiabfver is
coupled with a multibody mechanical solver. Doing so, the long termigmatuantify the interest of
using this hydrodynamic solver in this kind of marine operation.

2  Multibody theory

The multibody offshore numerical tool used in this paper is InWave [5] qeeblby Innosea and
Ecole Centrale de Nantel.performs time domain simulations of kinematic trees in uaidgect
dynamics algorithm to solve the Newton-Euler equations. A kinematic tree iohisterconnected
bodies where each body has only one ancestor and potentially several success@se Bhdyb(the
only one without ancestor) of the multibody system is floating in six degiedésedom ¢of).
Between a body (except the base) and its ancestor, there is a jahtte®r prismatic, granting for a
single degree of freedom. This multibody approach uses relative coordinates parednieterized
using the modified Denavit-Hartenberg parameters [6].

/777777777

Figure 1: Kinematic tree (blue = bodies, red = joints)

The Lagrangian formulation of the Newton-Euler equations to solve is:
06><1 — (0V0)
( ; )=H i)t ¢ (1)
Wherer is the vector of the torques (or forces) around (or along) the revaluggrismatic) joints,

H H . . . . C . .
H :< 1 12) the generalized inertia matrlz‘,=< 1) the vector of the inertia and external
HZl HZZ CZ

forces,%V, is the acceleration of the floating base expressed in its own fradhg the articular
acceleration of each joint. By definition,direct dynamics algorithm mealisC andH are known
wheread'V, andg are unknown.
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The size of the system is the number of joints plusitiief the base. The state vector is:

Y=[n"vq" q"]" 2)
Wheren is the position of the base in the inertial framés the velocity of the base with respect to
the inertial frame and expressed in the frame of the gasehe vector of the articular positions and
q is the vector of the articular velocities.

Rongeére [T presented a first approach to simulate the offshore structures andhsokguition (1).
The algorithm presented in][Was similar to the Articulated Body Algorithm of Featherstone [8]. The
inversion of the matri was not required. An extension of this work was made by Rongeére [9] to
take into account the hydrodynamic interactions in using the Composite RigidARgohthm [8].

This modification involves the inversion & and is more suitable to deal with the linear
hydrodynamic added mass coefficients. The following notations come from [7].

The first main step of this latter algorithm is the computation of thewolly kinematic and dynamic
quantities for each body

e Transformation matriced;;

¢ Velocities in the body frames;

e Coriolis accelerationéyj;

o External loads and centrifugal effeéﬁj.

The motion equation ohe system made of the bogyand all its successors (which therefore has no
successor) is:
JF; =ImjV; + /B 3)

Wherefmf andfﬁjc- are the generalized mass matrix and the generalized load vector of the composite
bodyj. fF]- is the internal force and moment across the jgimbnnecting the bodyand its unique
ancestor.fl'/j is the acceleration of the boggxpressed in its frame.
The aim of the second main step is the computation for each bédyf afndfﬂ]?:
j —J kpTk k

k /a(k)=j (4)
g5 =g+ ) TIlmERy, + 4B

k/a(k)=j

Finally, the last step is to build of the matHxand the vecto€. The vectod” depends on the type of
the internal loads which are required in the multibody system.

The generalized inertia matri is defined by:
Hyy = °m§
coly(Hqz) = *To*mf*ay, for k € [|1,n]]
Hy1 = HY,
row;(col(Hzy)) = ‘ai ' m§/Ti*ay for (j,k) € [|1,n[]* suchas k = j

)

And the vectol is defined by:

n
C1=Bo+ ) MTE(“B + *miy) ©)
k=1
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J
row;(C3) = fa}-w lmiz T ky, + jﬁﬂq:o g forj e [|1,n]]
k=0

Wheren is the number of joints arfdlj the axis of the joint expressed in the bogis frame.
Finally the acceleration can be computed by the inversion of the rHatind the state vector time-
stepped in using a RK4 scheme.

3  Cable modeling using a multibody theory

In an operation of lifting or lowering, a cable is necessary. Several cableelbame available
(Map++ [10], MoorDyn [11], etc.). It is easier to use InWave in ordesimulate cables rather than
using an external program which would not be well adapted to the multibodglism presented in
2. Consequently we want to compare the cable modeling obtained with a multibodgchptr a
classically cable theory in order to validate this approach. Maddiglalid a survey of the different
time-domain cable theories which are commonly used: lumped mass model (low and high order)
finite-element model and finite-difference model. In another paper, Masciola gsgjnted the quasi-
static theory. A simple but consistent cable model to compare with is to usecediemlumped mass
theory. Indeed firstly the quasi-static theory neglects the dynamical effects emadlgein a
lowering/lifting operation the cable stays mainly vertical so the eietiending and torsion effects
are not predominant.

The details of the low order lumped mass model can be found in [14] dnd [15

In the low order lumped mass model, a cable is discretized into massletss Rach point has three
degree of freedom. To match this description, the multibody theory requieesiibdies (of which
two are massless) to ensure the three degrees of freedom. Thus threeqaistzliatwo revolutes and
one prismatic. Internal loads are also present in the lumped mass model witlerssi@h and axial
damping. For a cable elemgnthe components of the veciof the internal loads become:

[3j,=0
34 =0
EA CA
Lo —E(‘lsj + Lu) ~ T 3 |as;| = Lu )
3 = CA
REL |qs)] < Lu

Wherel;;_, is the internal load of the first revolute joiff,_,of the second one aniy; of the
prismatic joint.Lu is the unstretched length,the Young modulusd the area of the sectio6,the
damping coefficientq;; the size of the cable element apg the axial velocity. It is assumed there is
no compression which explained the conditiorggn
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The two approaches (multibody and low-order lumped mass) are used to model af dhbée
elements.

The following table summarizes the cable characteristics of the test case.

Linear density(kg.m™1) 100
Diameter(m) 0.0332
Young modulugPa) 7.75e7
Damping coefficien{N.s.m™1) 1e5
Unstretched lengtfimn) 10
Position of the upper noden) (0.0;0.0;20)
Position of lower nodém) (-2.0;0.0; 10)

Table 1: Cable characteristics

The time step is 0.001 s and the duration of the simulation is 10 s.

The figure 2 presents the length of the third cable element for the two models.

-34

i Lumped mass theory
i — — — InWave

-3405

E |

=)

iy B

=341

-3415

t (s)

Figure 2: Length of the third cable element in using a low order lumped mass theory (red) and InWave (bleu)

Hence the two approaches give the same results, but not with the same CPU limped mass
model has only one loop over the cable elements whereas the multibody theory ham iz ewdr

the multibody system. Moreover, three bodies are necessary to model a cable elensaguéhtly

the multibody approach is more time-consuming than the low-order lumped mass model.té\ way
speed up the multibody approach is to walk along the number of cable elements indteatlioflier

of bodies. The multibody equations previously presented have to be solved three at a time.

Equation (4), (5) and (6) become:

3(i—1 _3(j-1 3jrT  3j.c 3j
U=Dm§;_yy =30 Dmy_qy + 3T ;1) 3m§ 3T,y (8)
3(1—1)B§U_1) = 3(1—1)330_1) + 31T§(j_1)[31m§j(317"3j-2 72y 0+ 3Ty + ysj) + 313%1’]
HII = Omg (9)
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COl[3k—2,3k—1,3k](H12) = 3kT€3km:C%kPk for k € [|1, Netements|]
Hy; = HY,

TOW[3j-23j-1,3j] (COl[3k—2,3k—1,3k] (sz)) = P]3Im§;3 TS, Py for (j,k) € [|1, Netemenes|]* such as k = j

n
C, =8+ Z “TE(*By + *mi*y,)
k=1
j (10)
TOW[3j_23j-1,3/](C2) = PjT 3jm§j z T gk CFT a2 2V 3y + ¥ T 3 g + 3Fyap) + 3jﬁ§j for j € [|1, Nejements|]
k=0
WhereP; is a6 x 3 matrix:

— (3J 3j-2 3j 3j-1 3j
Pj—(]T3j—2] azj, T34 azj 4 ja3j)

In using this method with the last test case the CPU time was reduced of @@8andhis result is
logical because the number of bodies was divided by three.

4  Lowering or lifting a payload

In the last section, the unstretched length of each cable element was kepttcduastan the
simulation. In case of lowering or lifting a payload, the length of the dadstemes variable. This
effect has to be incorporated. Following [16] and [1#hehod to do so is to modify the unstretched
length of the first cable element:

Lut = Lut~% + v.dt (11)
Where Lu! is the unstretched length of the first cable element atttimés the constant lowering
velocity, positive for a lowering operation, negative for a lifting operatiordansl the time step.

This has an impact on the internal loads of the first cable element:

EA " CA "
It (g5 + Luj) —— (43 + v), las| = Lug
ug Luj
l—‘3 = CA (12)
gt s+ lasl <L

During an operation of lowering, respectively lifting, when the legtthe first element is too long,
respectively too short, this first element is divided into two new elemesgpectively the first
element is merged with the second one. That involves adding, respectively deleting, one element in the
cable. The criterion on the length of the first cable element is:

Lui =a.Lu (13)

A value of 1.5 is chosen far in case of lowering operations, 0.5 for the lifting operations.
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Figure 3: Sketch of the addition of a new cable element

5  Weak-scatterer theory and coupling with the multibody
theory

In case of a lowering or lifting operation, a payload goes through the fraeesufhus the submerged
part of the payload is deeply modified and some unsteady effects due to the hydrodyteaagton
between the ship and the payload appear. These phenomena prevent the use of a tlasséral 1
linear potential flow solver, this method being limitedthe hypothesis of small amplitude motions.
Regarding the second order linear potential flow approximation, the secondesrmderare taken into
account but the free surface boundary equations stay writter=adh The small amplitude motion
hypothesis has still to be valid.

Letournel [18] has developed a potential flow solver based on the weakescatgpothesis for
submerged bodies. Doing so, the velocity potential and the free surface elevatioiitaceista two
parts the incident and the scattered (perturbation) components:

¢ = Gincident + ¢pertubation (14)

1 = Nincident + Nperturbation

The weak-scatterer hypothesis assumes the perturbation part is small compared to the incident one.
(15)

¢incident « ¢pertubation

Nincident <K npertubation

The free surface boundary conditions are linearized on the incident waveoalevidtere is no
condition on the amplitude of the motion of the floater, while the body conditiontternwain its exact
position (Body exact approximation). This numerical tool has been extended to pleodieg by
Chauvigné [1B
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As explained in 18 and [19], in case of free body motion, the time-differentiation of the velocity
potential is unknown. This quantity is computed from a second boundary value pr@&Enir
using the implicit condition method. The secdMPis constituted of three equations:

¢ The integral equation (Laplace equation on the velocity potential);

¢ The body condition (slip condition on the surface of the body);

¢ The motion equation.

To simulate a marine operation, the mechanical solver and the hydrodynamic solver hasqdue
Different coupling strategies are available. Jonkman [20] and Yvin [21] liseednportant families
of coupling strategies.

Monolithic Partitioned

approach approach

Loose coupling Tight coupling

Figure 4: Different coupling methods

Monolithic approach is present when the code is made of one piece, with only one singequat
representing the system, one time integrator and one spatial mesh. Otherers¢hevkystem can be
decomposed into several subsystems with input-output relationship, it is sopedtitpproach. A

tight coupling is obtained when only one equation of motion represents all the subsystenirsg(coup
equation). A loose coupling is present when each subprogram has its own time-stepper.

The mechanical solver and the hydrodynamic solver presented above are independent so acmonolithi
approach cannot be chosen. Contrary to a loose coupling, with a tight coupling, atlepuargitime-
stepped synchronously. This fact ensures the robustness and the accuracy of the caiptipcast
therefore larger time steps can be used. Thus a tight coupling is selected.

+ t=
L i

WSC solver . MB solver

t=t+dt

Coupling

equation

fiin+1 F}lHrl
’ /]

Finish

Figure 5: Tight partitioned approach for the coupling of the weak-scatterer code with InWave



2™ Congrés Francais de Mécanique Lille, 28 Aot &epitembre 2017

In coupling the weak scatterer code with the multibody solver (representduk bygtiation (1)),
modifications appear on both the body condition and the motion equation of the 8adandhe
coupling equation will be exposed in case of a single floater considered as thoé theesenultibody
system.

The hydrodynamic forc€FYS¢ in the inertial frame is obtained by discretization of the Bernoulli
equation:
°FyS¢ = °CTop.(Bo) + °T§ (16)
Whereg, (B,) is the time-differentiation of the velocity potential on the bodyae@fCT, and®T}
represent the other discretized terms of the Bernoulli equation.
In the multibody motion equation is written in the frame of each body, consequerdtjoadd6) has
to be written in the frame of the base.
0
OFWSC = (0Re %3;3) eF}(VSC (17)
3x3 e
Where R, is the rotation matrix between the inertial frame and the base frame.
Finally the Newton’s second law for the multibody system is:

(Oext) = (B hr2) (0V0> +(gh)- Fo™ (18)
r Hy1 Hyp) \ ¢, 0njointsx1
¢:n(Bo) = CKy. 19 + Qp (19)

Whereg,,(B,) is the normal derivative ap,(B,), i}, is the acceleration of the base in the inertial
frame,CK, andQy, are the discretized terms of the body condition.

The body condition is:

According to the equation (1), it is necessary to expgjgss function of°V,. As explained in [J
there is:

1o = ¢Jov (20)
With ¢J, the transformation matrix betwegp andv.
So the time-differentiation of this relation becomes:

ilo = ¢Jov + oV 21
From [5] there is also:
0,) 0
V=00, (5( o) vo) (22)
03x1

Where S is the vector product matrix sucts@s)v = u X v, °w, and®», are the angular and linear
velocities of the body in the frame of the body.

Hence:

. X 0 0
ben(Bo) = CKo.JoVo + CKo. [ Fov = o (7 02 )| + 0% (3)

The integral equation is unchanged:
CS(:,FS). ¢ (FS) — CD(:,By)@:(By) — CD(:, Ext) . (Ext) + CS(:, By)p.(By) = CD(:,FS)p.(FS) — CS(:, Ext)pn(Ext)  (24)

WhereCS andCD are the matrices of the influence coefficiets, B, andExt represents the part of
the influence coefficient ap, or ¢,,, dedicated to the free surface, the floater and the tank.
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The final system or coupling equatiordX = B with:

CS(:,FS) -CD(;,B,) —-CD(;,Bg,) CS(;,B,)
A: ONbXNFS 0Nb><Nb ONbXNExt I Nb
Oeprs _OCTO 06><NExt OGbe
OHXNFS Oanb OHXNEx! Oanb
CD(:, FSy, (FS)-CS(:, Ext)p,, (Ext)
. S 0 0
K, | 23 0-53,| S(@) Vo || L
B= 0y, X =
—-C,+°1,"
r-C_c2

ONXG
CK.J,
H 11
H 21

#(FS)

4.(8,)

¢, (Ext)

b (By)
Vo
.

0

Nxn

0Nb><n
H 12
H 22

With N the total number of nodes in the me8h,; the number of nodes for the tank avig the
number of nodes for the free surface.

This coupling equation would stay the same in casgufy non-linear potential flow solver.

6 Numerical results

6.1 Coupling verification on a WEC test case

This coupling is applied to simulate the motion of a wave energy conWAfED) (of type CETO. Itis

a sphere of radius 3.5 m, the position of the center of gravity is 7 m liedofee surface and the
water depth is 20 m. The mass of the sphere is its displacement. The powef takmarde of a
spring-damper system. The stiffness of the spring is 302478.8, X unstretched length is 13 m
and the damping coefficient is 50 ORls”’. The sphere can only move in heave. The incident wave is

aregular wave of amplitude 1.25 m and wave frequency 1.0%ad.s

I

U

Figure 6: Sketch of a CETO system
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Figure 7: Mesh of the tank, the free surface and the sphere.
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Figure 8: Comparison of the heave motion for the WSC code and the coupling InWave-WSC
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The figure 9 shows the responses of the coupling, between InWave and the weak-saaticies
weak-scatterer code only are the same.
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6.2 Academic test case: a floater, a cable and a payload

This coupling is now applied on an academic test case with a floater, a cable arwhd.pafloating
cylinder of radius 0.2 m and length 1 m only moves in surge and is linked to the center of the tank by a
spring of stiffness 1990 N.fn The mass of the cylinder is 64.4 kg. A crane is fixed to this floater
with, at the other extremity, a cable made of 3 elements. The Young modulus is Pa,5d®
damping coefficient is 100 Pa.s, the cable linear density is 2'kgumdl the unstretched length of each
element is 0.5 m. At the extremity of the cable free to move, an easa of 5 kg is added (payload).

Thus the total mass of the system is 74.5 kg. At t = 0 s the cableigalvattthe equilibriumThis
equilibrium was obtained in using the multibody solver presented in 3.

Element Size (m)
1 (crane) 0.50073
2 0.50058

3 (payload) 0.50044

Table 2: Size of each cable elementatt=0s

A regular wave of amplitude 0.05 m and wave frequency 3.14redgenerated.

Figure 9: Mesh of the tank, the free surface, the floater and the cable
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Figure 11: Rotation of the first cable element with respect to the crane (top) and length of the third element
(bottom)
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Figure 12: Mesh att = 20.64 s

Thus, the hydrodynamic loads on the floater are propagated from the cylinder tbltherwh the
payload and generate their motion. In return, the presence of the cable anddhd paydifies the
motion of the cylinder.

Cylinder only
- f [ll Cylinder +cable + payload
s | |
] S [‘ 1
b
i (. LR R
- | | | .l |l Il | r | 'l
0.05 - 1 (Il [ L ( |
: IIll
£ ok
I
i |
-0.05 |- | I IR
: IR \} IJ | lll ‘] | IJ "
i | | oy /. ll
01F [ b
| lj [j
n l |
S| T N TR N T N T T N N NI AT T N
0 5 10 20 25

15
t (s)

Figure 13: Motion of the cylinder only (red) and the cylinder + the cable + the payload (blue)
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On the figure 13, the surge motion of the whole system (cylinder, cable and the péylpladted
with the motion of the cylinder only with the same total mass (74.5 kg). Thusettenpe of the cable
and the payload decreases the amplitude of the motion of the cylinder. The frequérecyesponse
stays the same in the both cases.

7 Conclusion

In this papera new approach for the numerical simulation of the lifting and lowering opesatias
presented. It is based on the development and the adaptation of the Composite RighyBotiyn
for the mechanical solver and on a potential flow hypothesis with a weak-scaiproximation for
the hydrodynamic solver. The cable is simulated with the multibody solver. Attéstjmaid to the
cable formalism to reduce the number of iterations and thus computation time. thadilo solvers
are coupled with a tight coupling strategy. A test case with a CETO wargy emaverter has proved
the validity of the coupling equation presented. An academic test casenafine operation with a
floater, a cable and a payload has been done.

This coupling needs to be deeply validated and extended to the cases where this fladtat the
root of the multibody system and whenrihare several floaters. The interest of the weak-scatterer
approach has to be quantified in comparison to the numerical tools using a classézapditential
flow solver.
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