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Abstract— As global solar radiation forecasting is a very 

important challenge, several methods are devoted to this goal with 

different levels of accuracy and confidence. In this study we 

propose to better understand how the uncertainty is propagated in 

the context of global radiation time series forecasting using 

machine learning. Indeed we propose to decompose the error 

considering four kinds of uncertainties: the error due to the 

measurement, the variability of time series, the machine learning 

uncertainty and the error related to the horizon. All these 

components of the error allow to determinate a global uncertainty 

generating a prediction bands related to the prediction efficiency. 

We also have defined a reliability index which could be very 

interesting for the grid manager in order to estimate the validity 

of predictions. We have experimented this method on a multilayer 

perceptron which is a popular machine learning technique. We 

have shown that the global error and its components are essentials 

to quantify in order to estimate the reliability of the model outputs. 

The described method has been successfully applied to four 

meteorological stations in Mediterranean area. 

Incertainty;time series;confidence bands;prediction interval 

I.  INTRODUCTION  

Solar radiation is one of the principal energy sources for 
physical, biological and chemical processes, occupying the most 
important role in many engineering applications[1]. The process 
of converting sunlight to electricity without combustion allows 
to create power without pollution. The major problem of such 
energy source is its intermittence and its stochastic character 
which make difficult their management into an electrical 
network[2]; Thereby, the development of forecasting models is 
necessary to use ideally this technology. By considering their 
effectiveness, it will be possible for example to identify the most 
optimal locations for developing a solar power project or to 
maintain the grid stability and security of a power management 
system[3]. Thus the solar energy forecasting is a process used to 
predict the amount of solar energy available for various time 
horizons[4]. Several methods have been developed by experts 
around the world and the mathematical formalism of Times 
Series (TS) has been often used for the short term forecasting 
(among 6 hours ahead)[5]. TS is a set of ordered numbers that 
measures some activities over time. It is the historical record of 
global horizontal irradiance with measurements taken at equally 
spaced intervals with a consistency in the activity and the 
method of measurement. Some of the best predictors found in 
literature are Autoregressive and moving average, Bayesian 
inferences, Markov chains, k-Nearest-Neighbors predictors, 

support vector machine, regression tree, or artificial neural 
network (ANN). All these approaches are related to the machine 
learning application. The most often used is the last presented 
method: the artificial neural network and particularly the 
multilayer perceptron (MLP)[6]. In the present study, we focus 
on this prediction method, the goal being to detail the 
uncertainties related to the global radiation prediction. These 
uncertainties can be decomposed into several components that 
will be explained and developed. 

II. DATA 

In Corsica Island, the data used to build the models are GHI 

measured in the meteorological stations of Ajaccio (41°55’N, 

8°44’E, 4m asl) and Bastia (42°42’N, 9°27’E, 10m asl). They 

are located near the Mediterranean Sea and nearby mountains 

(1000 m altitude at 40 km from the sites). The data representing 

the global horizontal solar radiation were measured on an 

hourly basis from 1998 to 1999 (exactly two years). The two 

last studied stations are Montpellier (43.6°N and 3.9°E, 2 m asl) 

and Marseille (43.4°N and 5.2°E, 5 m asl) concerning the years 

2008 and 2009. All these stations are equipped with 

pyranometers (CM 11 from Kipp & Zonen). The choice of these 

particular places is explained by their closed geographical and 

orographical configurations. These stations are located near the 

Mediterranean Sea and mountains. This specific geographical 

configuration of the four French meteorological stations makes 

cloudness difficult to forecast. Mediterranean climate is 

characterized by hot summers with abundant sunshine and mild, 

dry and clear winters. Irradiance nighttime values are not being 

used, the first morning data forecast are operated with the day 

before evening data 

 

III. PREDICTION METHODOLOGY AND ERROR 

DECOMPOSITION 

We chose to develop error propagation in the GHI prediction 
for the most common used predictor: the MLP. The base of this 
model is the time series approach (TS). A TS x(t) can be defined 
by a linear or non-linear model called fn (see Equation 1 where 
t = n, n-1,…, p+1, p with n, the number of observations and p 
the number of parameters of the model ; n ≫ p; h is the horizon 
of prediction and ϵ_(t+h) the committed error)[1].  

x(t+h)=fn (x(t),x(t-1)….,x(t-p+1))+ϵ(t+h)     Eq 1 



To estimate the fn  model, a stationarity hypothesis is often 
necessary. This condition usually implies a stable process[7]. 
This notion is directly linked to the fact that whether certain 
feature such as mean or variance change over time or remain 
constant. Previous studies[8–11] show that the use of clear sky 
index (CSI) allows to make stationary the time series and so to 
correctly use the MLP forecasting. 

A. Stationary process 

In previous studies[1,12], it was demonstrated that the clear 
sky index calculated with the simplified Solis model[13] is the 
most reliable for our locations. The Solis model generates a clear 
sky hourly irradiation (CS) expressed by Eq. (2), the use of this 
model requires fitting parameter (g), extraterrestrial radiation 
(I0),  solar elevation (h) and total measured atmospheric optical 

depth (): 

𝐶𝑆(𝑡) = 𝐼0 (𝑡). 𝑒𝑥𝑝 (
−𝜏

𝑠𝑖𝑛𝑔(ℎ(𝑡))
) . 𝑠𝑖𝑛⁡(ℎ(𝑡)) Eq 2 

The simplified “Solis clear sky” model is based on radiative 
transfer calculations and the Lambert-Beer relation[14]. The 
expression of the atmospheric transmittance is valid with 
polychromatic radiations, however when dealing with global 
radiation, the Lambert-Beer relation is only an approximation 
because of the back scattered effects. According to [1] this 
model remains a good fitting function of the global horizontal 
radiation. The new computed time series (CSI) can be directly 
used with the MLP forecasting and is described be the equation 
3: 

CSI(t)=GHI(t)/CS(t)     Eq 3 

B. MLP prediction 

Although a large range of different architectures of ANN is 
available[9], MultiLayer Perceptron (MLP) remains the most 
popular [35]. In particular, feed-forward MLP networks with 
two layers (one hidden layer and one output layer) are often used 
for modeling and forecasting time series. Several studies[15] 
validated this approach based on ANN for the non-linear 
modeling of time series. To forecast the time series, a fixed 
number p of past values are set as inputs of the MLP, the output 
is the prediction of a future value[16]. Considering the initial 
time series equation (Equation 1), this equation can be adapted 
to the non-linear case of one hidden layer MLP with b related to 
the biases, f and g to the activation function of the output and 

hidden layer, and to the weights. The number of hidden nodes 
(H) and the number of the input node (In) allow to detail this 
transformation. The number of layer 1 and 2 is given in 
superscript. (Equation 4):  

𝐶𝑆𝐼̂(𝑡 + 1) = 𝑓(∑ 𝑦𝑖
𝐻
𝑖=1 𝜔𝑖

2 + 𝑏2) with 

𝑦𝑖 = 𝑔(∑ 𝐶𝑆𝐼(𝑡 − 𝑗 + 1)𝐼𝑛
𝑗=1 𝜔𝑖𝑗

1 + 𝑏𝑖
1)  Eq4 

   

In the presented study, the MLP has been computed with the 
Matlab© software and its Neural Network toolbox. The 
characteristics chosen and related to previous work are the 
following: one hidden layer, the activation functions are the 
continuously and differentiable hyperbolic tangent (hidden) and 
linear (output), the Levenberg-Marquardt learning algorithm 
with a max fail parameter before stopping training equal to 5. 

This algorithm is an approximation to the Newton’s method. The 
prediction of the GHI is obtained using the equation: 

(GHI) (̂t+1)=(CSI) ̂(t+1).CS(t+1)  Eq 5 

To customize the input layer of the MLP we choose the use 
of the mutual information to determine In as described in[1,17–
20]. According the results obtained in these papers, we use H 
equal to In for all the experiments conducted in this study. 
Furthermore in order improve the learning of the MLP, it is a 
common practice to filter out the data removing night hours. 
Indeed we consider only periods between sunrise and sunset 
[41,42]. We have chosen to apply a selection criterion based on 
the solar zenith angle (SZA): solar radiation data for which the 
solar zenith angle is greater than 80° have been removed[1]. This 
transformation is equivalent to a filtering related to the solar 
elevation angle lower than 20. 

C. Error decomposition 

In these section, we propose to decompose the error 
considering four kinds of uncertainties: the error due to the 
measurement, the error due to the variability of the time series, 
the error related to the machine learning uncertainty and the 
error related to the horizon. 

In our assumption, all the previous  terms are independent 
random variables that are normally distributed (and therefore 
also jointly so), then their sum is also normally distributed and 
the global form of the standard deviation 𝜎𝑡𝑜𝑡(𝑡 + 1) becomes 
(in this equation the quick fluctuations are taken into account 
with 𝜎𝑣𝑎𝑟 , but it is also possible to consider 𝜎𝑖𝑛ℎ): 

𝜎𝑡𝑜𝑡(𝑡 + 1) =

√(𝜎𝑚𝑒𝑎𝑠)
2 + (𝜎𝑠𝑎𝑚𝑝(𝑡 + 1))

2
+ (𝜎𝑖𝑛𝑖(𝑡 + 1))2 + (𝜎𝑣𝑎𝑟(𝑡 + 1))2

       Eq 6  

Considering that there is a persistence of the variability for a 
short horizon, 𝜎𝑣𝑎𝑟(𝑡) = 𝜎𝑣𝑎𝑟(𝑡 + 1) 

thus: 

𝜎𝑡𝑜𝑡(𝑡 + 1) =

√(𝜎𝑚𝑒𝑎𝑠)
2 + (𝜎𝑠𝑎𝑚𝑝(𝑡 + 1))

2
+ (𝜎𝑖𝑛𝑖(𝑡 + 1))2 + (𝜎𝑣𝑎𝑟(𝑡))

2 

       Eq 7 

With 𝜎𝑚𝑒𝑎𝑠 = 𝜎(𝐶𝑆𝐼)(∑ (∑ 𝜔𝑖
2𝜔𝑖𝑗

1𝑁𝑐
𝑖=1 )2𝑁𝑒

𝑗=1 )
1/2

, 𝜎𝑠𝑎𝑚𝑝 and 

𝜎𝑖𝑛𝑖 are computed respectively with k-fold and 50 random 

initializations and 𝜎⁡𝑣𝑎𝑟 = 𝐺𝐻𝐼̂ (𝑡 + 1). 𝑔(𝑉𝑜𝑙2(𝑡)). For an 

easier computing, it is also possible to use 𝜎𝑖𝑛ℎ replacing 𝜎𝑣𝑎𝑟(𝑡) 
with a less robust result but not dependent on the instant of the 
prediction. 

𝜎𝑡𝑜𝑡(𝑡 + 1) =

√(𝜎𝑚𝑒𝑎𝑠)
2 + (𝜎𝑠𝑎𝑚𝑝(𝑡 + 1))

2
+ (𝜎𝑖𝑛𝑖(𝑡 + 1))2 + (𝜎𝑖𝑛ℎ)

2 

       Eq 8 

It is possible to define a prediction band taking into account 
all the uncertainties (Eq 9).  

𝐺𝐻𝐼̂ (𝑡 + 1) = 𝐺𝐻𝐼̂
𝑀𝐿𝑃(𝑡 + 1) ± 𝜎𝑡𝑜𝑡(𝑡 + 1) Eq 9 



Such prediction intervals were often proposed in the 
literature [21–23]; they refer to machine learning method 

(𝜎𝑀𝐿(𝑡 + 1))2 = (𝜎𝑠𝑎𝑚𝑝(𝑡 + 1))
2
+⁡(𝜎𝑖𝑛𝑖(𝑡 + 1))2 [21,23] 

or to volatility and 𝜎𝑣𝑎𝑟(𝑡) [22] but rarely both to the two kinds 
of uncertainty and never concerning 𝜎𝑚𝑒𝑎𝑠 . Note that in the case 
of other machine learning method used the term 𝜎𝑖𝑛𝑖 can be 
equal to zero (e.g. support vector regression, regression tree 
etc.). The ideal case would be to systematically propose a 
confidence interval of prediction related to the three sorts of 
uncertainty (with 𝜎𝑇𝑆 = 𝜎𝑣𝑎𝑟(𝑡)⁡𝑜𝑟⁡𝜎𝑖𝑛ℎ considering the desired 
reliability).  

𝜎𝑡𝑜𝑡(𝑡 + 1) = √(𝜎𝑚𝑒𝑎𝑠)
2 + (𝜎𝑀𝐿(𝑡 + 1))2 + (𝜎𝑇𝑆(𝑡))

2 

       Eq 10 

Now, considering the horizon of prediction, we define the 
new global uncertainty with the equation 30 with 𝜎ℎ𝑜𝑟 =
𝐺𝐻𝐼̂ (𝑡 + ℎ). 𝛼(ℎ). 

𝜎𝑡𝑜𝑡(𝑡 + ℎ) =

√(𝜎𝑚𝑒𝑎𝑠)
2 + (𝜎𝑀𝐿(𝑡 + 1))2 + (𝜎𝑇𝑆)

2 + (𝜎ℎ𝑜𝑟(ℎ))
2  

       Eq 11 

 

IV. RESULTS 

The previous components allows to calculate the global 
uncertainty and to propose two prediction bands: UB for upper 
band and LB lower band [24]. Thus, the quality of the prediction 

can be defined by the triplet {𝐺𝐻𝐼̂ (𝑡 + ℎ); 𝐿𝐵; 𝑈𝐵} [25]. We 
can also estimate the reliability of the prediction considering that 
the prediction is efficient when UB-LB is very lower than 

𝐺𝐻𝐼̂ (𝑡 + ℎ) and inefficient when UB-LB is equal or upper to 

𝐺𝐻𝐼̂ (𝑡 + ℎ) value. From this hypothesis, we can define the 

reliability  as t(UB(t+1)-LB(t+1))𝐺𝐻𝐼̂ (𝑡 + ℎ) 
Lower is this parameter, more efficient is the prediction. We 
construct a reliability index between 0 and 1 considering that if 

(UB(t+1)-LB(t+1))𝐺𝐻𝐼̂ (𝑡 + ℎ) > 1thent i.e. the 

prediction is not sureThe final prediction becomes: 

-𝐺𝐻𝐼̂ (𝑡 + ℎ)⁡= 〈𝐺𝐻𝐼̂ (𝑡 + ℎ)〉, average of 50 simulations (50 
training and initialization weights, 50 different training sets) 

LB= 

√(𝜎𝑚𝑒𝑎𝑠)
2 + (𝐺𝐻𝐼̂

𝑚𝑖𝑛(𝑡 + ℎ) − 〈𝐺𝐻𝐼̂ (𝑡 + ℎ)〉)
2
+ (𝜎𝑖𝑛ℎ)

2 + (𝜎ℎ𝑜𝑟(ℎ))
2

  Eq 34 

UB=

√(𝜎𝑚𝑒𝑎𝑠)
2 + (𝐺𝐻𝐼̂

𝑚𝑎𝑥(𝑡 + ℎ) − 〈𝐺𝐻𝐼̂ (𝑡 + ℎ)〉)
2
+ (𝜎𝑖𝑛ℎ)

2 + (𝜎ℎ𝑜𝑟(ℎ))
2

  Eq 35 

With 𝜎𝑚𝑒𝑎𝑠 (𝐺𝐻𝐼̂ (𝑡 + 1)) = 1%. 𝐺𝐻𝐼̂ (𝑡 + 1), 𝜎𝑖𝑛ℎ =

𝐺𝐻𝐼̂ (𝑡 + 1). 𝑛𝑅𝑀𝑆𝐸(𝐺𝐻𝐼𝑡𝑟𝑒𝑛𝑑(𝑡) − 𝐺𝐻𝐼(𝑡)), 𝜎ℎ𝑜𝑟(ℎ) ==
𝐺𝐻𝐼̂ (𝑡 + ℎ). 𝛼(ℎ) and 𝐺𝐻𝐼̂

𝑚𝑖𝑛/𝑚𝑎𝑥(𝑡 + ℎ) are the min and max 

values of the 50 predictions generated with 50 simulations. The 
figure 5 shows for Ajaccio an example of the prediction bands, 
considering all the kind of uncertainty with horizon h=1 hour. 
Line represents measurement and dashed lines the upper and 
lower bands concerning each kind of uncertainties.  

 

Figure 1. Uncertainty in the GHI predictions for the horizon 
h=1 for Ajaccio case 

 

We can see that 𝜎𝑚𝑒𝑎𝑠 is the parameter the less interesting 
for the bands construction and that it is necessary to consider the 
coupling of 𝜎𝑖𝑛ℎ  and 𝜎𝑀𝐿  (related to 𝜎𝑠𝑎𝑚𝑝 ⁡𝑎𝑛𝑑⁡𝜎𝑖𝑛𝑖) for a good 

prediction interval definition. For other sites the obtained curve 
are similar and no more information is observed. In the figure 6, 
the top curve (same prediction configuration that previously) 

compared the average prediction 𝐺𝐻𝐼̂ (𝑡 + ℎ) (marks) versus the 
GHI measurement (line). The bottom curve shows the associated 

reliability index (t  

 

Figure 2. Comparison for the horizon h=1 for Ajaccio of GHI 
predictions (mark) and GHI measurement (line) on the top and 
associated reliability index in the bottom  

 

We see that when the variability is low (two first day from 
3711 to 3726) the reliability is important (close to 70%) but 
when cloud occurs the value is much lower and can reach 0%.. 



V. CONCLUSIONS 

In this paper we have shown that it is possible to compute a 
prediction band in the context of global radiation time series 
forecasting using machine learning. We have define for a 
popular machine learning technique, the multilayer perceptron, 
four kinds of uncertainties: the error due to the measurement, the 
variability of time series, the machine learning uncertainty 
(initialization and sampling) and the error related to the horizon. 
In literature, rarely both to the two kinds of uncertainty 𝜎𝑖𝑛𝑖 and 
𝜎𝑀𝐿⁡are studied, and never 𝜎𝑚𝑒𝑎𝑠. We have also defined a 
reliability index which could be very interesting for the grid 
manager in order to estimate the validity of predictions. The 
described method has been successfully applied to five 
meteorological stations in Mediterranean area. We are sure that 
it is possible to generalize the approach to other sites and other 
machine learning tools. Thereby in future, we will try to apply 
the methodology to other time granularities and predictor as 
SVM, regression tree or random forest.  
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