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Complex dynamics of a nonlinear aerospace structure:
numerical continuation and normal modes

L. Renson · J. P. Noël · G. Kerschen

Abstract This paper investigates the dynamics of
a real-life aerospace structure possessing a strongly
nonlinear component with multiple mechanical stops.
A full-scale finite element model is built for gain-
ing additional insight into the nonlinear dynamics that
was observed experimentally, but also for uncover-
ing additional nonlinear phenomena, such as quasi-
periodic regimes of motion. Forced/unforced, damped/
undamped numerical simulations are carried out using
advanced techniques and theoretical concepts such as
numerical continuation and nonlinear normal modes.

Keywords Aerospace structure · Piecewise-linear
nonlinearities · Numerical continuation · Nonlinear
normal modes · Modal interactions

1 Introduction

It is widely accepted that virtually all engineering struc-
tures are nonlinear, at least in certain regimes of motion.
Even if the common industrial practice is to ignore
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nonlinearity, a recent trend is to exploit them for engi-
neering design, e.g., for vibration absorption and mit-
igation [1–3]. The last decade witnessed progresses in
this direction, and, in particular, in the analysis of non-
linear aerospace structures. Experimental identification
of nonlinearity during aircraft and helicopter ground
vibration tests was, for instance, performed in refer-
ences [4–8]. Nonlinearity was also evidenced and iden-
tified during spacecraft testing [9,10]. However, most
of the existing experimental contributions assumed or
observed weakly nonlinear behaviors. In parallel, sub-
stantial efforts were made to address the numerical
modeling of complex, nonlinear aerospace structures
(see, e.g., [11,12]). Analysis using advanced numerical
continuation techniques was also carried out in [13,14].

Very few studies attempted to numerically analyze
and experimentally compare the dynamics of a real-life
structure in strongly nonlinear regimes of motion. This
is the main contribution of the present paper. The iden-
tification of the SmallSat spacecraft, a satellite possess-
ing a nonlinear component with multiple axial and lat-
eral mechanical stops, was achieved in [15] using mea-
surements collected during a typical qualification test
campaign. This study revealed that the spacecraft may
exhibit complex dynamical phenomena in commonly
endured experimental conditions. For instance, jumps,
interactions between modes with noncommensurate
linear frequencies, force relaxation, and chattering dur-
ing impacts on the mechanical stops were reported
in [15]. Furthermore, several interactions between local
and global modes of the structure evidenced energy
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transfers to the payload, which jeopardize its structural
integrity and, in turn, the satellite’s mission. Under-
standing and predicting these phenomena are thus of
the utmost importance.

This paper builds a full-scale computational model
of the satellite for gaining further insight into the
observed nonlinear dynamics, but also for uncover-
ing additional nonlinear phenomena not reproduced
experimentally. Forced/unforced, damped/undamped
numerical simulations are carried out using advanced
techniques and theoretical concepts such as numeri-
cal continuation [16,17] and nonlinear normal modes
[18,19]. We note that a formal model updating process
could not be achieved during the test campaign. Bring-
ing the predictions of the model in very close quanti-
tative agreement with the experimental results is there-
fore not the objective of this paper.

The paper is organized as follows. A detailed finite
element model of the underlying linear satellite is first
built in Sect. 2 and reduced using the Craig–Bampton
technique. The model identified experimentally for the
nonlinear vibration isolation device is presented and
incorporated in the finite element model in Sect. 3.
The nonsmooth nonlinearities in the model are regu-
larized for facilitating the ensuing numerical simula-
tions. Sect. 4 provides the numerical evidence of some
of the phenomena observed experimentally. A bifurca-
tion analysis then reveals the existence of quasiperi-
odic regimes of motion. Section 5 carries out nonlin-
ear modal analysis of the SmallSat spacecraft. It dis-
cusses in great detail the behavior of several nonlin-
ear modes exhibiting nonlinear modal interactions and
energy localization. The conclusions of this study are
drawn in Sect. 6.

2 The SmallSat spacecraft structure

The SmallSat structure was conceived by EADS-
Astrium as a low-cost platform for small satellites in
low-earth orbits [20]. It is a monocoque tube struc-
ture which is 1.2 m in height and 1 m in width. It is
composed of eight flat faces for equipment mount-
ing purposes, creating an octagon shape, as shown in
Fig. 1a. The octagon is manufactured using carbon-
fiber-reinforced plastic by means of a filament winding
process. The structure thickness is 4 mm with an addi-
tional 0.25-mm-thick skin of Kevlar applied to both
the inside and outside surfaces to provide protection

against debris. The top floor is an 1-m2 sandwich alu-
minum panel, with 25-mm core and 1-mm skins. The
interface between the spacecraft and the launch vehicle
is achieved via four aluminum brackets located around
cut-outs at the base of the structure. The total mass
including the interface brackets is around 64 kg.

The spacecraft structure supports a dummy tele-
scope mounted on a baseplate through a tripod; its mass
is around 140 kg. The dummy telescope plate is con-
nected to the SmallSat top floor by three shock attenu-
ators, termed shock attenuation systems for spacecraft
and adaptor (SASSAs) [21], whose dynamic behav-
ior may exhibit nonlinearity. Besides, as depicted in
Fig. 1b, a support bracket connects to one of the eight
walls the so-called wheel elastomer mounting system
(WEMS), which is loaded with an 8-kg dummy inertia
wheel. The WEMS acts as a mechanical filter, which
mitigates high-frequency disturbances coming from the
inertia wheel through the presence of a soft elastomeric
interface between its mobile part, i.e., the inertia wheel
and a supporting metallic cross, and its fixed part, i.e
the bracket and by extension the spacecraft. Moreover,
the WEMS incorporates eight mechanical stops, cov-
ered with a thin layer of elastomer and designed to
limit the axial and lateral motions of the inertia wheel
during launch, which gives rise to strongly nonlinear
dynamical phenomena (cf. Sect. 3).

2.1 Finite element modeling of the underlying linear
satellite

A finite element model (FEM) of the SmallSat satellite
created in the LMS-SAMTECH SAMCEF software is
used in the present study to conduct numerical experi-
ments. The model is presented in Fig. 1c, and it com-
prises about 150,000 degrees of freedom (DOFs). It
idealizes the composite tube structure using orthotropic
shell elements. The top floor, the bracket, and the wheel
support are also modeled using shell elements. Bound-
ary conditions are enforced at the base of the satel-
lite through four clamped nodes. Proportional damp-
ing using the parameters provided by EADS-Astrium
is also introduced in the model.

The typical frequency range of interest for space-
craft testing is between 5 and 100 Hz. Within this fre-
quency interval, the model comprises 18 linear modes
that can be classified into three groups of six modes,
as listed in Table 1. The first group, between 8 and
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Fig. 1 SmallSat spacecraft equipped with an inertia wheel supported by the WEMS and a dummy telescope connected to the main
structure by the SASSA isolators. a Photograph; b schematic of the nonlinear vibration isolation device; c finite element model
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Table 1 Comparison between numerical and experimental nat-
ural frequencies

Mode # Model freq. (Hz) Experimental freq. (Hz)

1 8.06 8.19

2 9.14 −
3 20.44 −
4 21.59 −
5 22.05 20.18

6 28.75 22.45

7 32.49 −
8 34.78 34.30

9 39.07 −
10 40.78 43.16

11 45.78 45.99

12 57.76 55.71

13 68.99 64.60

14 75.14 −
15 79.82 −
16 83.36 −
17 89.01 88.24

18 95.30 −
A dash means that the corresponding mode could not be identified
during the test campaign

29 Hz, shows local WEMS motions. The correspond-
ing modal shapes are depicted in Fig. 2. Modes 1 and 2
show a concave trajectory of the WEMS about Y and
X axes, respectively. Modes 3 and 5 correspond to a
convex trajectory of the WEMS about Y and X axes,
respectively. The fourth mode presents an in-plane rota-
tion and extension of the WEMS cross. Only mode 6
combines a significant bracket deflection with a verti-
cal WEMS motion. The second group, between 32 and
58 Hz, is composed of local SASSA modes including
global deformation of the main structure. The last group
comprises modes with local deformation of the main
structure panels often combined with bracket deforma-
tion.

Low-level random data acquired during the test cam-
paign were used in [15] to extract the modal para-
meters of the underlying linear satellite. As stressed
in the introductory section, a formal model updating
process could not be achieved during the test cam-
paign. Nonetheless, the good agreement in Table 1
between the natural frequencies predicted by the FEM
and those identified experimentally together with the

correct mode ordering confirm that the model should
have satisfactory predictive capabilities.

2.2 Reduced-order modeling

Because the WEMS nonlinearities are spatially local-
ized, condensation of the linear FEM can be effectively
achieved using the Craig–Bampton reduction tech-
nique [22]. This leads to a substantial decrease in the
computational burden without degrading the accuracy
of the numerical simulations in the frequency range
of interest. The Craig–Bampton method expresses the
complete set of initial DOFs in terms of retained DOFs
and internal vibration modes of the structure clamped
on the retained nodes. To introduce the WEMS nonlin-
earities, the reduced-order model (ROM) is constructed
by keeping one node on both sides of the lateral and
axial mechanical stops. In total, eight nodes of the
initial FEM possessing 3 DOFs each and 10 internal
modes of vibration are kept; this reduced model pos-
sesses 34 DOFs and is termed ROM810. For local exci-
tation of the WEMS, a second ROM, termed ROM910,
is created with an additional node on the metallic
cross.

The ROM accuracy is assessed by comparing its
modal parameters with those of the original full-scale
model. The deviation between the mode shapes is deter-
mined using the modal assurance criterion (MAC).
MAC value ranges from 0 in the absence of correla-
tion to 1 for a complete correspondence. The frequency
deviations as well as the MAC of ROM810 are dis-
played in Fig. 3. We observe a very good correlation
for the first 18 modes which cover the frequency range
of interest. We, however, note that, below 10 internal
modes, the ROM cannot simultaneously capture the
first group of WEMS local modes and the second and
third groups.

3 Modeling of the WEMS nonlinearities

Figure 4a presents a simplified, yet relevant, model-
ing of the WEMS where the inertia wheel, owing to its
important rigidity, is seen as a point mass. The four non-
linear connections (NCs) between the WEMS mobile
and fixed parts are labeled NC1-4, respectively.

The WEMS nonlinearities are the only nonlin-
ear components introduced in the model. They were
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Fig. 2 Close-up of the six first LNMs (local WEMS motion). (1–6) for LNM 1–LNM 6, respectively

Fig. 3 Relative error on
frequencies and MAC
between the ROM810 and
the original model
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accurately identified in [15] using measured data
from swept-sine base excitations at different ampli-
tude levels. For instance, the stiffness curve charac-
terizing NC1, identified using the restoring force sur-
face method (RFS) [23], is depicted in Fig. 4b. It turns
out from this figure that the WEMS modeling should
account for combined nonsmooth and gravity-induced
asymmetric effects. This leads us to select a trilinear
model k−, k, and k+ with dissimilar clearances a− and
a+ for the axial nonlinearities. This complex model
is in better agreement with reality than the symmetric

model considered in earlier investigations [24,25]. For
the lateral nonlinearities, a bilinear model k± and k suf-
fices, because there is only one clearance a± per con-
nection. A curve-fitting process, represented by the red
curve in Fig. 4b, provides the unknown parameters for
our piecewise-linear model (see Table 2). For confiden-
tiality, stiffness coefficients and clearances are given
through adimensionalised quantities. Localized damp-
ing terms given by EADS-Astrium were also included
in the FEM to account for the dissipation of the elas-
tomer plots.
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Fig. 4 WEMS. a Simplified modeling of the WEMS mobile
part considering the inertia wheel as a point mass. The linear
and nonlinear connections between the WEMS mobile and fixed
parts are signaled by open squares and open circles, respectively.

b Experimental stiffness curve of NC1 constructed using the RFS
method (in black) and fitted with a trilinear model (in red). (Color
figure online)

Table 2 Parameters of the WEMS nonlinear connections (adi-
mensionalised for confidentiality)

Stiffness NC1 NC2 NC4 NC3

Axial kZ 8.30 9.21 9.18 10.03

Lateral kX 1.31 1.31 0.69 0.69

Lateral kY 0.69 0.69 0.69 0.69

Axial k+,Z 79.40 88.41 79.40 88.41

Axial k−,Z 118.07 116.73 118.07 116.73

Lateral k±,XY 40 40 40 40

Clearance

Axial a+,Z 1.55 1.62 1.59 1.59

Axial a−,Z 1.01 0.84 0.93 0.93

Lateral a±,XY 2 2 2 2

Finally, for facilitating the numerical investigations
in the forthcoming sections, the continuity of the
first derivative of the different restoring forces of the
WEMS is enforced using regularization. This approach
is also motivated by the stiffness curve in Fig. 4b,
which reveals that the actual structural behavior is
smoother than a piecewise-linear law. A local regu-
larization using Hermite polynomials in the interval
[a − Δ, a + Δ] is considered where a and 2Δ are the
clearance and the size of the regularization interval,
respectively. The nominal interval considered through-
out the paper is equal to 5 % of the clearance size. As
illustrated in Fig. 5, the main advantage of this strat-
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Fig. 5 Axial WEMS nonlinearity modeling. True piecewise-
linear (lines) and regularized (dash lines) restoring forces

egy is that it preserves the purely linear behavior of the
restoring force outside the regularization interval.

The mathematical description of the nonlinear force
is given by

fnl(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sign(x)(ka+ + k+(x − a+))

p+(t (x))

kx
p−(t (x))

sign(x)(ka− + k−(x − a−))

x ≥ a+ + Δ+
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a+ + Δ+ > x > a+ − Δ+

a+ − Δ+ ≥ x ≥ −(a− − Δ−)

−(a− − Δ−) > x > −(a− + Δ−)

x ≤ −(a− + Δ−) (1)
where x is the relative displacement between the two
DOFs defining the NC. The parameters a±, k±, and
Δ± are positive scalars. The Hermite polynomials are
defined as

p±(t) = h00(t)pk + h10(t)(xk+1 − xk)mk

+ h01(t)pk+1 + h11(t)(xk+1 − xk)mk+1 (2)

where pk and pk+1 are the values of the restoring
force at points xk = sign(x)(a − Δ) and xk+1 =
sign(x)(a + Δ), respectively. mk and mk+1 are the
values of the restoring force derivative at the same xk

and xk+1 points; they correspond to the stiffness coeffi-
cients k1 and k±, respectively. The local scaled abscissa
is

t (x) = x − xk

xk+1 − xk
. (3)

The hi j (t) functions are given by
h00(t) = 2t3 − 3t2 + 1, (4)

h10(t) = t3 − 2t2 + t, (5)

h01(t) = −2t3 + 3t2, (6)

h11(t) = t3 − t2. (7)

4 Direct numerical integration and numerical
continuation

The reduced model ROM910 including the WEMS
nonlinearities is now used to conduct numerical simula-
tions. To this end, a swept-sine excitation with a sweep

rate of 2 octaves per minute in the 5–90 Hz range is
applied to the inertial wheel in the axial direction. The
excitation amplitude is 140 N. Direct numerical inte-
gration of the equations of motion is carried out using
Newmark’s algorithm. Figure 6a represents the axial
displacement of the NC2 as a function of the excita-
tion frequency. A main resonance peak which corre-
sponds to mode 6 is located around 33 Hz. Because
the corresponding linear natural frequency is 28.75 Hz,
this nonlinear mode undergoes a substantial increase
in frequency due to the frequency-energy dependence
of nonlinear oscillations. The asymmetry, nonsmooth-
ness, and skewness of the displacement envelope in the
vicinity of the resonance peak are additional manifesta-
tions of the WEMS nonlinearities. A sudden transition
from large to small amplitudes of vibration, referred
to as a jump phenomenon, is also observed. After the
jump, the satellite response quickly stabilizes to a low-
amplitude response with almost no beating phenom-
enon; it is a sign of the presence of strong damping. The
wavelet transform of the displacement signal is plot-
ted in Fig. 6b. The amplitude of the wavelet transform
is represented in logarithmic scale ranging from blue
(low amplitude) to red (high amplitude). The presence
of wideband frequency components around 30 Hz con-
firms the activation of nonsmooth nonlinearities in the
neighborhood of the resonance. Their disappearance
closely coincides with the jump phenomenon. Even
harmonics in the wavelet transform are generated by
the asymmetric modeling of the WEMS. The results in
Fig. 6 therefore present a very good qualitative concor-
dance with those observed experimentally for mode 1
in [15].

In order to gain further insight into the experimen-
tal results, an algorithm for numerical continuation is
employed to compute the system response to a 140 N

Fig. 6 NC2-Z response to
swept-sine excitation. a
Displacement; b wavelet
spectrum
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Fig. 7 SmallSat displacement response at NC2-Z. The responses
to swept-sine (direct simulations, 2 octaves per minute) and
stepped-sine (numerical continuation) excitations are depicted in
black and red, respectively. The red solid and dashed lines cor-
respond to stable and unstable periodic solutions, respectively.
Limit point and Neimark–Sacker bifurcations are pictured with
green circle and magenta squares, respectively. (Color figure
online)

stepped-sine forcing. A shooting technique for com-
puting isolated periodic solutions is combined with
pseudoarclength continuation for tracking the evolu-
tion of the periodic solutions for increasing excita-
tion frequencies [26]. Bifurcation analysis is performed
using test functions based on the monodromy matrix
[27]. The results of numerical continuation are shown
in Fig. 7. They are superimposed on the time series

of Fig. 6a and provide an accurate estimation of the
displacement envelope. Two limit point (LP) bifurca-
tions give rise to a change in stability of the periodic
solutions. The upper LP coincides with the jump phe-
nomenon and explains why there is a sudden transition
between two stable attractors characterized by large
and small amplitudes, respectively. This is a classical
theoretical result in the literature, often illustrated using
single-DOF oscillators, but these simulations show that
it can also be observed during testing of real-life engi-
neering structures.

Another objective of this section is to uncover non-
linear dynamical phenomena not encountered experi-
mentally in [15]. Interestingly, the numerical contin-
uation process highlights that the periodic solutions
undergo two additional Neimark–Sacker bifurcations
[27]. In addition to changing the stability of the peri-
odic solutions, this type of bifurcation produces an
emerging torus on which quasiperiodic (QP) motion
may occur. Such a motion was not present in the time
series of Fig. 6a. However, numerical simulations for
slower sweep rates, e.g., for a linear sweep rate of
10 Hz per minute as in Fig. 8, show that QP motion
can be observed. The envelope of the displacement
signal increases rapidly after the first Neimark–Sacker
bifurcation, and periodic motion degenerates into QP
motion. After the second bifurcation, the QP motion
is transformed into periodic motion, and the envelope
decreases rapidly. There is a small delay between the
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Fig. 8 Evidence of QP motion. a Displacement at NC1-Z and
b close-up of the transition from periodic to QP motion. The
responses to swept-sine (direct simulations) and stepped-sine
(numerical continuation) excitations are depicted in black and

red, respectively. Limit point and Neimark–Sacker bifurcations
are pictured with green circle and magenta squares, respectively.
(Color figure online)
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first (second) bifurcation and the onset (disappearance)
of QP motion; this delay is to be attributed to the tran-
sient character of the swept-sine excitation. Figure 8b
shows that the time series associated with QP motion
also exhibits asymmetric behavior with dominant pos-
itive displacements. Overall, this complex, inherently
nonlinear dynamical behavior is of important practi-
cal significance, because, as displayed in Fig. 8a, the
vibration amplitude associated with QP motion is as
large as the amplitude close to the main resonance of
the system.

5 Nonlinear modal analysis of the SmallSat
spacecraft

In the previous section, a nonconservative FEM was
utilized to further investigate the nonlinear phenomena
observed during the testing campaign of the SmallSat
spacecraft. Because the damped dynamics can also be
interpreted based on the topological structure and the
bifurcations of the nonlinear normal modes (NNMs)
of the underlying conservative system [28], a detailed
nonlinear modal analysis is carried out herein.

An extension of Rosenberg’s definition is consid-
ered, i.e., an NNM is defined as a (nonnecessarily syn-
chronous) periodic motion of the unforced, conserv-
ative system. The algorithm proposed in [29], which
combines shooting and pseudoarclength continuation,
is applied to the ROM810 model for NNM computa-
tion. Due to the frequency-energy dependence of non-
linear oscillations, NNMs are depicted in a frequency-
energy plot (FEP). An NNM is represented by a point
in the FEP, drawn at a frequency corresponding to the

minimal period of the periodic motion, and at an energy
equal to the conserved total energy during the motion. A
branch depicted by a solid line represents the complete
frequency-energy dependence of the considered mode.

Unlike a previous application of the NNM theory to
a full-scale aircraft [30], an interesting feature of the
satellite is that almost every mode of the underlying
linear system in the [0–100] Hz range involves motion
of the nonlinear component. The exception is mode
9 for which the WEMS remains quiescent, as shown
in Fig. 9a. This is confirmed by the constant natural
frequency of NNM9 in the FEP of Fig. 9b. Modes 1, 5,
6, and 7 were found to exhibit particularly interesting
dynamics and are described in this section.

The first linear normal mode (LNM1) corresponds
to a local motion involving the WEMS. Its nonlinear
counterpart is pictured in Fig. 10. The FEP of NNM1 is
formed by one main backbone to which one “tongue”
is attached. At low energies, no mechanical stop is acti-
vated, and the NNM frequency remains identical to the
natural frequency of LNM1. The corresponding modal
shape is also identical to that of LNM1. Beyond a cer-
tain energy threshold, the relative displacements along
X of nonlinear connections NC1 and NC2 enter into
the regularization area of the piecewise-linear restor-
ing forces. The NNM frequency rapidly increases due
to the large difference between the stiffnesses of the
elastomer plots and of the mechanical stops. When pro-
gressing along the backbone, harmonic components of
the fundamental NNM oscillation frequency are cre-
ated by the WEMS nonlinearities. Once one of these
harmonics has a frequency close to the oscillation fre-
quency of another NNM, a dynamic coupling between
the two modes exists, and a tongue of internal resonance

Fig. 9 Mode 9. a Linear
modal shape; b
frequency-energy plot
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Fig. 10 FEP of the first
NNM with different modal
shapes inset
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is produced. This is precisely what happens for the 5:1
internal resonance in Fig. 10. As energy increases along
this branch, the fifth harmonic becomes more impor-
tant than the fundamental frequency. The modal shape
located around the middle of the branch is a mixing
between NNM1 and NNM10; it is a purely nonlin-
ear mode with no linear counterpart. At the extrem-
ity, the sole fifth harmonic remains, which completes
the transition to NNM10. Such internal resonances
between NNMs were previously reported in the litera-
ture, see, e.g., [28,31], also in the case of a two-degree-
of-freedom vibro-impact system [32] and a full-scale
aircraft [30]. They are therefore not further described
herein. However, it is interesting to note that, due to
nonlinearities, the excitation of a local mode can trigger
the excitation of a more global mode involving instru-
ment panel motion. This latter mode is characterized
by a much larger modal mass and can potentially jeop-
ardize structural integrity during launch.

Figure 11 presents the FEP of the fifth spacecraft
NNM. The same findings as for NNM1 can be drawn
from this FEP, namely a sudden increase in NNM fre-
quency once mechanical stops are activated and the
presence of internal resonances. One branch of 2:1
internal resonance with NNM11 and two 4:1 branches
with NNM17 and 18 are generated due to the asymmet-

ric modeling of the WEMS. Branches involving even
harmonics were also observed for a system with cubic
nonlinearity in [28], but, due to the symmetry of the
restoring force, they were created through symmetry-
breaking bifurcations. The existence of branches 15:1
and 120:1 is questionable, because the corresponding
oscillation frequencies are outside the range of validity
of ROM810.

What is particularly interesting with NNM5 is that
its 2:1 interaction with NNM11 was observed exper-
imentally in [15]. The experimental evidence is pre-
sented in the wavelet transform of Fig. 12. At the
NC4-Y sensor, the only visible frequency component
is around 45–46 Hz despite the fact that the excitation
frequency is twice smaller, a clear sign of an energy
transfer between modes. An important remark is that it
is not the experimental mode with a linear frequency
of 22.45 Hz which is involved in the interaction, but
rather the experimental mode with a linear frequency
of 20.18 Hz (see Table 1). Due to the hardening effect of
the WEMS, the frequency of this latter mode increases
up to 22.5–23 Hz in Fig. 12, which, in turn, triggers the
excitation of the experimental mode possessing a linear
frequency of 45.99 Hz. To the best of our knowledge,
this is the first time that such an agreement between
predictions and experiments is reported for an interac-
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Fig. 11 FEP of the fifth
NNM with different modal
shapes inset
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Fig. 12 Wavelet transform of the experimental time series mea-
sured at NC4-Y (swept-sine excitation, 1 g), [15]

tion between two modes of a real-life structure with
noncommensurate linear natural frequencies.

A third local mode of the WEMS, NNM6, is pre-
sented in Fig. 13. As for NNM5, there is a 2:1 modal
interaction during which NNM6 interacts with NNM12
corresponding to an axial motion of the instrument sup-
porting panel. Numerical evidence of this interaction is
provided by analyzing the response at the instrument
panel to swept-sine excitation in Fig. 14a. Damping
is included in the numerical simulation. For a forcing

amplitude of 20 N, the satellite presents several reso-
nance peaks at frequencies equal to the linear natural
frequencies (see Table 1). For a forcing amplitude of
80 N, an additional resonance peak corresponding to
an excitation frequency of 29 Hz can be observed. The
presence of this resonance cannot be predicted by a
linear analysis, because there is no linear mode pos-
sessing instrument panel motion below 32 Hz. It is
therefore a nonlinear resonance during which the sec-
ond harmonic of NNM6 characterized by a frequency
close to 58 Hz excites NNM12. This, in turn, pro-
duces a large response at the instrument panel when
the excitation frequency is in the vicinity of NNM6.
Interestingly, this nonlinear resonance has an accel-
eration twice as large as the acceleration correspond-
ing to the linear resonance of the panel at 58 Hz. Fur-
ther experimental evidence of the modal interaction is
shown in the wavelet transform measured at NC4 in
Fig. 14b [15]. The excitation frequency, denoted by
fund., is accompanied with higher harmonic compo-
nents of comparable amplitudes. Specifically, a second
harmonic ranging from 55 to 60 Hz is visible when
the excitation frequency approaches 30 Hz. There is
no identified linear mode just below 30 Hz, but, due
to the hardening effect of the WEMS, the linear fre-
quency of 22.45 Hz increases substantially during non-
linear regimes of motion. The second harmonic then
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Fig. 13 FEP of the sixth
NNM with different modal
shapes inset
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Fig. 14 Numerical and experimental evidence of the 2:1 modal
interaction between NNM6 and NNM12. a Acceleration at the
instrument panel for a swept-sine excitation of 20 N (red) and

80 N (black) amplitude (direct numerical simulation); b wavelet
transform of the relative displacement at NC4-Z (measured dur-
ing the testing campaign). (Color figure online)

excites the experimental mode with a linear frequency
of 55.71 Hz.

The 3:1 modal interaction presents a nonconven-
tional topology compared to the other branches in the
FEP of Fig. 13. A close-up of the branch is shown in
Fig. 15 together with the backbone of NNM17 repre-

sented at the third of its fundamental frequency.1 The
reason for this complex topology is that the dynam-
ics has to evolve from NNM6, a mode with a pre-
dominant axial motion between the WEMS and the
bracket activating a unique axial nonlinear connection,
NC2-Z, to NNM17, a mode with lateral motion of the

1 This is relevant, because a periodic solution of period T is
periodic with period 3T .
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Table 3 Activation of the
nonlinear connections on
the 3:1 interaction between
NNM6 and NNM17

A zero value indicates that
the mechanical stop is not
activated. A value greater
than one implies that the
regularization interval is
crossed. + and −
correspond to positive and
negative relative
displacements, respectively

NC2-Z (+,−) NC3-Z (+, −) NC4-Z (+, −) NC3-Y (+, −) NC4-Y (+, −)

A (0.2.2) (0,0) (0,0) (0,0) (0,0)

B (0,2.2) (0,0) (0,0) (0,0) (0,0)

C (0,2.2) (0,0.07) (0,0) (0,0) (0,0)

D (0,2.3) (0,0.19) (0,0) (1.1,1.1) (1.1,1.1)

E (0,0) (0,0) (0,2.9) (3.4,3.6) (3.4,3.4)

F (0,0) (0,0) (0,0) (3,3) (3,3)

G (0,0) (0,0) (0,0) (4,4) (4,4)

H (0,0) (0,0) (0,2.7) (3.5,3.8) (3.7,3.7)

I (0,2.1) (0,0) (0,1.0) (0,0) (0,0)

J (0,2.3) (0,0) (0,0) (0,0) (0,0)

bracket activating two other nonlinear connections in
the lateral direction, NC3-Y and NC4-Y. To understand
this progression, the motion of the center of gravity of
the WEMS cross is displayed in Fig. 15. Clearly, the
WEMS motion takes place in the XZ plane at points A

and B, YZ plane at point E, Y direction at points F, YZ
plane at point H and finally back to XZ plane at point
J. In addition, Table 3 displays the nonlinear connec-
tions that are active at the considered points together

Fig. 15 3:1 interaction
between NNM6 and
NNM17. a Close-up of the
internal resonance branch; b
motion of the center of
gravity of the WEMS cross
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Fig. 16 Influence of the
size of the regularization
interval on the FEP of
NNM6. The nominal
interval considered
throughout the paper is
equal to 5 % of the
clearance size black lines;
blue lines 1 %, and red lines
10 %. (Color figure online)
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with the penetration in the corresponding regulariza-
tion intervals.

At point A on the backbone of NNM6, the WEMS
and the bracket vibrates axially resulting in activa-
tion of NC2-Z for negative relative displacements. At
point B on the internal resonance branch, the WEMS
motion is not significantly affected, but lateral motion
of the bracket in the Y direction is induced. The MAC
between NNM6-B and LNM6 is 0.5, a clear sign of the
departure from mode 6. At point C, the MAC between
NNM6-C and LNM17 is 0.92 indicating that the tran-
sition to NNM17 is well initiated. A second axial con-
nection (NC3-Z) is activated for negative relative dis-
placements, but there is no visible frequency increase
between points B and C. As indicated in Table 3, the
reason is that the motion barely penetrates in the reg-
ularization interval of NC3-Z. Conversely, a sudden
frequency increase, which closely follows the evolu-
tion of the backbone of NNM17, is observed between
points C and D. This is a nonconventional behavior
for an internal resonance branch. This occurs because
the interaction with NNM17 generates lateral motion
of the WEMS, which, in turn, activates two additional
lateral connections, NC3-Y and NC4-Y. At point D,
there are therefore 4 active connections. They have an
important influence on the resulting dynamics, because
the motion crosses the regularization zones for three of

them. For a complete correspondence with NNM17, the
two axial connections NC2-Z and NC3-Z must remain
quiescent. This happens at point E, but NC4-Z has been
activated between points D and E. It is only at point F
that the axial connections are no longer active; the MAC
with mode 17 is 0.99. From point F to point J, a reverse
scenario for evolving from NNM17 back to NNM6 is
observed in Table 3. Axial connections are again acti-
vated, and lateral connections become quiescent. We
note that all these results hold for different sizes of the
regularization intervals, as shown in Fig. 16.

Another interesting nonlinear phenomenon that the
SmallSat satellite exhibits is the so-called localization
phenomenon [18,33,34] during which new nonlinear
modes with deformation localized to specific com-
ponents of the structure appear. Figure 17 presents
the FEP of NNM 7. Unlike previously described
NNMs, NNM7 frequency remains identical to the
linear natural frequency until energies greater than
102 J. Then, the backbone undergoes a bifurcation
and bends backwards. Important modifications of the
modal shapes are observed along the backbone branch.
The linear-like modal shape only involves instrument
panel motion. After the bifurcation, a markedly dif-
ferent (MAC<0.5) modal shape involving significant
WEMS motion is produced. Progressing on the back-
bone, the WEMS deformation is further enhanced,
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Fig. 17 FEP of the seventh
NNM with different modal
shapes inset
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whereas instrument panel motion disappears, giving
rise to a localized mode possessing some similar-
ities with LNM6 (MAC=0.85). Finally, a motion
of the instrument panel, different from the motion
at low energy, reappears further on the branch. We
note that the localization phenomenon is different
from modal interactions. For instance, very little har-
monic components are generated along the backbone
in Fig. 17.

Finally, the NNMs computed in this section are
related to the forced continuation curves discussed in
Sect. 4. The satellite response in the vicinity of the sixth
resonance computed through forced numerical contin-
uation is represented in solid line in Fig. 18. The exter-
nal forcing is a stepped sine with different amplitudes,
namely 20, 55, 60, 75, 80 and 100 N. In view of the sud-
den skewness of the resonance peaks, the nonsmooth
character of the WEMS nonlinearities is evident. The
frequency-energy dependence of NNM6 in Fig. 13 is
also depicted in dashed line in Fig. 18. Clearly, the
backbone branch computed in the undamped, unforced
case coincides with the locus of the resonance peaks of
the damped, forced response (marked with ∗ in Fig. 18).
This confirms the well-known result that nonlinear res-
onances occur in the neighborhood of NNMs [18].
Unlike the backbone branch, the 2:1 modal interac-
tion, represented by a vertical dashed line in Fig. 18,
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Fig. 18 Undamped/unforced (dashed line) versus
damped/forced (solid line) response at the WEMS (NC4-
Z) in the vicinity of the sixth resonance. Asterisk resonance
locus in the damped/forced response

could not be reproduced in the forced continuation
curves.

6 Conclusions

The objective of this paper was to investigate the
dynamics of a real-life aerospace structure with a
strongly nonlinear component. Due to the presence
of multiple nonsmooth nonlinearities, closely spaced
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modes and relatively high damping, this applica-
tion example poses several challenges. The advanced
simulations carried out using numerical continuation
showed that the satellite can exhibit a wide variety of
nonlinear phenomena including jumps, rich frequency
content, quasiperiodic motion, energy transfers from
local to global structural modes, internal resonance
branches with nonconventional topology, and mode
localization. One specific contribution of this work
is that several interactions between modes with non-
commensurable linear frequencies, observed experi-
mentally, were reproduced with great fidelity using
numerical experiments. Overall, a very good qualita-
tive agreement with the results of [15] was obtained.
This demonstrates that there now exist in the technical
literature effective and rigorous numerical and experi-
mental methods for the analysis of complex, nonlinear
industrial structures.

Finally, it is worth noting that the NNMs of the
conservative system proved useful to interpret the
modal interactions of the real structure. Future inves-
tigations should study the influence of damping on
the results using, for instance, the concept of NNMs
defined as two-dimensional invariant manifolds. Dif-
ferent tools for their computation were recently devel-
oped in [35,36].
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