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Performance Degradation in Parallel-Server Systems
Josu Doncel, Samuli Aalto and Urtzi Ayesta

Abstract—We consider a parallel-server system with K ho-
mogeneous servers where incoming tasks, arriving at rate λ,
are dispatched by n dispatchers. Servers are FCFS queues and
dispatchers implement a size-based policy such that the servers
are equally loaded. We compare the performance of a system with
n > 1 dispatchers and of a system with a single dispatcher. Every
dispatcher handles a fraction 1/n of the incoming traffic and
balances the load to K/n servers. We show that the performance
of a system with n dispatchers, K servers and arrival rate λ
coincides with that of a system with one dispatcher, K/n servers
and arrival rate λ/n. We define the degradation factor as the
ratio between the performance of a system with K servers and
arrival rate λ and the performance of a system with K/n servers
and arrival rate λ/n. We establish a partial monotonicity on
n for the degradation factor and, therefore, the degradation
factor is lower-bounded by one. We then investigate the upper-
bound of the degradation factor for particular distributions. We
consider two continuous service time distributions: uniform and
Bounded Pareto that have increasing and decreasing failure rates,
respectively; and a discrete distribution with two values, which
is the distribution that maximizes the variance for a given mean.
We show that the performance degradation is small for uniformly
distributed job sizes, but that for Bounded Pareto and two points
distributions it can be unbounded. We have investigated the
degradation using the distribution obtained from real traces.

I. INTRODUCTION

We are interested in measuring the performance of parallel-
server systems formed by K homogeneous servers. For these
systems, the exact analysis of the mean response time of
some routing policies such as Join the Shortest Queue is
known to be a difficult task and, as a consequence, in this
work we focus on a size-based dispatching policy called Size
Interval Task Assignment policy with Equal Load (SITA-E)
[15]. In the SITA-E scheduling the service time distribution is
divided into intervals, all the jobs whose size fall in a given
interval are dispatched to the same server and the servers are
equally loaded. It is known that, when the variability of jobs
increases, SITA-E policy improves the performance comparing
with other task assignment policies such as Round Robin or
Bernoulli. Another important property of SITA-E policy with
respect to other popular routing policies in the literature, such
as Power of two, is that it does not require signaling between
dispatchers and servers.
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Fig. 1: SYS-(4,1,λ). There is one dispatcher that receives all
the traffic and sends it to all the servers.
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Fig. 2: SYS-(4,2,λ). There are two dispatchers and each of
them controls a half of the total incoming traffic and balances
the load to two servers.

In this work, we compare the performance of SYS-(K,n,λ),
which is formed by n > 1 dispatchers, where each of
them handles a traffic equal to λ/n and balances it to K/n
queues, with the performance of SYS-(K,1,λ). We present in
Figure 1 and in Figure 2 an example of the multiserver systems
under comparison in this paper. As a metric to measure the
difference on the performance of these systems, we define the
degradation factor as the ratio of the mean waiting time of
SYS-(K,n,λ) over the mean waiting time of SYS-(K,1,λ).

We show in Section III that the performance of SYS-(K,n,λ)
is equal to the performance of SYS-(K/n,1,λ/n). Thus, the
analysis of the degradation factor can be interpreted as the
economies of scale a multiserver system when we scale up
the number of servers and the arrival rate proportionately.

This work can potentially have an impact in the design of
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data centers. Indeed, the architecture of modern data centers
has a tree-based topology where the knowledge of how to split
jobs is given in the edges nodes. This architecture corresponds
to SYS-(K,n,λ) [27]. However, if the routing policies are
implemented in the core nodes, data centers consist of SYS-
(K,1,λ) and the performance difference could be assessed
using the results of this article.

We assume that the servers are First-Come-First-Served
(FCFS), which is a common model, for example, in super-
computing systems [24]. We denote by γ the ratio between
the smallest and the largest job size. The main contributions
of this work are presented in Table I, where the degradation
factor of a system with K servers and n routers is denoted
by D(K,n). We first show that, for an arbitrary continuous
function, if the ratio n2/n1 is integer, D(K,n1) ≤ D(K,n2).
From this result, we conclude that the degradation factor
is lower-bounded by one and upper-bounded by D(K,K).
Therefore, to analyze the maximum performance degradation,
we consider three representative distributions. We first study
two job size distributions, uniform and Bounded Pareto, whose
failure rates are respectively increasing and decreasing.
• Uniform Distribution. For uniformly distributed job

sizes and two servers, we show that the degradation factor
is upper bounded by 1.138. For an infinite number of
servers, we show that the degradation factor is upper-
bounded by 4/3. For K > 2 and finite number of servers,
assuming that the degradation factor decreases with γ,
we prove that the degradation factor is upper bounded by
4/3.

• Bounded Pareto Distribution. For Bounded Pareto dis-
tributed job sizes with parameter α = 1, we show that
the degradation factor is unbounded from above. We show
that the degradation factor is also unbounded from above
for Bounded Pareto distributed job sizes with parameter
α 6= 1 and K → ∞. When α 6= 1 and finite number of
servers, assuming that the degradation factor decreases
with γ, we prove that the degradation factor is upper
bounded by K

1
|1−α| .

According to these results, we conclude that the degradation
is small for uniformly distributed job sizes, but for Bounded
Pareto distributed job sizes the degradation is extremely high
when the variability of jobs increases.

We know that for the distributions with bounded and fixed
support, (i.e., fixed lower and upper bound) the distribution
that maximizes the variance (with a given mean) concentrates
on these two extreme points. Therefore, we study the degrada-
tion factor for a discrete job size distribution that concentrates
on two points, the smallest and the largest job size.
• Two Point Distribution. For a discrete job sizes distri-

bution that consists of two points, the smallest and the
largest job size, we consider a two-server system and,
when the load of both types of jobs is equal or unequal,
we show that the degradation factor is lower bounded by
one and unbounded from above.

Our results show that the degradation can be non negligible
and increases as the variability of the distribution increases.
We present simulations where we consider the Degenerate

Hyperexponential distribution that confirm that as the vari-
ability of the service time increases, so does the degradation.
Using numerical experiments, we validate the monotonicity
assumptions on the degradation factor. We also investigate the
performance degradation with real traces of parallel machines
and the obtained results also confirm the influence of the
variability of jobs in the degradation factor.

Given the complexity of the analysis, our modeling assump-
tions have various limitations. For instance, we study SITA-E
dispatching policy rather than SITA policy where the cutoffs
optimize the system performance. Unfortunately, the analytical
computation of the optimal cutoffs is known to be impossible
even for a system with two servers [18]. Therefore, the analysis
of SITA-E seems to be a tractable approach that allows us to
get insights in the performance degradation of the systems
under study.

The rest of the paper is organized as follows. The related
work is presented in Section II. In Section III, we describe
the model and give some preliminary results. In Section IV,
we explore the monotonicity of the degradation factor for an
arbitrary continuous job sizes distribution. We study the degra-
dation factor for uniformly distributed job sizes in Section V
and, in Section VI, for Bounded Pareto distributed job sizes.
Then, in Section VII we analyze the degradation for a discrete
job sizes distribution that concentrates on two points. Finally,
we present the numerical experiments in Section VIII.

A conference version of this paper appeared in [7].

II. RELATED WORK

Many researchers in Computer Science have been interested
in analyzing how to balance the load in a system with parallel
queues optimally, that is, in order to minimize a certain
objective function, for example the mean response time of
the incoming jobs, see the survey [25] and the book [14]. The
typical architecture of the routing policies that are studied in
the literature is formed by one dispatcher that receives all
the incoming traffic, which distributes the load among the
set of servers. In the Join-the-Shortest-Queue [11], [12] the
dispatchers sends the flow to the queue with less customers.
This routing policy is very popular since it minimizes the mean
response times of jobs when the number of customers in all
the servers is known. Another important routing policy is the
Power of Two [20], [22], where for all incoming jobs, the
dispatcher selects two servers independently and uniformly at
random and applies the Join-the-Shortest-Queue policy among
the chosen servers. When the service demand is known and
the servers are FCFS, the SITA policy with optimal thresholds
is shown to optimize the performance of the system [10]. In
this policy, each host serves jobs whose service demand is in
a designated range. The SITA-E policy has been introduced
in [15], [16] and, under this routing policy, the cutoffs are
chosen to equalize the load in all the servers. This dispatching
policy has been also studied by [6], where the authors apply
SITA-E to web server farms. In [13] the author introduces the
task assignment by guessing size, which is a variant of SITA-E
policy where knowledge of the job sizes is not required. Under
the SITA routing policy with optimal thresholds, asymptotic



3

Degradation Factor Result

Arbitrary continuous distribution 1 ≤ D(K,n) ≤ D(K,K) Corollary 1

Uniform distribution: D(K,K) ≤ 1.138. Proposition 2
K = 2

Uniform distribution: D(K,K) ≤ 4/3. Proposition 3
K →∞

Uniform distribution: D(K,K) ≤ 4/3. Proposition 4
K > 2 and finite

Bounded Pareto distribution: D(K,K)→∞1 Proposition 5
α = 1

Bounded Pareto distribution: D(K,K)→∞1 Proposition 6
α 6= 1 and K →∞

Bounded Pareto distribution: D(K,K) ≤ K
1

|1−α| . Proposition 7
α 6= 1 and K finite
Two Point: K = 2, D(K,n) ≥ 1 and D(K,K)→∞1 Proposition 8

Equally Loaded Jobs
Two Point: K = 2, D(K,n) ≥ 1 and D(K,K)→∞1 Proposition 9

Unequally Loaded Jobs Proposition 10

TABLE I: Summary of the main results of this article.

analysis for the Bounded Pareto distribution has been done
in [4], [26]. The authors in [17] consider a system where the
coefficient of variation of incoming tasks is high and they show
that the performance of SITA can be much worse than the
performance of the Least-Work-Left policy. Another related
work is [18], where authors consider a two server system and
they give conditions that establish in which direction the load
should be unbalanced in order to optimize the performance.
Furthermore, for Bounded Pareto distributed job sizes, they
show that when (i) α < 1, the short job server must be
underloaded, (ii) α = 1, the load is equally balanced and
(iii) α > 1, the long job server must be underloaded. The
analysis of the economies of scaling the arrival rate and
the number of servers proportionally in multiserver systems
has been previously done in the literateture, but in different
contexts of our work. The author in [28] analyze the optimal
server utilization and he provides a simple approximation of
the mean steady state waiting time. In [29] the author considers
an M/M/K queue and analyzes the economies of scale for
different performace measures.

The problem of how to balance the load in a server farm has
been extensively studied also in the context of game theory,
see [2], [5], [8], [19], [21], [23]. An important assumption in
these models is that jobs can decide individually where to get
service.

III. MODEL DESCRIPTION

We consider a system with K servers with equal capacity
and n dispatchers. The servers are FCFS queues and the
dispatchers implement the SITA-E routing policy. We assume
that service times of incoming jobs form an i.i.d. sequence
with a common distribution denoted by X , and let E(X) and
E(X2) denote its first and second moment, respectively. Let
F (x) = P(X ≤ x) denote the service time distribution. We
assume F (x) to be differentiable and we denote f(x) = dF (x)

dx .
We denote by xm and xM the minimum and maximum size of

the incoming jobs to the system, and let γ = xm
xM
∈ [0, 1]. We

denote by λ the total incoming traffic to the system. The traffic
that each dispatcher controls arrives to the system according
to a Poisson process of rate λ/n. Since each server receives
traffic from only one dispatcher, a server is said to be of
group i if it receives traffic from dispatcher i. We assume
that the number of servers in each group is the same and
equal to K/n.2 The total load in the system is denoted by
ρ = λ · E(X)/K. For stability reasons, we assume ρ < 1.

We denote by W (K,n, xm, xM , λ) the random variable
corresponding to the waiting time of jobs in SYS-(K,n,λ). We
observe that when n = 1 it is the waiting time of jobs of SYS-
(K,1,λ) and when n = K we analyze K independent M/G/1
queues with arrival rate λ/K.

We know that in SYS-(K,n,λ) there are n groups and, in
each group, there are K/n servers. Moreover, the traffic that
each dispatcher of SYS-(K,n,λ) handles is the same and equal
to λ/n and every dispatcher applies SITA-E policy. Besides,
all the n groups are exactly equivalent and, as a result, the
mean waiting time in SYS-(K,n,λ) satisfies

E(W (K,n, xm, xM , λ)) =

n∑
i=1

1

n
E(W (

K

n
, 1, xm, xM ,

λ

n
))

= E(W (
K

n
, 1, xm, xM ,

λ

n
)). (1)

This result means that SYS-(K,n,λ) and SYS-(K/n,1,λ/n)
have the same performance. Therefore, it is important to note
that the performance degradation study of this article can be
interpreted as a queueing problem that consists of evaluating
the economies of scale a parallel-server system when we scale
up the arrival rate and the number of servers proportionally.
We shall use the degradation factor to assess the degradation

2It is implicitly assumed that n is a divisor of K.
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on the performance of parallel-servers systems. We define the
degradation factor as follows:

D(K,n, xm, xM ) =
E(W (K,n, xm, xM , λ))

E(W (K, 1, xm, xM , λ))

=
E(W (Kn , 1, xm, xM ,

λ
n ))

E(W (K, 1, xm, xM , λ))
. (2)

We have not included λ as a parameter of the degradation
factor since, as we will see in Section III-E, the degradation
factor does not depend on the arrival rate. When the degrada-
tion factor is close to one, we conclude that the performance
of both systems is very similar. Besides, when the degradation
factor is upper bounded by M , the performance of SYS-
(K,n,λ) is, in the worst case, M times the performance of
SYS-(K,1,λ).

Remark 1 (Randomized Load Balancing). As an example,
let us calculate (2) in the case of a load balancing scheme
without sized-based information. We consider a system with
K homogeneous servers and one dispatcher that operates
under Bernoulli routing policy. The probability of a job to be
executed in a given server is 1/K and, therefore, the arrival
rate to that server is λ/K. Thus, we obtain that the mean
waiting time of jobs in this system is (λ/K) E(X2)

2 (1−ρ) . We now
consider a system with K/n homogeneous servers and an
incoming traffic λ/n. We observe that the probability of a
job to be executed in a given server is n/K and the arrival
rate to that server is λ/K. Hence, the mean waiting time in
this system is also (λ/K) E(X2)

2 (1−ρ) . As a result, the degradation
factor for randomized load balancing policies is equal to one.

From Pollaczek-Khinchine formula, we know that the wait-
ing time of jobs depends on the second moment, which is
related to the variability of the service time distribution. With
SITA-E, as the number of servers increases, the size variability
in each server decreases. Hence, we can expect that the perfor-
mance of SYS-(K,n,λ) to be worse than that of SYS(K,1,λ).
Likewise, when xm and xM coincide, the jobs arrive to the
system following a deterministic distribution. Therefore, size-
based scheduling can not improve the performance and there
is no performance degradation in this case.

Lemma 1. If xm = xM , then the performance degradation is
equal to one.

From (2), we see that to analyze the degradation factor we
need to compare two systems with one dispatcher, where one
system has K servers and arrival rate λ, so SYS-(K,1,λ),
and the other K/n servers and arrival rate λ/n, so SYS-
(K/n,1,λ/n). Therefore, we analyze the performance of a
generic SYS-(R,1,λ), which is a system with one dispatcher, R
servers and arrival rate λ. Prior to that, we present the SITA-E
routing policy for SYS-(R,1,λ).

A. SITA-E Routing

If the sizes of incoming jobs is known, the dispatcher can
perform the so-called SITA routing, that rougthly speaking
separates jobs of different sizes to be executed in different
servers. In other words, the SITA routing is a size-aware policy

where the service times are divided into intervals and all the
jobs with size in a given interval are dispatched to the same
server. In a system with R servers, there are R+ 1 thresholds
c0, c1, . . . , cR satisfying that xm = c0 < c1 < · · · < cR−1 <
cR = xM and jobs ranging in size from cj−1 to cj are executed
in server j.
When the SITA policy is implemented in a multiserver sys-
tem, its performance is affected by the way we choose the
thresholds. One might choose, for example, the thresholds that
minimize the response time of jobs. In this work, we assume
that the dispatcher carries out the SITA-E routing, that is a
particular SITA routing, where the thresholds are chosen so
as to Equalize the load of the servers. The main advantage of
this routing policy is that the thresholds can be easily obtained
using the following equation:∫ c1

xm

xf(x)dx =

∫ c2

c1

xf(x)dx = · · · =
∫ xM

cR−1

xf(x)dx, (3)

whereas the computation of the thresholds of the optimal SITA
policy is known to be impossible even for a system with two
servers [18].
We now observe that if (3) is satisfied, then the load of all the
server is equal. In fact, the load in server j is given by

λ · (F (cj)− F (cj−1)) ·
∫ cj

cj−1

x
f(x)

F (cj)− F (cj−1)
dx,

and, thus, (3) implies that the load is the same in each server.
Throughout this article, we use the notion of scaled thresholds,
which are defined as zj= cj/xM . We note that, in the particular
cases where j = 0 and j = R, we have respectively that
z0 = γ and zR = 1.

B. Waiting Time in SYS-(R,1,λ)
We study SYS-(R,1,λ), which is a system that consists of R

servers, one dispatcher that implements SITA-E load balancing
and arrival rate λ. As we said before, in this system there
are R + 1 thresholds. We denote the j-th threshold by cj .
Since the probability of a job to be executed in server j is
F (cj)− F (cj−1), the mean waiting time of this system is

E(W (R, 1, xm, xM , λ)) =

λ

2(1− ρ)

R∑
j=1

(F (cj)− F (cj−1))2E(X2
j ), (4)

where ρ = λE(X)
R and E(X2

j ) is the second moment of the
service time distribution of the tasks executed in server j.

From conditional probability theory, we obtain that the
second moment of the jobs to be executed in server j is

E(X2
j ) =

∫ cj

cj−1

x2
f(x)

F (cj)− F (cj−1)
dx. (5)

Therefore, using (4), (5), we obtain the following expression
for the mean waiting time of SYS-(R,1,λ) for continuously
distributed job sizes:

E(W (R, 1, xm, xM , λ)) =

λ

2 (1− ρ)

R∑
j=1

(F (cj)− F (cj−1)) ·
∫ cj

cj−1

x2 f(x)dx. (6)
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C. Continuous Distributions: Uniform and Bounded Pareto

In this paper, we consider two continuous job size distri-
butions: the uniform and the Bounded Pareto. For uniformly
distributed job sizes, if xm ≤ x ≤ xM , we have that
f(x) = 1

xM−xm , and f(x) = 0 otherwise. Furthermore, the
cumulative distributed function of the job sizes is

F (x) =


0, x ≤ xm,
x−xm
xM−xm , xm ≤ x ≤ xM ,
1, x ≥ xM .

The thresholds of SYS-(R,1,λ) can be obtained from (3)
and using that f(x) = 1

xM−xm , for all x ∈ [xm, xM ], and are

given by cj =

√
(R−j) x2

m+j x2
M

R , j = 0, . . . , R.
For Bounded Pareto distributed job sizes, we have that, if

xm ≤ x ≤ xM , f(x) =
α xαm

1−(xm/xM )α x−α−1, and f(x) = 0
otherwise, where α > 0. The cumulative distributed function
of the job sizes is

F (x) =


0, x ≤ xm,
1−(xm/x)α

1−(xm/xM )α , xm ≤ x ≤ xM ,
1, x ≥ xM .

The value of the thresholds for Bounded Pareto distributed
job sizes of SYS-(R,1,λ) is given in [16] and it is cj =(
R−j
R x1−αm + j

R x1−αM

) 1
1−α

if α 6= 1 and cj = xm

(
xM
xm

) j
R

if α = 1.
In the rest of the article, we denote by DU (K,n, xm, xM )

and DBP (α)(K,n, xm, xM ) the degradation factor when the
job sizes are uniformly distributed and Bounded Pareto dis-
tributed with parameter α, respectively. Since, in both cases,
the degradation factor depends on xm and xM only through
γ (see Lemma 5 and Lemma 8), we use the notation
DU (K,n, γ) and DBP (α)(K,n, γ).

D. Discrete Distributions

Here we assume the incoming job sizes follow a discrete
distribution. We first assume that the job sizes are distributed
in two points and hence with probability p an incoming task
is of size xm and with probability 1− p it is of size xM . The
jobs of size xm (resp. of size xM ) are said to be short jobs
(resp. long jobs). Since the distribution under consideration is
discrete, (3) does not determine the load balancing for this
distribution. Therefore, we define how the load is balanced in
SYS-(R,1,λ) when the job sizes are distributed in two points.

Let l = R

1+
(1−p)xM
pxm

. If l is integer, we have that the short

jobs are executed in l servers and the load is balanced among
these servers using the Bernoulli routing policy. On the other
hand, the long jobs are executed in R− l servers, where it is
also applied the Bernoulli scheduling. Indeed,

l =
R

1 + (1−p)xM
pxm

⇐⇒ pxm
l

=
(1− p)xM
R− l

,

and, as a consequence, the load in all the servers is the same.
If l is not integer, we have three different possibilities:

• If l > R−1, there is one server that executes all the long
jobs and a proportion p1 of short jobs. In the rest of the
servers only short jobs are executed. The value of p1 is
chosen so as to equalize the load of the servers, that is,
it is the solution of the following equation:

(1− p1)pxm
R− 1

= p1pxm + (1− p)xM .

• If l < 1, there is one server that executes all the short
jobs and a proportion p2 of long jobs. In the rest of the
servers only long jobs are executed. The value of p2 is
chosen so as to equalize the load of the servers, that is,
it is the solution of the following equation:

pxm + p2(1− p)xM =
(1− p2)(1− p)xM

R− 1
.

• If 1 < l < R− 1, there are blc servers that execute only
short jobs and R − dle 3 servers that execute only long
jobs, while in the other server a proportion p1 of short
jobs and a proportion p2 of long jobs. The values of p1
and p2 are chosen in order to equalize the load of the
servers, that is,

(1− p1)pxm
blc

= p1pxm + p2(1− p)xM =

(1− p)(1− p1)xM
R− dle

.

We analyze in Section VII the degradation factor when
the job sizes is distributed in two points and we denote it
by DTP (l)(K,n, xm, xM ). In Section IX, we analyze the
degradation factor with real traces and we consider that the
job sizes distribution coincides with the jobs that has been
submitted to real data centers. For these cases, the job sizes
follow a discrete distribution with more than two points
characterized by a vector of job sizes x = (xm, . . . , xM ) and
a probability distribution p.

E. Preliminary Results

We now present that, using the results of Section III-B,
we can give the expression for the degradation factor when
the job sizes are continuously distributed. We first observe
that, from (4), we can obtain the mean waiting time of SYS-
(K,1,λ) when R = K and λ = λ and the mean waiting time of
SYS-(K/n,1,λ/n) when R = K/n and λ = λ/n. Besides, for
both systems, ρ coincides and the factor λ

2(1−ρ) appears in the
numerator and denominator of the degradation factor. Hence,
we conclude that the degradation factor does not depend on
the arrival rate λ.

Let x0, . . . , xK denote the thresholds of SYS-(K,1,λ) and
y0, . . . , yK

n
denote the thresholds of SYS-(K/n,1,λ/n). Substi-

tuting these values in (6) it results:

D(K,n, xm, xM ) =

1

n

∑K/n
j=1 (F (yj)− F (yj−1))

(∫ yj
yj−1

x2f(x)dx
)

∑K
j=1 (F (xj)− F (xj−1))

(∫ xj
xj−1

x2f(x)dx
) . (7)

3bxc and dxe denote respectively the floor and the ceil of x ∈ R.
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As it can be observed, the degradation factor depends on the
thresholds of SYS-(K/n,1,λ/n) and of SYS-(K,1,λ).

We now show that the thresholds of both systems are related
for continuously distributed job sizes..

Lemma 2. If f(x) > 0 for all x ∈ [xm, xM ], then yj = xn·j .

Proof. See Appendix A.

From this result and (7), it follows directly the expression
for the degradation factor for continuously distributed job
sizes.

Proposition 1. If f(x) > 0 for all x ∈ [xm, xM ],

D(K,n, xm, xM ) =

1

n

∑K/n
j=1

(
F (xn·j)− F (xn·(j−1))

) (∫ xn·j
xn·(j−1)

x2f(x)dx
)

∑K
j=1 (F (xj)− F (xj−1))

(∫ xj
xj−1

x2f(x)dx
) ,

(8)

where the thresholds xm = x0, x1, . . . , xK−1, xK = xM
satisfy∫ x1

xm

xf(x)dx =

∫ x2

x1

xf(x)dx = · · · =
∫ xM

xK−1

xf(x)dx.

Let k = K
n . In the following result, we show the properties

that the probability and the second moment of jobs executed
in the servers satisfy.

Lemma 3. Let pj = F (xn·j) − F (xn·(j−1)) and sj =∫ xn·j
xn·(j−1)

x2f(x)dx, for j = 1, . . . , k. Then,

(i) p1 + · · ·+ pk = 1,
(ii) p1 ≥ · · · ≥ pk ≥ 0,

(iii) sk ≥ · · · ≥ s2 ≥ s1 ≥ 0.

Proof. See Appendix B.

IV. MONOTONICITY ON n

As we explained in Section III, jobs are split in such a
way that the variability of jobs decreases when the number of
servers increases. Hence, one can think that the degradation
factor D(K,n, xm, xM ) increases with n. In this section we
deal with this monotonicity property.

We consider the values of s1, . . . , sk and p1, . . . , pk of
Lemma 3. The key result to prove the monotonicity property
is the following:

Lemma 4. Let k ≥ 1 and s1, . . . , sk and p1, . . . , pk as defined
in Lemma 3. Then

k∑
i=1

pisi ≤
1

k

k∑
i=1

si.

Proof. See Appendix C.

This result can be interpretated in the following way: the
average of the values s1, . . . , sk is always larger than its

weighted sum when p1 ≥ · · · ≥ pk ≥ 0 and sk ≥ · · · ≥
s1 ≥ 0.

Let n and m such that 1 ≤ n ≤ m ≤ k. We now write
qi = pn+i−1∑m

j=n pj
and ti = sn+i−1, for i = 1, . . . ,m − n + 1.

Hence, from the above result, it follows that

m−n+1∑
i=1

qiti ≤
1

m− n+ 1

m−n+1∑
i=1

ti.

Therefore,
m∑
i=n

pi∑m
j=n pj

sj ≤
1

m− n+ 1

m∑
i=n

si, (9)

where the result coincides with that of Lemma 4 when n = 1
and m = k. In the following result we show that the
degradation factor is partially monotone with n.

Theorem 1. Let n1 ≤ n2 and assume that K/n1, K/n2 and
n2/n1 are integers. If f(x) > 0 for all x ∈ [xm, xM ], then

D(K,n1, xm, xM ) ≤ D(K,n2, xm, xM ).

Proof. Let k1 = K/n1, k2 = K/n2 and l = n2/n1. For any
i = 1, . . . , k2, p̄i = 1

l

∑il
j=(i−1)l+j pj . By Proposition 1, we

have that D(K,n1, xm, xM ) ≤ D(K,n2, xm, xM ) if and only
if

k1∑
i=1

pisi ≤
k2∑
i=1

l∑
j=1

p̄is(i−1)l+j .

And the desired result follows from (9).

We now present the interesting conclusions that we obtain
from this result. First, if we apply this result to n1 = 1 and
n2 = n, we conclude the degradation factor is always lower-
bounded by one, which means that there exists always degra-
dation when we compare the performance of SYS-(K,n,λ)
with that of SYS-(K,1,λ). Another important conclusion of the
previous result is obtained if we consider n1 = n and n2 = K.
Indeed, for this case, we derive that the degradation factor
is upper-bounded by D(K,K, xm, xM ). Hence, the following
result is a direct consequence of Theorem 1.

Corollary 1. If f(x) > 0 for all x ∈ [xm, xM ], then

1 ≤ D(K,n, xm, xM ) ≤ D(K,K, xm, xM ).

The following sections are devoted to analyze the upper-
bound D(K,K, xm, xM ) for specific distributions. First, we
consider uniformly distributed job sizes and, then, Bounded
Pareto distributed job sizes. Finally, we explore the upper-
bound of the degradation factor for two points distributed job
sizes, i.e., when there are only two types of jobs: small ones
and large ones. In Section IX, we consider discrete distri-
butions with more than two points and we present instances
where the degradation factor is not monotone on n when the
ratio n2/n1 is not an integer. However, Corollary 1 still holds
for these cases.
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V. UNIFORMLY DISTRIBUTED JOB SIZES

We focus on the degradation factor when the job sizes
are uniformly distributed. We observe that this distribution
satisfies that f(x) > 0 for all x ∈ [xm, xM ]. Therefore, we
can use the result of Corollary 1 to state that the degradation
factor for uniformly distributed job sizes is lower-bounded by
one and upper-bounded by DU (K,K, γ). In this section, for
a two server system, we show that the degradation factor is
upper bounded by 1.139. For a system with K →∞ servers,
we show that the degradation factor is upper bounded by
4/3. And for a system with K > 2 and finite, assuming that
DU (K,K, γ) decreases as γ increases, we show that the
degradation factor is upper bounded by 4/3.

It is trivial to check that the scaled thresholds are

zj =

√
(K − j)γ2 + j

K
, j = 0, . . . ,K.

In the following result, we give an expression of the
degradation factor for uniformly distributed job sizes, which,
as expected, depends on xm and xM only through γ.

Lemma 5. The degradation factor for uniformly distributed
job sizes only depends on K, n and γ and it is given by

DU (K,n, γ) =
1

n

∑K/n
j=1 (zn·j − zn·(j−1))(z3n·j − z3n·(j−1))∑K

j=1(zj − zj−1)(z3j − z3j−1)
.

(10)

Proof. See Appendix D.

A. The case K = 2

We study the degradation factor for a two-server system and
uniformly distributed job sizes. From (10) and noting that z1 =√

γ2+1
2 , we obtain that the degradation factor for uniformly

distributed job sizes in a system with two servers is

DU (2, 2, γ) =
1

2

(1− γ)(1− γ3)

(1− z1)(1− z31) + (z1 − γ)(z31 − γ3)
.

We now show that DU (2, 2, γ) decreases with γ.

Lemma 6. For γ < 1, DU (2, 2, γ) is decreasing with γ.

Proof. See Appendix E.

We use this result to give a lower bound of DU (2, 2, γ).

Proposition 2. For two servers and uniformly distributed job
sizes, the degradation factor is upper-bounded by 1.139

Proof. The result follows from Lemma 6 and using that

lim
γ→0

DU (2, 2, γ) =
1

2

1

(1− ( 1
2 )

1
2 )(1− ( 1

2 )
3
2 ) + 1/4

≈ 1.138.

B. The case K →∞
We now analyze the degradation factor when the number

of servers tends to infinity. We denote by DU (∞,∞, γ) the
degradation factor when n = K and K →∞. When K = n,
the numerator of (10) is (1−γ)(1−γ3). Besides, when K →
∞, from Riemann’s integral, it is satisfied that

K

K∑
i=1

(zi−zi−1)(z3i−z3i−1)→
∫ 1

0

(zi)
′·(z3i )′·dγ =

3

4
(1−γ2)2

since zi =
√
γ2 + j

K (1− γ2). Therefore, the degradation
factor when n = K and K →∞ is

DU (∞,∞, γ) =
4

3

(1− γ)(1− γ3)

(1− γ2)2
(11)

We show that this expression decreases with γ.

Lemma 7. DU (∞,∞, γ) is a decreasing function of γ.

Proof. See Appendix F.

From this result, it follows that DU (∞,∞, γ) is upper-
bounded by DU (∞,∞, 0), which is 4/3 from (11).

Proposition 3. For K → ∞ and uniformly distributed job
sizes, the degradation factor is upper-bounded by 4/3.

C. The case 2 < K <∞
We now study the degradation factor when the number

of servers is higher than two and finite. We assume that
DU (K,K, γ) decreases with γ when K is finite and higher
than two. In the numerical part of this work, we present
the experiment that show that this monotonicity property is
verified. Unfortunately, given the difficulty of the expressions,
we did not succeed in extending the result of Lemma 7 for
this case.

Conjecture 1. DU (K,K, γ) decreases with γ, for any finite
K.

Under this assumption, we can state that the degradation
factor is upper-bounded by limγ→0DU (K,K, γ), which is
4/3.

Proposition 4. Assume that Conjecture 1 holds. Then, for K
higher than two and finite and uniformly distributed job sizes,
the degradation factor is upper-bounded by 4/3.

VI. BOUNDED PARETO DISTRIBUTED JOB SIZES

In this section, we concentrate on the degradation factor for
Bounded Pareto distributed job sizes. We observe that this
distribution satisfies that f(x) > 0 for all x ∈ [xm, xM ].
Therefore, we can use the results of Corollary 1 to state that the
degradation factor for uniformly distributed job sizes is lower-
bounded by one and upper-bounded by DBP (α)(K,K, γ). For
α = 1 and for α 6= 1 and K → ∞, we show that the
degradation factor is unbounded from above. For α 6= 1
and finite K, assuming that DBP (α)(K,K, γ) decreases as
γ increases, we show that the degradation factor is upper
bounded by K

1
|1−α| .
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We now present the values of the scaled thresholds for
Bounded Pareto distributed job sizes:

zj =


(
K−j
K + j

K γ1−α
) 1

1−α
, α 6= 1,

γ1−
j
K , α = 1.

(12)

In the following result, we give an expression of the
degradation factor for Bounded Pareto distributed job sizes,
which also depends on xm and xM only through γ.

Lemma 8. The degradation factor for Bounded Pareto dis-
tributed job sizes only depends on K, n, α and γ and it is
given by

DBP (α)(K,n, γ) =

1

n

∑K/n
j=1 (z2−αn·j − z

2−α
n·(j−1))(z

−α
n·(j−1) − z

−α
n·j )∑K

j=1(z2−αj − z2−αj−1 )(z−αj−1 − z
−α
j )

. (13)

A. The case α = 1

We first analyze the degradation factor for Bounded Pareto
distributed job sizes with α = 1. As we said in Section II, the
authors in [18] show that SITA-E optimizes the performance of
a system with two servers and Bounded Pareto distributed jobs
sizes with α = 1. From Lemma 8 and (12) and simplifying,
it results that

DBP (1)(K,n, γ) =
1

n2
· γ
−n
K (1− γ n

K )2

γ
−1
K (1− γ 1

K )2
. (14)

We show that this expression decreases with γ.

Lemma 9. DBP (1)(K,n, γ) is a decreasing function of γ.

Proof. See Appendix G.

Using the previous result and noting, from (14), that
DBP (1)(K,K, γ) tends to infinity when γ → 0, we give the
following result.

Proposition 5. DBP (1)(K,K, γ) tends to infinity when γ →
0.

From this result, we state that the performance of SYS-
(K/n,1,λ/n) is, in the worst case, infinite times worse that the
performance of SYS-(K,1,λ). In fact, this ratio equals infinity
when γ → 0, in which case the Bounded Pareto distribution
is very skewed and the variance goes to infinity.

B. The case α 6= 1

We now study the degradation factor for Bounded Pareto
distributed job sizes with α 6= 1. We first consider that the
number of servers is infinite and then we analyze the case of
a finite number of servers.

1) Degradation Factor when K →∞ and n = K: We first
focus on the case n = K and K →∞. The scaled thresholds
satisfy that, when K →∞,

K

K∑
i=1

(z−αi − z−αi−1)(z2−αi − z2−αi−1 )→∫ 1

0

(z−αi )′ · (z2−αi )′ · dγ =
α · (2− α)

−(1− α)2
(1− γ1−α)2,

since zi = (γ1−α + j
K (1− γ1−α))

1
1−α , where α > 0. There-

fore, the degradation factor for Bounded Pareto distributed job
sizes and K →∞ and n = K is

DBP (α)(∞,∞, γ) =
−(1− α)2

α · (2− α)
·
(

1− (1− γ)2

γα(1− γ1−α)2

)
.

(15)
We now show that the above expression is decreasing with

γ.

Lemma 10. DBP (α)(∞,∞, γ) is a decreasing function of γ.

Proof. See Appendix H.

From (15), it follows that the degradation factor is un-
bounded from above when γ → 0. F

Proposition 6. DBP (α)(∞,∞, γ) tends to infinity when γ →
0.

2) Degradation Factor when K is finite: We now analyze
the degradation factor when K is finite and we first give
the value of DBP (α)(K,n, γ) when γ → 0, i.e., when the
difference between xm and xM tends to infinity.

Lemma 11. If α 6= 1,

lim
γ→0

DBP (α)(K,n, γ) = n
1

|1−α| .

Proof. See Appendix I.

It is important to note that, when γ → 0, the degradation
factor for Bounded Pareto distributed job sizes with α 6= 1

does not depend on K. Besides, n
1

|1−α| is infinite when α→ 1
for any n. Therefore, we conclude from Proposition 5 and
Lemma 11 that the limits when γ goes to zero and when
α tends to one interchange for Bounded Pareto job sizes
distribution, i.e.,

lim
γ→0

lim
α→1

DBP (α)(K,n, γ) = lim
α→1

lim
γ→0

DBP (α)(K,n, γ).

We assume that DBP (α)(K,K, γ) with α 6= 1 and for any K
finite decreases with γ. Given the difficulty of the expression
(13) as well as the scaled thresholds (12), we have not
succeeded in showing this monotonicity property. We have
performed many numerical experiments to conjecture that the
degradation factor decreases with γ when α 6= 1 and n = K.

Conjecture 2. When α 6= 1 and for any finite K,
DBP (α)(K,K, γ) is a decreasing function of γ.
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Under this assumption, we conclude that, for this case,

D(K,K, γ) ≤ lim
γ→0

D(K,K, γ) = K
1

|1−α| ,

where the last equality is given by Lemma 11.

Proposition 7. Assume Conjecture 2 holds. Then, the degra-
dation factor factor for Bounded Pareto distributed job sizes
with alpha 6= 1 and K finite is upper-bounded by K

1
|1−α| .

We observe that K
1

|1−α| is infinite when K tends to infinity.
Therefore, we conclude from Proposition 7 and Proposition 6
that the limits when γ goes to zero and K goes to infinity
interchanges, that is,

lim
γ→0

lim
K→∞

DBP (α)(K,K, γ) = lim
K→∞

lim
γ→0

DBP (α)(K,K, γ).

VII. TWO POINT DISTRIBUTED JOB SIZES

In this section, we assume that the job sizes are distributed
in two points with parameter p, i.e., p = P(X = xm) and
P(X = xM ) = 1 − p. We recall that the load balancing of
SYS-(K,1,λ) for this distribution depends on l = K

1+
(1−p)xM
pxm

.

A. The Case K = 2

We first study the degradation factor for this distribution in a
two-server system. Hence, we aim to compare the performance
of SYS-(2,1,λ) with the performance of SYS-(1,1,λ/2). SYS-
(1,1,λ/2) is a M/G/1 queue with arrival rate λ/2 and, accord-
ing to the Pollaczek-Khinchine formula, its expected waiting
time is

λ
2 E(X2)

2(1−ρ) . We now analyze the degradation factor for
different values of l.

1) Equally Loaded Jobs (l = 1): We assume that l = 1,
which occurs when pxm = (1− p)xM , i.e., the load of short
jobs and of long jobs is equal. We note that for any γ ∈ [0, 1],
there exists a value p ∈ [0.5, 1] such that pγ = (1− p) holds.

When l = 1, in SYS-(2,1,λ), the short and long jobs are
executed in different servers. From (4), it follows that the
expected waiting time of SYS-(2,1,λ) when l = 1 is given by

λ
2(1−ρ) (p

2x2m+(1−p)2x2M ). Using that pxm = (1−p)xM and
also that E(X2) = px2m+(1−p)x2M , we obtain the following
expression for the degradation factor: DTP (1)(2, 2, γ) = 1+γ2

4γp .
It is easy to see that this expression is decreasing with γ for all
γ ∈ [0, 1] and p and, as a result, an upper bound and a lower
bound are given when γ → 0 and γ → 1, respectively. From
Lemma 1 and since the degradation factor tends to infinity
when γ → 0, it implies the following result:

Proposition 8. DTP (1)(2, 2, γ) ≥ 1 and it tends to infinity
when γ → 0.

2) Unequally Loaded Jobs (l 6= 1): We assume that l > 1.
For this case, in SYS-(2,1,λ), we have that pxm > (1− p)xM ,
i.e., the load of small jobs is higher that the load of large
jobs, and also that there exists a proportion p1 such that
(1 − p1)pxm = p1pxm + (1 − p)xM , holds. This means
that there is one server that executes all the large jobs and
a proportion p1 of small jobs, while in the other server

only small jobs are executed. From (4) and using conditional
probability properties, we have that the expected waiting time
of SYS-(2,1,λ) is

λ

2(1− ρ)
((1−p1)2p2x2m+(p1p+(1−p))(p1px2m+(1−p)x2M )),

which results

DTP (l)(2, 2, γ, p1) =

1

2

pγ2 + (1− p)
p2(1− p1)2γ2 + (p1p+ (1− p))(p1pγ2 + (1− p))

. (16)

We show that (16) decreases with γ.

Lemma 12. When l > 1, DTP (l)(2, 2, γ, p1) is a decreasing
function of γ.

Proof. See Appendix J.

From this result and Lemma 1, we conclude that
DTP (l)(2, 2, γ, p1) is lower bounded by one when l > 1.
We now observe that when p1 → 0, (16) coincides with
DTP (1)(2, 2, γ). Besides, executing long jobs and short jobs
in different servers leads to a performance improvement in
SYS-(2,1,λ) with respect to the case l > 1. As a consequence,
since SYS-(1,1,λ/2) does not vary with l, we have that when
l > 1,

DTP (l)(2, 2, γ, p1) ≤ lim
p1→0

DTP (l)(2, 2, γ, p1)

= DTP (1)(2, 2, γ).

Thus, from Proposition 8, it follows that DTP (1)(2, 2, γ) is
unbounded from above.

Proposition 9. When l > 1, DTP (l)(2, 2, γ, p1) ≥ 1 and it
tends to infinity when γ → 0 and p1 → 0.

When l < 1, the situation is very similar to that of l > 1.
In this case, we have that

DTP (l)(2, 2, γ, p2) ≤ lim
p2→0

DTP (l)(2, 2, γ, p2)

= DTP (1)(2, 2, γ),

and the same techniques as in Lemma 12 show that the
degradation factor is decreasing with γ when l < 1. As a
consequence, we give the following result.

Proposition 10. When l < 1, DTP (l)(2, 2, γ, p2) ≥ 1 and it
tends to infinity when γ → 0 and p2 → 0.

B. The case K > 2

We show that there are instances where there is no per-
formance degradation for arbitrary K. We consider that l is
integer. Hence, we know that in SYS-(K,1,λ) the short jobs
are executed in l servers using Bernoulli policy, while the long
jobs are executed in K − l servers, also applying Bernoulli
policy. Therefore, the arrival rate to a server that executes
short jobs is λpl and the arrival rate to a server that executes
long jobs is λ 1−p

K−l .
We now analyze the performance of SYS-(K/n1,λ/n) when

l is a multiple of n. Thus, for SYS-(K/n1,λ/n), we define
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l∗ = K/n

1+
(1−p)
pxm

and, if l∗ is integer, the short jobs are executed

in l∗ servers and the long jobs in K/n − l∗. Note that
l∗ = l/n and therefore l∗ is integer since l is multiple of
n. Hence, the arrival rate to a server that executes short jobs
is λ

n
p
l∗ = λpl and the arrival rate to a server that executes long

jobs is λ
n

1−p
K/n−l∗ = λ 1−p

K−l . It follows directly thus that the
performance of SYS-(K/n,1,λ/K) coincides with that SYS-
(K,1,λ) when l is a multiple of n.

When l is not multiple of n, in SYS-(K/n1,λ/n) there is one
server where jobs of both types are executed. Therefore, the
performance of both systems do not coincide for this instance
and we can claim that there exist a performance degradation.
Given the difficulty of the expressions of the degradation factor
for arbitrary K and when l is not a multiple of n, we did not
succeed in performing the analytical study of the performance
degradation.

VIII. NUMERICAL COMPUTATIONS

In this section, we present the numerical experiments of
this work. First, we provide numerical evidence to validate
the assumptions required for some of the results. Then, we
focus on the degradation factor for Bounded Pareto distributed
job sizes, for two point distributed job sizes with more than
two servers and l not multiple of n and for Degenerate
Hyper-exponential distributed job sizes. Finally, we analyze
the degradation factor in a system with two servers under SITA
policy with optimal cutoffs.

A. Monotonicity Assumptions

We aim to check that the conjectures of this work hold. We
have performed a large number of simulations modifying the
parameters of the system. In all the cases, we have observed
that the monotonicity property is satisfied. We now present a
few results that are illustrative of the general pattern.

In Figure 3, we consider uniformly distribution jobs sizes
and we represent the evolution of the degradation factor for
different values of K (note that the x-axis is in the logarithmic
scale) when γ varies from 1 to 10−4. We observe that, in all
the instances, the degradation factor decreases with γ, as stated
in Conjecture 1. Furthermore, we see that, for K = 100 and
K = 1000, when γ → 0, the degradation factor tends to 4/3,
which is the upper-bound given in Proposition 4.

We also investigate the degradation factor for Bounded
Pareto distributed job sizes with α 6= 1. In Figure 4, we con-
sider α = 1.5 and we plot the evolution of DBP (α)(K,K, γ)
with respect to γ for different values of K. We observe that
the degradation factor in all the instances is always decreasing
with γ, as stated in Conjecture 2. In addition, we observe that
DBP (α)(K,K, γ) tends to K2 when γ → 0, which coincides
with the value given in Lemma 11.

B. Degradation Factor

1) Bounded Pareto: We now study the degradation factor
for Bounded Pareto distributed job sizes. We know from the
results of Section VI that the degradation factor can be very
large, for example when γ is zero and α is close to one.

We consider a system with K = 1000 servers and we set
γ to 9/1014, which is the value used by [16]. As we saw in
Lemma 8, the performance degradation does not depend on
the arrival rate of the system. Hence, we do not specify the
value of this parameter in these experiments.

In Table II, we show the degradation factor when n = 100,
n = 500 and n = 1000 for different values of α. We also
present in Table II the evolution over α of the value n

1
|1−α| ,

which is the degradation factor when γ is zero. We observe
that the degradation factor is always far from the value of
the upper bound achieved when γ is zero. However, there
are some values of α where the degradation factor is high.
An example is α = 1.25, which is a typical value found in
computer and networking systems [18]. As it can be seen,
for this instance, the degradation factor is equal to 4149 for
n = 100, to 2.537 · 107 for n = 500 and to 4.0481 · 108

for n = 1000. We also observe that the upper bound gets
tighter when n = 1000. Besides, when α = 1, the upper
bound is infinity and the degradation factor is 1.2311 · 1010

for n = 1000.
2) Two Points when K > 2 and l is not multiple of n:

In Section VII-B, we show that the degradation factor equals
one for K > 2 when l is multiple of n. We now consider that
l is multiple of n and we study the degradation factor for this
case.

We consider that K = 1000 and n = K. In Figure 5,
we analyze the evolution of the degradation factor when we
vary the value of γ from one to 10−3 and we consider four
different values of l:10 (dashed line), 300 (solid line), 500
(dotted and dashed line) and 750 (dotted line). We note that,
for all the cases, the value of l is not a multiple of n.
As it can be observed, the value of the degradation factor
grows unboundedly for all the instances under consideration.
Therefore, we conclude that the results of Proposition 8,
Proposition 9 and Proposition 10 extend to systems with more
than two servers.

3) Degenerate Hyper-exponential: We consider a system
with SITA-E policy and Degenerate Hyper-exponential dis-
tributed job sizes. This distribution with probability p is an
exponential of rate µp and with probability 1 − p it is an
exponential with rate infinity. Interestingly, the mean of the
Degenerate Hyperexponential distribution is 1/µ, which does
not depend on p and the second moment is 1

pµ2 . The coefficient
of variation is C = 2/p − 1 and it belongs to [1,∞) as p
varies. Therefore, we study the degradation factor (8) for this
distribution when p varies.

In Figure 6, we consider λ = µ = 1 and we depict the
evolution of the degradation factor when p varies from 0.01 to
0.99 in a system with: (i) two servers and two groups; (ii) four
servers and four groups, (iii) eight servers and eight groups;
(iv) eight servers and four groups and (v) eight servers and two
groups. We observe that the degradation factor decreases with
p in all the cases. In fact, when p decreases, the variability
of jobs increases and this implies that the difference in the
performance of both systems increases. We also see that, as
expected, the degradation factor is always higher than one,
which means that the performance of both systems never
coincides. Furthermore, when p = 0.01, the coefficient of
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Fig. 3: Evolution over γ of the degradation factor for uni-
formly distributed job sizes (x-axis in logarithmic scale).
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Fig. 4: Evolution over γ of the degradation factor for Bounded
Pareto distributed job sizes with parameter α = 1.5 (x-axis
and y-axis in logarithmic scale).

n = 100 n = 500 n = 1000

DBP (α)(K,n, γ) n
1

|1−α| DBP (α)(K,n, γ) n
1

|1−α| DBP (α)(K,n, γ) n
1

|1−α|

α = 0.25 89.0317 464.15 755.68 3968.5 1.9033 · 103 9.999 · 103
α = 0.5 5263.6 104 1.3158 · 105 25 · 104 5.2631 · 105 106

α = 0.75 4149 108 2.537 · 107 6.25 · 1010 4.0481 · 108 1012

α = 1 2.0183 ∞ 1.4775 · 104 ∞ 1.2311 · 1010 ∞
α = 1.25 4149 108 2.537 · 107 6.25 · 1010 4.0481 · 108 1012

α = 1.5 5263.6 104 1.3158 · 105 25 · 104 5.2631 · 105 106

α = 1.75 89.0317 464.15 755.68 3968.5 1.9033 · 103 9.999 · 103

TABLE II: Degradation factor for Bounded Pareto distributed job sizes when K = 1000 and γ = 9
1014 compared with n

1
|1−α| .
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Fig. 5: Evolution over p of the degradation factor for two
points distributed job sizes with K > 2 and l not multiple of
n.
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Fig. 6: Evolution over p of the degradation factor for Degen-
erated Hyperexponential distributed job sizes.

variation is 199 and the degradation obtained in a system
with eight servers and eight groups for this case is 41.4. We
have done more experiments changing the value of the system
parameters, for example µ, and the obtained results confirm
that the performance degradation is also significant and that
the degradation increases as the variability of jobs increases.

C. Optimal SITA Degradation Factor

We now consider a system with two servers and we compare
SYS-(2,2,λ) and SYS-(2,1,λ) for Bounded Pareto distributed
job sizes when the SITA thresholds are chosen to optimize the

performance. In this case, the ratio of performances is said
to be the optimal SITA degradation factor. According to the
result of [18], in a two server system, the degradation factor
coincides with the optimal SITA degradation factor when
α = 1. Besides, the analytical computation of the optimal
thresholds seems to be intractable even in a system with two
servers. Therefore, we explore here the cases where α 6= 1.

Our objective is to know whether the optimal SITA degra-
dation is high or not. We use the numerical results of [18],
where they consider a two-server system and they obtain
numerically the ratio of the performance of SITA-E policy
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Optimal SITA Degradation Factor
ρ = 0.005 ρ = 0.5 ρ = 0.8

α = 0.25 333.74 87.77 8.6594
α = 0.5 2.2476 · 104 4219.9 18.7679
α = 0.75 3.3604 · 105 1.3187 · 105 133.8889
α = 1.25 3.3604 · 105 1.3187 · 105 133.8889
α = 1.5 2.2476 · 104 4219.9 18.7679
α = 1.75 333.74 87.77 8.6594

TABLE III: Degradation factor in a system with two servers.

over the performance of the optimal SITA policy. In our
simulations, we compute the optimal SITA degradation factor
for the same parameters as theirs. To do so, we multiply the
performance ratio they obtain in their simulations with the
degradation factor obtained in (13). Hence, in Table III, we
represent the optimal SITA degradation factor for low load
(ρ = 0.005), medium load (ρ = 0.5) and high load (ρ = 0.8)
and for different values of α. As it can be observed, the
degradation factor has a symmetry since we have obtained
the same results for α and 2−α. The reason of this is that the
symmetry sends the cutoffs of the optimal SITA to the cutoffs
of the optimal SITA of the dual distribution. We refer to [3]
for full details on this symmetry property. Furthermore, we
observe in Table III that the optimal SITA degradation factor is
very high in some instances. For example, if ρ = 0.005, when
α = 1.25 and when α = 1.5, the optimal SITA degradation
factor is, respectively, 3.3604 · 105 and 2.2476 · 104.

IX. DEGRADATION WITH REAL TRACES

In this section, we study the degradation when the job sizes
follow the distribution of jobs that have been submitted to real
data centers. The distribution of the jobs sizes are discrete and
does not satisfy the conditions of the distributions we have
considered in the previous sections. The distributions under
consideration here are characterized by a vector of job sizes
x = (xm, . . . , xM ) and a probability distribution of these jobs
sizes p.

One might think that the degradation factor always increases
with n. In Appendix K, we present an example that shows that,
for discrete job sizes distributions, this is not always true.

We aim to analyze the degradation factor when the job
sizes follow the distribution of the jobs submitted to real
parallel machines. Hence, we obtain the values of x and p
of several data centers, that is, the vector of the job sizes and
a probalility distribution of the job sizes, from the repository
[1]. The details about the archive and the handling of the data
provided in this repository are available in [9].

The parallel machines we consider here are the High Per-
formance Computing Center North (HPC2N), the San Diego
Supercomputing Center (SDSC) Datastar and the RIKEN Inte-
grated Cluster of Clusters (RICC). In each case, we consider a
system with K servers and K/n servers and, using the values
of x and p of each parallel machines system, we first compute
numerically the proportions of jobs to be executed in each
server to ensure that the load of all the servers is equalized and

3We show that there exist parameters of the system such that D(K,n)→
∞.
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Fig. 7: HPC2N system. In the x-axis we represent the size of
the submitted jobs (in bytes) and in the y-axis the number of
jobs of each size.

K = 10000 Degradation Factor
n = 1 1
n = 10 1.0001
n = 50 1.0012
n = 100 1.0034
n = 200 1.0067
n = 250 1.0060
n = 500 1.0219
n = 1000 1.0476
n = 10000 4.0365

TABLE IV: Degradation factor of HPC2N system for K =
10000 when n varies from 1 to 10000.

also that the thresholds c0, c1, . . . , cR, cR+1 must constitute a
nondecreasing sequence, that is, if jobs of size xi−1 and of
size xi+1 are executed in the same server, all the jobs of size
xi are executed in that server. Then, using these proportions,
we compute the performance of each of the systems to get
insights of the degradation factor when the job sizes follow
the distribution of the jobs submitted to real parallel machines.

A. HPC2N Data Center

The High Performance Computing Center North is a parallel
machine system that is in Sweden. The traces we analyze here
consist of more than 200, 000 jobs submitted between July
2002 until January 2006. In Figure 7, we represent the number
of jobs submitted of each size. As it can be observed, job sizes
vary from 1 byte to 200 bytes. Besides, the majority of jobs
are of small size, for example, the number of jobs of size 1
byte is almost 90,000 and of size 2 bytes is 40,000.

We analyze the degradation factor when the job sizes follow
the distribution of Figure 7. We consider that the number
of servers is 10,000 and we present in Table IV the values
of the degradation factor for several values of n between
1 and 10,000. We observe that the degradation factor when
n = 200 is higher that that of n = 250, which confirms
the observation of Appendix K. In the rest of the values of
n, we see that there is a partial monotonicity on n for the
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Fig. 8: SDSC Datastar. In the x-axis we represent the size of
the submitted jobs (in bytes) and in the y-axis the number of
jobs of each size.

K = 10000 Degradation Factor
n = 1 1
n = 10 1.0001
n = 50 1.0010
n = 100 1.0019
n = 200 1.0063
n = 250 1.0051
n = 500 1.0163
n = 1000 1.0658
n = 10000 5.7973

TABLE V: Degradation factor of SDSC Datastar system for
K = 10000 when n varies from 1 to 10000.

degradation factor. Besides, as it can be observed in Table IV,
the degradation factor is lower bounded by 1 and upper
bounded by the D(K,K, xm, xM ), which coincides with the
result of Corollary 1.

B. SDSC Datastar

The San Diego Supercomputing Center is a high perfor-
mance computing system devoted to scientific research. We
investigate the traces of this system that consist of almost
100,000 jobs submitted from March 2004 to March 2005. In
Figure 8, we illustrate the number of jobs of each size that
has been submitted to this system. We see that the difference
between the smallest job size and the largest is higher than in
the HPC2N system since the smallest job is of size 8 bytes and
the largest of 1480 bytes. We also observe that the majority
of jobs are of size 8 bytes, 32 bytes and 64 bytes.

Our goal is to analyze the degradation factor when the
job sizes follow the distribution represented in Figure 8. We
consider that the number of servers is K = 10000 and the
number of groups n varies from 1 to 10000. We present
in Table V the values of the degradation factor for the
considered cases. We observe that the degradation factor is
the degradation factor is partially monotone on n and when
n = 200 the degradation is higher than that of n = 250.
Furthermore, the result of Corollary 1 also holds for this

100 101 102 103 104
0

0.5

1

1.5

2

2.5

3

3.5
x 105

Fig. 9: RICC system. In the x-axis we represent the size of
the submitted jobs (in bytes) and in the y-axis the number of
jobs of each size.

K = 10000 Degradation Factor
n = 1 1
n = 10 1.0007
n = 50 1.0031
n = 100 1.0048
n = 200 1.0137
n = 250 1.0184
n = 500 1.0487
n = 1000 1.1238
n = 10000 7.5531

TABLE VI: Degradation factor of RICC system for K =
10000 when n varies from 1 to 10000.

case, since the degradation factor is lower bounded by one
and upper bounded by D(K,K, xm, xM ).

C. RICC System

The RIKEN Integrated Cluster of Clusters is a system
of RIKEN, which is a research institution of the Japanese
government. The traces we analyze in this part of the work
consist of almost 500,000 jobs that have been submitted to
RICC system from May 2010 to September 2010. The size of
the smallest job is 1 byte and of the largest of of 8192 bytes,
therefore the difference on the size between the smallest and
the largest is higher than in SDSC system. We plot in Figure 9
the number of jobs submitted of each size. We observe that
almost 350, 000 jobs are of size 1 byte.

We are interested in studying the degradation factor when
the sizes of job follow the distribution shown in Figure 9. We
consider that the number of servers is K = 10000 and also the
values of n varying from 1 to 10000. In Table VI we present
the values of the degradation factor for the instances under
consideration. We observe that the degradation factor is lower
bounded by 1 and upper bounded by 7.5531, which is the
degradation obtained when n = 10000. Besides, we observe
that for this case, the degradation factor increases with n.
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X. CONCLUSIONS

In this work, we have analyzed the performance of mul-
tiservers systems where dispatchers operate under SITA-E
policy, i.e., a size-based routing policy that equalizes the load
of all the servers. We compare the performance of SYS-
(K,n,λ), which is a system formed by K servers, n > 1
dispatcher and arrival rate λ with the performance of SYS-
(K,1,λ). We first show that the performance of SYS-(K,n,λ)
is the same as the performance of SYS-(K/n,1,λ/n). As a
consequence, the performance analysis we perform in this
article can be seen as the economies when, in a system with a
single dispatcher, we scale up the number of servers and the
arrival rate proportionally. We define the degradation factor
as the ratio between the performance of SYS-(K,1,λ) and the
performance of SYS-(K/n,1,λ/n). We define as γ the ratio
between the size of the smallest and the largest job.

For an arbitrary distribution, we have established mono-
tonicity on the number of dispatchers. From this result, we
conclude that the degradation factor is lower-bounded by one
and upper-bounded by the ratio between the performance
of SYS-(K,1,λ) and of SYS-(1,1,λ/K). We investigate the
maximum performance degradation for particular distributions.
First, we consider that job sizes are uniformly distributed. For
two servers, we show that the degradation factor is upper-
bounded by 1.139. For an infinite number of servers, we show
that the performance degradation for uniformly distributed
job sizes is upper-bounded by 4/3. For more than two and
finite number of servers, assuming that the degradation factor
decreases with γ, we show that the degradation is upper-
bounded by 4/3. We then consider that job sizes are Bounded
Pareto distributed. We show that the degradation factor is
unbounded from above for the following cases: (i) α = 0
and (ii) α 6= and K → ∞. For α 6= and finite K, assuming
that the degradation factor decreases with γ, we show that
the degradation factor is upper-bounded by K

1
|1−α| . From this

results, we conclude that the degradation is high when the
variability of job increases. We also consider that job sizes
are distributed in two points, since it is the distribution that
maximizes the variance for a given mean. For this distribution,
we show that, for two servers, the degradation factor is
unbounded from above when load of both type of jobs is equal
and when it is unequal.

As a future work, we think that an interesing extension
of the degradation factor analysis performed in this work
would be to consider other scheduling policies that are known
to achieve an optimal performance in the literature such as
Power of two, Join the Shortest Queue or the SITA policy
with optimal thresholds. Another possible future research for
this work is considering other metrics for the performance
of these systems, such as tail-probabilities or second moment
of the waiting time. Finally, we would like to analyze the
performance degration of multiservers systems considering a
model with less restrictions, for instance, when the servers are
hetereogenous and not necessarily FCFS.
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APPENDIX

A. Proof of Lemma 2

Let H(x) =
∫ x
xm

zf(z)dz. Thus, we have that H(xm) = 0
and H(xM ) = E(X). For SYS-(K,1,λ), it follows from (3)
that

H(xj) =
E(X) · j

K
, j = 0, . . . ,K.

Similarly, for SYS-(K/n,1,λ/n), we have

H(yj) =
E(X) · j
K/n

, j = 0, . . . ,K/n.

From these results, we conclude that for j = 0, . . . , Kn

H(yj) =
E(X) · j
K/n

=
E(X) · n · j

K
= H(xn·j). (17)

Since the thresholds of SITA-E policy are unique if f(x) >
0 for all x ∈ [xm, xM ], then (17) implies that yj = xn·j , for
all j = 0, . . . ,K/n.

B. Proof of Lemma 3

First, (i) follows since F (x0) = 0 and F (xK) = 1. We
now show (ii). Under the routing policy under consideration,
the load of all the servers is the same, i.e., for j = 2, . . . , k,
we have that pj−1E[Xj−1] = pjE[Xj ]. Now, since all the
jobs executed in server j are smaller that the jobs executed in
server j + 1, it follows that the mean service time of server j
is less that that of server j + 1.

Finally, to prove (iii), we observe that for all j,∫ xn·(j+1)

xn·j
x2f(x)dx =

∫ xn·j
xn·(j−1)

x2f(x)dx. Therefore

sj+1 =

∫ xn·(j+1)

xn·j

x2f(x)dx

≥ xn·j
∫ xn·(j+1)

xn·j

xf(x)dx

= xn·j

∫ xn·j

xn·(j−1)

xf(x)dx

≥
∫ xn·j

xn·(j−1)

x2f(x)dx

= sj ,

where the inequalities are given since x2 is an increasing
function. And the desired result is proven.

C. Proof of Lemma 4

We first show that, for all 1 ≤ i ≤ k − 1,

pi

1−
∑i−1
j=1 pj

≥ 1

k − i+ 1
. (18)

This is equivalent to show that

1−
i∑

j=1

pj ≤ k − i+ 1,

which holds since the LHS is less than one and the RHS is
higher or equal than one 1 ≤ i ≤ k−1. Furthermore, we show
that

si ≤
1

k − i

k∑
j=i+1

sj ,

since, from Lemma 3, sk ≥ · · · ≥ s1 and therefore (k−i)si ≤∑k
j=i+1 sj for all i = 1, . . . , k− 1. We now multiply (18) by

si − 1
k−i

∑k
j=i+1 sj and it results that

pi

1−
∑i−1
j=1 pj

si −
pi

1−
∑i−1
j=1 pj

1

k − i

k∑
j=i+1

sj ≤

1

k − i+ 1
si −

1

k − i+ 1

1

k − i

k∑
j=i+1

sj ,

where the sense of the sign changes since si− 1
k−i

∑k
j=i+1 sj

is negative. This expression is equivalent to the following one:

pi

1−
∑i−1
j=1 pj

si +

(
1− pi

1−
∑i−1
j=1 pj

)
1

k − i

k∑
j=i+1

sj ≤

1

k − i+ 1
si +

(
1− 1

k − i+ 1

)
1

k − i

k∑
j=i+1

sj ,

which after small manipulations we obtain:

1−
∑i−1
j=1 pj

k − i+ 1

k∑
j=i

sj ≥ pisi +
1−

∑i
j=1 pj

k − i

k∑
i=i+1

sj , (19)

for i = 1, . . . , k − 1. Hence, for i=1, we have that

1

k

k∑
j=1

sj ≥ p1s1 +
1− p1
k − 1

k∑
i=2

sj .

We now use that (19) for i = 2 to see that

p1s1 +
1− p1
k − 1

k∑
i=2

sj ≥ p1s1 + p2s2 +
1−

∑2
j=1 pj

k − 2

k∑
i=3

sj .

Again, we apply (19) for i = 3 and we get that

p1s1 + p2s2 +
1−

∑2
j=1 pj

k − 2

k∑
i=3

sj ≥

p1s1 + p2s2 + p3s3 +
1−

∑3
j=1 pj

k − 3

k∑
i=4

sj .

We continue with the same reasoning until i = k − 1 and we
derive that

1

k

k∑
j=1

sj ≥
k−1∑
j=1

pjsj + (1−
k−1∑
j=1

pj) · sk.

And the desired result follows since pk = 1−
∑k−1
j=1 pj .
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D. Proof of Lemma 5

First, we substitute the values of xj , f(x) and F (x) in (8)
and thus

DU (K,n, xm, xM ) =

1

n

∑K/n
j=1 (xn·j − xn·(j−1))(x3n·j − x3n·(j−1))∑K

j=1(xj − xj−1)(x3j − x3j−1)
.

Using that xj = xM zj , (10) follows by dividing the numerator
and denominator by x4M and, since zj depends on xm and xM
only through γ, the desired result follows.

E. Proof of Lemma 6

We aim to prove that D(2, 2, γ) is decreasing with γ. Before
presenting this result, we give the following lemma.

Lemma 13. For all γ < 1,

(a) 1−z1
1−γ ≤

1−z31
1−γ3 .

(b) d
dγ

(
1−z31
1−γ3

)
< 0.

(c) d
dγ

(
1−z1
1−γ

)
+ d

dγ

(
1−z31
1−γ3

)
> 0.

Proof. (a) We observe that

1− z31
1− γ3

=
1− z1
1− γ

·
(

1 +
z21 − γ2 + z1 − γ
γ2 + γ + 1

)
.

Since 0 ≤ γ ≤ z1, we conclude that z21−γ
2+z1−γ

γ2+γ+1 is
positive, which gives the desired result.

(b) We have that

d

dγ

(
1− z31
1− γ3

)
< 0 ⇐⇒ 3γ2(1−z31)−3z21

d

dγ
z1(1−γ3) < 0.

Using that z1 =
√

1+γ2

2 and that d
dγ z1 = 1√

2

γ√
1+γ2

and

simplifying, it results

2γ
√

2 < (1 + γ)
√

1 + γ2.

Squaring both sides of the inequality and simplifying, we
obtain that

(1− γ)4 + 6γ (1− γ)2 > 0,

which always holds when γ < 1. Therefore, the desired
result is proven.

(c) Since dz1
dγ = γ

2z1
and 1−z31

1−γ3 = 1−z1
1−γ ·

z21+z1+1
γ2+γ+1 , we derive

that

d

dγ

(
1− z1
1− γ

)
+

d

dγ

(
1− z31
1− γ3

)
> 0 ⇐⇒

2z1(γ4+2γ3+6γ2+2γ+1) > (γ+1)(γ4+
7

2
γ3+3γ2+

7

2
γ+1).

Squaring both sides of this inequality and simplifying,
we obtain that

(γ−1)2(4γ6 +12γ5 +27γ4 +22γ3 +27γ2 +γ+4) > 0,

which is always positive when γ 6= 1.

We now give the proof of Lemma 6

Proof. We observe that the derivative of D(2, 2, γ) is negative
if and only if the derivative of

(1− z31)(1− z1)

(1− γ3)(1− γ)
+

(z31 − γ3)(z1 − γ)

(1− γ3)(1− γ)

is positive. We now notice that this expression can be written
as follows:

(1− z31)(1− x)

(1− γ3)(1− γ)
+

(
1− (1− z31)

(1− γ3)

)(
1− (1− z1)

(1− γ)

)
. (20)

Hence, we aim to show then that the derivative of (20)
is positive. We write h = 1−z1

1−γ and g =
1−z31
1−γ3 . Using this

notation, the derivative of (20) is positive if and only if

h′(2g − 1) + g′(2h− 1) > 0,

where h′ and g′ denote the derivate with respect to γ. From
Lemma 13(c), we have that h′ > −g′ if γ < 1 and we thus
derive that h′(2g−1)+g′(2h−1) > −g′(2g−1)+g′(2h−1) =
2g′(h− g).

Using Lemma 13(b) we have that g′ is negative for all γ < 1
and from Lemma 13(a) it follows that g ≥ h. Thus, we have
that g′(h− g) is positive, which implies that the derivative of
D(2, 2, γ) with respect to γ is negative, and the result follows.

F. Proof of Lemma 7

The derivative of DU (∞,∞, γ) with respect to γ is negative
if and only if

(−(1−γ3)−3γ2(1−γ))(1−γ2)2+2γ(1−γ2)(1−γ)(1−γ3) < 0.

After small manipulations of the previous expression, we
obtain the following one:

(1− γ)(1− γ2)(−1 + γ − 3γ2 + γ3 + 2γ4) < 0.

And the desired result follows since −1 +γ− 3γ2 +γ3 + 2γ4

is negative for all γ ∈ (0, 1).

G. Proof of Lemma 9

Prior to present the proof of Lemma 9, we give the following
result.

Lemma 14. The function n (1+γ
n
K )

(1−γ
n
K )

is an increasing function
of n.

Proof. The derivative of n (1+γ
n
K )

(1−γ
n
K )

with respect to n is posi-
tive if and only if(

1 + γ
n
K + n

n

K
γ
n
K log γ

)
(1− γ n

K )+

n (1 + γ
n
K )

n

K
γ
n
K log γ > 0.

After simplification, we obtain that

1− γ 2n
K + 2

n

K
γ
n
K log γ > 0.

Let L(γ,K, n) = 1− γ 2n
K + 2 n

K γ
n
K log γ. We now observe

that limγ→1 L(γ,K, n) = 0. Therefore, since γ ∈ [0, 1], to
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show the desired result, it is enough to prove that L(γ,K, n)
is decreasing with γ. Thus,

d

dγ
L(γ,K, n) < 0 ⇐⇒ 2n2

K2

γ
2n
K

γ
> 0.

And we observe that 2n2

K2
γ

2n
K

γ is always positive and the proof
is completed.

We are now showing Lemma 9.

Proof. The derivative of DBP (1)(K,n, γ) with respect to γ is
negative if and only if:

−n(1− γ 2n
K )(1− γ 1

K )2 + (1− γ 2
K )(1− γ n

K )2 < 0.

Dividing this expression by (1 − γ n
K )(1 − γ 1

K ) and rear-
ranging both sides of the expression, we obtain that

n (1− γ 2n
K )

(1− γ n
K )2

>
(1− γ 2

K )

(1− γ 1
K )2

.

Lemma 14 says that n (1+γ
n
K )

(1−γ
n
K )

is increasing with n and this
means that the previous inequality is always true. Hence, the
desired result follows.

H. Proof of Lemma 10

We aim to prove that (15) decreases with γ. Prior to that,
we give the following result:

Lemma 15. The equation 1−x
(1−x1−α)2xα/2

is
• decreasing with x if α < 1,
• increasing with x if α > 1.

Proof. The sign of the derivative of 1−x
(1−x)2xα/2 is the same as

the sign of

x
α
2

(
−(1− x1−α)− (1− x)

(
α

2

1

x
(1− x1−α)− (1− α)x−α

))
.

The sign of the above expression coincides with that of

−(1− x1−α)− (1− x)

(
α

2

1

x
(1− x1−α)− (1− α)x−α

)
,

which after small manipulations, gives

α

2
(1− x−α + x1−α)− 1 + x−α − α

2

1

x
.

This expression tends to zero when x→ 1, therefore it is pos-
itive (resp. negative) if it is decreasing with x (resp. increasing
with x). Therefore, we study the sign of its derivative. Hence,
the derivative of the above expression is

(
α2

2
− 1)x−1−α +

α

2
(1− α)x−α +

1

2x2
,

whose sign coincides with that of

(
α2

2
− 1) +

1

2
(1− α)x+

xα−1

2
.

This expression equals zero when x = 0. Hence, its sign is
the oposite of that of its derivative:

1

2
(1− α)(1− xα−2),

which is negative if α < 1 and positive if α > 1 since
(1 − xα−2 > 0. Therefore, we have shown that the equation
decreases with x if α < 1 and increases with x if α > 1.

We now prove the result of Lemma 10.

Proof. We first observe that DBP (α)(∞,∞, γ) can be written
in the following way:

DBP (α)(∞,∞, γ) =
−(1− α)2

α · (2− α)
·
(
1−B(α, γ)2

)
,

where
B(α, γ) =

1− γ
γα/2(1− γ1−α)

.

Now, we note that the sign of B(α, γ) is given by the sign
of 1 − γ1−α, which is positive if α > 1 and negative if α <
1. Finally, from the result of Lemma 15, it follows that the
derivative of DBP (α)(∞,∞, γ) is always negative.

I. Proof of Lemma 11

First, we divide the numerator and denominator of (13)
by γ−α − 1 and we write the degradation factor as follows:

DBP (α)(K,n, γ) = 1
n

∑K/n
j=1 mj∑K
j=1 lj

, where

mj =
(z2−αnj − z

2−α
n(j−1))(z

−α
n(j−1) − z

−α
nj )

γ−α − 1
,

for j = 1, . . . ,K/n and for j = 1, . . . ,K

lj =
(z2−αj − z2−αj−1 )(z−αj−1 − z

−α
j )

γ−α − 1
.

We now summarize how we prove the desired result. If
0 < α < 1, we show that, when γ → 0, then lK = (1/K)

2−α
1−α

and mK/n = (n/K)
2−α
1−α , while the rest of the terms are zero,

that is, lj = 0, for all j = 1, . . . ,K − 1, and mj = 0, for all
j = 1, . . . , Kn − 1. Thus,

lim
γ→0

DBP (α)(K,n, γ) = lim
γ→0

1

n
·
mK

n

lK
=

1

n
·
(
n
K

) 2−α
1−α(

1
K

) 2−α
1−α

= n
1

1−α .

On the other hand, if , 1 < α < 2, we show that, when
γ → 0, then l1 = (1/K)

−α
1−α and m1 = (n/K)

−α
1−α , while the

rest of the terms are zero, i.e., lj = 0, for all j = 2, . . . ,K,
and mj = 0, for all j = 2, . . . ,K/n. Hence,

lim
γ→0

DBP (α)(K,n, γ) =
1

n
·m1

l1
=

1

n
·
(
n
K

) −α
1−α(

1
K

) −α
1−α

=
1

n
·n
−α
1−α = n

−1
1−α .

• The case 0 < α < 1: The denominator of lj tends to
infinity when γ → 0 for all j = 1, . . . ,K. Furthermore,
for all j = 1, . . . ,K−1, the numerator of lj when γ → 0,
tends to a finite value. Therefore, limγ→0 lj = 0, for
j = 1, . . . ,K − 1.
Besides, the denominator of mj tends to infinity when
γ → 0 for all j = 1, . . . ,K/n. And, for all j =
1, . . . , Kn − 1, the numerator of mj when γ → 0,
tends to a finite value. Therefore, limγ→0mj = 0, for
j = 1, . . . , Kn − 1.
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We now observe that zK = γ and z−αK−1 tend to a finite
value, when γ → 0. Thus,

lim
γ→0

z−αK − z−αK−1
γ−α − 1

= lim
γ→0

γ−α − z−αK−1
γ−α − 1

= 1.

We now observe that,

lim
γ→0

z2−αK−1 − z
2−α
K = (1/K)

2−α
1−α .

As a result,

lim
γ→0

lK =

(
1

K

) 2−α
1−α

.

For mK
n

, since z−αK−n is finite when γ → 0, we have that

lim
γ→0

z−αK − z−αK−n
γ−α − 1

= lim
γ→0

γ−α − z−αK−n
γ−α − 1

= 1,

and also that, limγ→0 z
2−α
K−n − z2−αK = ( nK )

2−α
1−α .

Therefore, limγ→0mK
n

=
(
n
K

) 2−α
1−α .

• The case 1 < α < 2: Using that 2−α
1−α < 0 if 1 < α < 2

and that γ1−α →∞ when γ → 0, it follows that

lim
γ→0

z2−αj → 0,

for all j = 1, . . . ,K. We recall that z0 = 1. Moreover,

z−αj−1 − z
−α
j

γ1−α − 1

tends to a finite value when γ → 0. Hence, for all j =
2, . . . ,K, limγ→0 lj is equal to a finite value times zero,
i.e., it is zero.
We observe that

z−αj−n−z
−α
j

γ1−α−1 also tends to a finite value for
all j = 2, . . . ,K/n. Therefore, for all j = 2, . . . ,K/n,
limγ→0mj is equal to a finite value times zero which
means that it tends to zero.
We now focus on l1. We first give the value of z−α1 −z

−α
0

when γ → 0:

lim
γ→0

((
n
K γ1−α + K−n

K

) −α
1−α − 1

)
γ−α − 1

=
( n
K

) −α
1−α

,

which holds since γ−α →∞ when γ → 0 and −α
1−α > 0.

Using that z2−α0 − z2−α1 tends to 1 when γ → 0, we
conclude that

lim
γ→0

mK =
( n
K

) −α
1−α

.

We now concentrate on m1 and, using the same reasoning
as before, we have that

lim
γ→0

((
1
K γ1−α + K−1

K

) −α
1−α − 1

)
γ−α − 1

=

(
1

K

) −α
1−α

.

We also observe that z2−α0 −z2−αn tends to 1 when γ → 0
and, thus,

lim
γ→0

lK =

(
1

K

) −α
1−α

.

J. Proof of Lemma 12

We first substitute p1 = pγ+(1−p)
2pγ in (16) and simplifying

we obtain the following equivalent expression:

γ(pγ2 + (1− p))
γ(pγ2 + (1− p))− (1− p)2(1− γ)2

.

The first derivative of this expression with respect to γ is
negative if and only if

(3pγ2 + (1− p))(γ(pγ2 + (1− p))− (1− p)2(1− γ)2)−
(3pγ2 + (1−p) + 2(1−γ)(1−p)2)(γ(pγ2 + (1−p))) < 0.

Simplifying this expression, we obtain the following equiv-
alent one:

−(1− p)2(1− γ)(pγ2(3− γ) + (1− p)(1− γ)) < 0,

which is always negative for all γ < 1 and the desired result
follows.

K. Monotonicity counterexample

Consider the following discrete job size distribution: x =
[1, 10, 100] and p = [0.1, 0.1, 0.8] and also that K =
10000, n1 = 100 and n2 = 125. We aim to show that
D(K,n1,x,p) > D(K,n2,x,p). From (8), it follows that
the denominator of D(K,n1,x,p) and of D(K,n2,x,p) are
the same and, therefore, it is enough check that

1

n1

K/n1∑
j=1

E(Xj)

3∑
i=1

qn1
ij pi >

1

n1

K/n2∑
j=1

E(Xj)

3∑
i=1

qn2
ij pi (21)

where qn1
ij (resp. qn2

ij ) is the proportion of jobs of size xi,
i = 1, 2, 3, to be executed in server j when the system is
formed by n1 servers (resp. n2 servers) and pi is the i-th
component of vector p. We show the desired result below:
• The LHS of (21) can be seen as the performance of

a system with 100 servers and a single dispatcher. For
this system, we have that: (i) one server executes all the
smallest jobs and a proportion of 0.711 of the medium
size jobs, (ii) another server executes a proportion of
0.289 of the medium size jobs and a proportion of
0.006525 of the largest jobs, and (iii) all the remaining
98 servers execute only the largest jobs. Therefore, it
results that

(1/100) ∗ ((1− 0.006525)2 ∗ 0.82 ∗ 1002/98

+(0.289 ∗ 0.1 + 0.006525 ∗ 0.8)∗
(0.289 ∗ 0.1 ∗ 102 + 0.006525 ∗ 0.8 ∗ 1002)

+(0.1 + (1− 0.289) ∗ 0.1)∗
(0.1 ∗ 12 + (1− 0.289) ∗ 0.1 ∗ 102)),

which equals 0.6757.
• The RHS of (21) can be seen as the performance of

a system with 80 servers and a single dispatcher. For
this system, we have that: (i) one server executes all the
smallest jobs and a proportion of 0.9137 of the medium
size jobs, (ii) another server executes a proportion of
0.0863 of the medium size jobs and a proportion of
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0.0116 of the largest jobs, and (iii) all the remaining 78
servers execute only the largest jobs. Therefore, it results
that

(1/125) ∗ ((1− 0.0116)2 ∗ 0.82 ∗ 1002/78

+(0.0863 ∗ 0.1 + 0.0116 ∗ 0.8)∗
(0.0863 ∗ 0.1 ∗ 102 + 0.0116 ∗ 0.8 ∗ 1002)

+(0.1 + (1− 0.0863) ∗ 0.1)∗
(0.1 ∗ 12 + (1− 0.0863) ∗ 0.1 ∗ 102)),

which equals 0.6688.
Hence, we have seen that the degradation factor does not
always increase with n for discrete job size distributions.


