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We give a brief summary of numerical methods for time-dependent advection-dominated partial di erential equations (PDEs), including ÿrst-order hyperbolic PDEs and nonstationary advection-di usion PDEs. Mathematical models arising in porous medium uid ow are presented to motivate these equations. It is understood that these PDEs also arise in many other important ÿelds and that the numerical methods reviewed apply to general advection-dominated PDEs. We conduct a brief historical review of classical numerical methods, and a survey of the recent developments on the Eulerian and characteristic methods for time-dependent advection-dominated PDEs. The survey is not comprehensive due to the limitation of its length, and a large portion of the paper covers characteristic or Eulerian-Lagrangian methods.

Mathematical models

We present mathematical models arising in subsurface porous medium uid ow (e.g. subsurface contaminant transport, reservoir simulation) to motivate time-dependent advection-dominated PDEs. These types of PDEs also arise in many other important ÿelds, such as the mathematical modeling of aerodynamics, uid dynamics (e.g. Euler equations, Navier-Stokes equations) [START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF][START_REF] Smoller | Shock Waves and Reaction-Di usion Equations, 2nd Edition[END_REF], meteorology [START_REF] Salmon | Lectures on Geophysical Fluid Dynamics[END_REF], and semiconductor devices [START_REF] Markowich | Semiconductor Equations[END_REF]. 1

Miscible ows

A mathematical model used for describing fully saturated uid ow processes through porous media is derived by using the mass balance equation for the uid mixture [START_REF] Bear | Hydraulics of Groundwater[END_REF][START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF] 

@ @t ( ) -• K (p -g) = q; x ∈ ; t ∈ [0; T ]: (1.1)
Here is the physical domain, u, p, and are the Darcy velocity, the pressure, and the mass density of the uid, K (x) is the absolute permeability of the medium, is the dynamic viscosity of the uid, g is the acceleration vector due to gravity, and q represents the source and sink terms, which is often modeled via point or line sources and sinks.

The transport of a speciÿc component in the uid mixture is governed by the mass conservation for the component and is expressed as

@( c) @t + • (uc) -• (D(u)c) = cq; x ∈ ; t ∈ [0; T ]: (1.2)
Here c, a fraction between 0 and 1, represents the concentration of the component, is the porosity of the medium, c(x; t) is either the speciÿed concentrations of the injected uids at sources or the resident concentrations at sinks, and D(u) is the di usion-dispersion tensor.

Multiphase ows

When either air or a nonaqueous-phase liquid (NAPL) contaminant is present in groundwater transport processes, this phase is immiscible with the water phase and the two phases ow simultaneously in the ow process. Likewise, in the immiscible displacement in petroleum production, the oil phase and the water phase are immiscible. In both cases, there is no mass transfer between the two phases and so the following equations hold for each phase [START_REF] Bear | Hydraulics of Groundwater[END_REF][START_REF] Chavent | A new formulation of diphasic incompressible ows in porous media[END_REF][START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF]: @ @t ( j S j ) -• j K k rj j p j = j q j ; x ∈ ; t ∈ [0; T ]:

Here S j , u j , j , p j , k rj , j , and q j are the saturation, velocity, density, pressure, relative permeability, viscosity, and source and sink terms for the phase j. The indices j=n and w stand for the nonwetting and wetting phases, respectively. The saturations S n and S w satisfy the relation S n + S w = 1.

Eqs. (1.3) may be rearranged in a form that resembles Eqs. (1.1) and (1.2) by letting S n = 1 -S w . The pressure between the two phases is described by the capillary pressure p c (S w ) = p n -p w . The global pressure p and total velocity u of a two-phase ow model is given by the following equations [START_REF] Chen | Comparison of various formulations of three-phase ow in porous media[END_REF]:

S n C n
Dp Dt -• (K p) = q(x; S w ; p); x ∈ ; t ∈ [0; T ]; (1.4) where (D=Dt) = (@=@t) + (u n =S n ) • and p = 1 2 (p n + p w ) + 1 2 S Sc (( nw )= )(dp c =d ) d with p c (S c ) = 0. The total mobility = n + w , the phase mobility j = k rj = j , and the compressibility C j = (1= j )(d j =dp j ) are functions of time and space.

The governing equation for the wetting phase now has a form @S w @t + • (f(S w )u -D(S w )S w ) = q w ; x ∈ ; t ∈ [0; T ]; (1.5) where c = nw . The capillary di usion D(S w ) = -K n f w (dp c =dS w ) and the fractional ow functions f j = j = .

In practice, the di usion term in Eq. (1.2) or (1.5) is often a small phenomenon relative to advection. Hence, these equations are time-dependent advection-di usion partial di erential equations (PDEs) in terms of the concentration c or the saturation S. In particular, Eq. (1.5) has an S-shaped nonlinear ux function f and a degenerate capillary di usion term [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF]. Sometimes the di usion phenomenon is so small that its e ect is neglected. In this case, Eq. (1.2) or (1.5) is reduced to a ÿrst-order hyperbolic PDE. Finally, initial and boundary conditions also need to be speciÿed to close the system (1.1) -(1.2) or (1.4) -(1.5).

Conventional ÿnite di erence and ÿnite element methods

We carry out a brief historical review of classical numerical methods in this section and a survey of the recent developments on the Eulerian and characteristic methods in the next section primarily for time-dependent advection-dominated PDEs, including ÿrst-order hyperbolic PDEs and nonstationary advection-di usion PDEs. Because of the extensive research carried out in these areas, it is impossible to describe adequately all these developments in the space available. Hence, this review is not comprehensive in that we try to describe and review only some representatives of the huge amount of works in the literature. Notice that since relatively more references and survey papers can be found on the Eulerian methods for unsteady state advection-dominated PDEs, we intend to use a relatively large portion to cover characteristic or Eulerian-Lagrangian methods for advection-dominated PDEs. Finally, we refer interested readers to the works of Morton [START_REF] Morton | Numerical Solution of Convection-Di usion Problems[END_REF] and Roos et al. [START_REF] Roos | Numerical Methods for Singular Perturbed Di erential Equations[END_REF] for detailed descriptions on the recent developments for the numerical methods for stationary advection-di usion PDEs.

It is well known that advection-dominated PDEs present serious numerical di culties due to the moving steep fronts present in the solutions of advection-di usion transport PDEs or shock discontinuities in the solutions of pure advection PDEs or advection-di usion PDEs with degenerate diffusion. Additional di culties include the strong couplings and nonlinearities of advection-dominated PDE systems, the e ect of the singularities at point=line sources and sinks, the strong heterogeneity of the coe cients, anisotropic di usion-dispersion in tensor form, and the enormous sizes of ÿeld-scale applications.

Finite di erence methods (FDMs)

Due to their simplicity, FDMs were ÿrst used in solving advection-dominated PDEs. For convenience, of presentation, we consider the one-dimensional constant-coe cient analogue of Eq. (1.2)

@c @t + V @c @x -D @ 2 c @x 2 = 0; x ∈ (a; b); t ∈ [0; T ] (2.1)
and assume a uniform spatial and temporal partition x i = a +i x for i =0; 1; : : : ; I with x =(b -a)=I and t m = m t for m = 0; 1; : : : ; M with t = T=M . We deÿne the Courant number Cr = V t= x and the Peclet number Pe = V x=D. It is known that the solution to the space-centered explicit scheme

c m+1 i -c m i t + V c m i+1 -c m i-1 2 x -D c m i+1 -2c m i + c m i-1 ( x) 2 = 0 (2.2)
does not oscillate only when the Peclet number Pe62 and the CFL condition (Cr61) is satisÿed [START_REF] Courant | Uber die partiellen di erenzen-gleichungen der mathematisches physik[END_REF][START_REF] Price | Applications of oscillation matrices to di usion-convection equations[END_REF]. For Pe ¿ 2, damped oscillations occur with nonreal eigenvalues [START_REF] Finlayson | Numerical Methods for Problems with Moving Fronts[END_REF][START_REF] Price | Applications of oscillation matrices to di usion-convection equations[END_REF]. Furthermore, for the linear hyperbolic PDE @c @t

+ V @c @x = 0; x ∈ (a; b); t ∈ [0; T ]; (2.3)
which can be viewed as a limiting case of D → 0 in Eq. (2.1), the corresponding scheme to scheme (2.2)

c m+1 i -c m i t + V c m i+1 -c m i-1 2 x = 0 (2.4)
is unconditionally unstable [START_REF] Finlayson | Numerical Methods for Problems with Moving Fronts[END_REF][START_REF] Strikwerda | Finite Di erence Schemes and Partial Di erential Equations[END_REF].

The upwind FDM (UFDM) uses a one-sided ÿnite di erence in the upstream direction to approximate the advection term in the transport PDE (2.1) and can be expressed as follows (assuming V ¿0):

c m+1 i -c m i t + V c m i -c m i-1 2 x -D c m i+1 -2c m i + c m i-1 ( x) 2 = 0: (2.5)
The Lax-Friedrichs scheme

c m+1 i -(c m i+1 + c m i-1 )=2 t + V c m i+1 -c m i-1 2 x -D c m i+1 -2c m i + c m i-1 ( x) 2 = 0 (2.6)
is obtained by replacing c m i in the ÿrst term in Eq. (2.2) by its mean value (c m i+1 + c m i-1 )=2.

Remark 1. Schemes (2.5) and (2.6) eliminate the nonphysical oscillations present in Scheme (2.2), and generate stable solutions even for very complicated multiphase and multicomponent ows. It can be shown that the UFDM scheme is actually a second-order approximation to Eq. (2.1) with a modiÿed di usion D(1 + (Pe=2)(1 -Cr)), while the Lax-Friedrichs scheme is a second-order approximation to Eq. ( 2.1) with an extra numerical di usion (( x) [START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF][START_REF] Hedstrom | Models of di erence schemes for u t + ux = 0 by partial di erential equations[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF]. Hence, these methods introduce excessive numerical di usion and the numerical solutions are dependent upon grid orientation. Detailed description on the theory and the use of modiÿed equations can be found in [START_REF] Hedstrom | Models of di erence schemes for u t + ux = 0 by partial di erential equations[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF][START_REF] Warming | The modiÿed equation approach to the stability and accuracy analysis of ÿnite di erence methods[END_REF].

2 =2 t)(1-Cr 2 )
The Lax-Wendro scheme is based on the Taylor series expansion and Eq. (2.3)

c(x; t m+1 ) = c(x; t m ) + t @c(x; t m ) @t + ( t) 2 2 @ 2 c(x; t m ) @t 2 + O(( t) 3 ) = c(x; t m ) -V t @c(x; t m ) @x + (V t) 2 2 @ 2 c(x; t m ) @x 2 + O(( t) 3 ): (2.7)
Dropping the O(( t) 3 ) term in Eq. (2.7) and using centered di erences to approximate the spatial derivatives yields the Lax-Wendro scheme

c m+1 i = c m i - Cr 2 (c m i+1 -c m i-1 ) + Cr 2 2 (c m i+1 -2c m i + c m i-1 ); (2.8)
which is a second-order scheme. The Beam-Warming scheme is a one-sided version of the Lax-Wendro scheme. It uses secondorder accurate one-sided di erences to approximate the spatial derivatives in Eq. (2.7)

c m+1 i = c m i - Cr 2 (3c m i -4c m i-1 + c m i-2 ) + Cr 2 2 (c m i -2c m i-1 + c m i-2 ): (2.9)
Remark 2. The Lax-Wendro scheme and the Beam-Warming scheme give third-order approximations to the modiÿed advection-dispersion equation

@c @t + V @c @x -ÿ @ 3 c @x 3 = 0; x ∈ (a; b); t ∈ [0; T ] with ÿ = (V ( x) 2 =6)(Cr 2 -1) for (2.8
) and (V ( x) 2 =6)(2 -3Cr + Cr 2 ) for (2.9). The theory of dispersive waves and its utility in the study of numerical methods are covered in [START_REF] Trefethen | Group velocity in ÿnite di erence schemes[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF], which show that the Lax-Wendro scheme tends to develop oscillations behind shock fronts while the Beam-Warming scheme tends to develop oscillations in front of shock fronts.

Remark 3. Solving Eq. (2.3) yields c(x; t m+1 ) = c(x -V t; t m ). When the CFL condition is satisÿed, the UPFD or the Lax-Friedrichs scheme can be viewed as an linear interpolation of c(x -V t; t m ) by the nodal values c(x i-1 ; t m ) and c(x i ; t m ), or c(x i-1 ; t m ) and c(x i+1 ; t m ), respectively. This explains why these schemes are free of oscillations and introduce smearing from another point of view [START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF]. Second, because UFDM takes advantage of upstream information, it is slightly more accurate than the Lax-Friedrichs scheme. On the other hand, the latter is symmetric and can be easily implemented, which is an important feature for nonlinear hyperbolic conservation laws. In contrast, the Lax-Wendro scheme (2.8) or Beam-Warming scheme (2.9) can be viewed as a quadratic interpolation of c(x -V t; t m ) by the nodal values c(x i-1 ; t m ), c(x i ; t m ), and c(x i+1 ; t m ), or c(x i ; t m ), c(x i+1 ; t m ), and c(x i+2 ; t m ). This is why they introduce oscillations across shock discontinuities.

The leap-frog scheme for Eq. (2.3) is obtained by replacing the forward di erence in time in (2.4) by a centered di erence

c m+1 i -c m-1 i t + V c m i+1 -c m i-1 2 x = 0: (2.10)
Scheme (2.10) has an improved truncation error of O(( x) 2 + ( t) 2 ), but it is a multi-level scheme. This leads to increased computational storage, a particular disadvantage for large multi-dimensional nonlinear systems. These methods can be extended to solve nonlinear hyperbolic conservation laws

@c @t + @f(c) @x = 0; x ∈ (a; b); t ∈ [0; T ] (2.11)
and their viscous analogue [START_REF] Finlayson | Numerical Methods for Problems with Moving Fronts[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF]. For example, a large class of upwind schemes have been developed, based on the Godunov scheme [START_REF] Godunov | A di erence scheme for numerical computation of discontinuous solutions of uid dynamics[END_REF]; they have often been presented in terms of Riemann solvers. The Lax-Friedrichs scheme is a basis for the development of nonoscillatory central schemes (see e.g. [START_REF] Nessyahu | Non-oscillatory central di erencing for hyperbolic conservation laws[END_REF]).

Galerkin and Petrov-Galerkin ÿnite element methods (FEMs)

Many FEM schemes have been developed in parallel. For instance, the Galerkin and Petrov-Galerkin FEMs that are analogues to Scheme (2.2) and the UFDM (2.5) for Eq. (2.1) can be uniformly written as follows:

b a c(x; t m+1 )w i (x) dx - b a c(x; t m )w i (x) dx + t b a D @c(x; t m+1 ) @x @w i (x) @x d x + b a V @c(x; t m+1 ) @x w i (x) dx = -(1 -) t b a D @c(x; t m ) @x @w i (x) @x d x + b a V @c(x; t m ) @x w i (x) dx : (2.12) 
Here c(x; t m+1 ) is a piecewise-linear trial function. In the linear Galerkin FEM, the test functions w i (x) are standard hat functions centered at the node x i and correspond to the space-centered scheme (2.2) (see e.g. [START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF][START_REF] Finlayson | Numerical Methods for Problems with Moving Fronts[END_REF]).

In the quadratic Petrov-Galerkin FEM (QPG), the test functions are constructed by adding an asymmetric perturbation to the original piecewise-linear hat functions [START_REF] Barrett | Approximate symmetrization and Petrov-Galerkin methods for di usion-convection problems[END_REF][START_REF] Celia | A new numerical approach for the advective-di usive transport equation[END_REF][START_REF] Christie | Finite element methods for second order di erential equations with signiÿcant ÿrst derivatives[END_REF] 

w i (x) =              x -x i-1 x + (x -x i-1 )(x i -x) x 2 ; x ∈ [x i-1 ; x i ]; x i+1 -x x - (x -x i )(x i+1 -x) x 2 ; x ∈ [x i ; x i+1 ]; 0 otherwise:
With a choice of =3, the QPG reproduces the UFDM. With an optimal choice of =3[coth(Pe=2)-2=Pe], the QPG is reduced to the optimal FDM of Allen and Southwell [START_REF] Allen | Relaxation methods applied to determining the motion in two dimensions of a uid past a ÿxed cylinder[END_REF]. For a stationary analogue of Eq. (2.1), the QPG method yields solutions that coincide with the exact solution at the nodal points, and minimizes the errors in approximating spatial derivatives [START_REF] Barrett | Approximate symmetrization and Petrov-Galerkin methods for di usion-convection problems[END_REF][START_REF] Celia | A new numerical approach for the advective-di usive transport equation[END_REF]. However, the QPG is susceptible to strong time truncation errors that introduce numerical di usion and the restrictions on the size of the Courant number, and hence tends to be ine ective for transient advection-dominated PDEs.

In the cubic Petrov-Galerkin FEM (CPG), the test functions are deÿned as the original piecewiselinear hat functions with a symmetric cubic perturbation added to each nonzero piece [START_REF] Bouloutas | An improved cubic Petrov-Galerkin method for simulation of transient advectiondi usion processes in rectangularly decomposable domains[END_REF][START_REF] Westerink | Consider higher degree Petrov-Galerkin methods for the solution of the transient convection-di usion equation[END_REF] 

w i (x) =              x -x i-1 x + (x -x i-1 )(x i -x)(x i-1 + x i -2x) x 3 ; x ∈ [x i-1 ; x i ]; x i+1 -x x - (x -x i )(x i+1 -x)(x i + x i+1 -2x) x 3 ; x ∈ [x i ; x i+1 ]; 0 otherwise:
Here = 5Cr 2 . The CPG intends to use nonzero spatial error to cancel the temporal error to improve the overall accuracy. In these treatments the e ects on mass balance come from spatial dependence of test functions in the ÿrst terms on both the sides of Eq. (2.12). Detailed descriptions of the FDMs and FEMs that have been used in the petroleum industry can be found in [START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF][START_REF] Russell | Finite element and ÿnite di erence methods for continuous ows in porous media[END_REF].

Corresponding to the Lax-Wendro scheme (2.8) and the leap-frog scheme (2.10) is the Taylor-Galerkin scheme

c m+1 i+1 -c m-1 i+1 6 + 2(c m+1 i -c m-1 i ) 3 + c m+1 i-1 -c m-1 i-1 6 = - Cr 2 (c m i+1 -c m i-1 ) + Cr 2 2 (c m i+1 -2c m i + c m i-1 );
and the leap-frog Galerkin scheme

c m+1 i+1 -c m-1 i+1 6 t + 2(c m+1 i -c m-1 i ) 3 t + c m+1 i-1 -c m-1 i-1 6 t + V c m i+1 -c m i-1 2 x = 0:
In addition, a wide variety of other methods can be devised for advection-dominated transport PDEs by using di erent FDM and FEM approximations, or Taylor expansions. Many large-scale simulators use fully implicit discretization so that large time steps can be allowed. However, in implicit methods, the temporal error and the spatial error add together. Hence, increasing the size of time steps can signiÿcantly reduce the accuracy of the solutions [START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF]. This is also observed computationally [START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF].

In contrast, in explicit schemes the temporal error and the spatial error cancel each other. Hence, reducing the time step size further with ÿxed spatial step size will actually reduce the accuracy of the numerical solutions. The sizes of spatial grids and temporal steps have to be reduced simultaneously to improve the accuracy of the solutions, leading to signiÿcantly increased overall computational and storage cost [START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF].

Recent developments for advection-di usion PDEs

Recent developments in e ectively solving advection-di usion PDEs have generally been along one of two approaches: Eulerian or characteristic Lagrangian methods. Eulerian methods use the standard temporal discretization, while the main distinguishing feature of characteristic methods is the use of characteristics to carry out the discretization in time.

Eulerian methods for advection-di usion PDEs

Many methods directly apply to a nonconservative analogue of Eq. (1.2)

@c @t + u • c -• (Dc) = cq; x ∈ ; t ∈ [0; T ]: (3.1)
3.1.1. The streamline di usion ÿnite element method (SDFEM)

The SDFEM directly applies to Eq. (3.1). It is based on the framework of space-time FEMs on the space-time strip × [t m ; t m+1 ], and uses continuous and piecewise polynomial trial and test functions in space as standard FEM but a discontinuous Galerkin approximation in time at time level t m and t m+1 such that

t m+1 t m @c @t + u • c -• (Dc) w + @w @t + u • w dx dt + t m+1 t m w • (Dc) dx dt + c(x; t m + )w(x; t m + ) dx = t m+1 t m cq w + @w @t + u • w dx dt + c(x; t m -)w(x; t m + ) dx:
Here w(x; t m + )=lim t→t m ; t¿t m w(x; t) and w(x; t m -)=lim t→t m ; t¡t m w(x; t). At the initial time step, c(x; t 0 -)= c 0 (x) is the prescribed initial condition. The second term on the left-hand side is carried out elementwise, since it is not well deÿned for continuous and piecewise polynomials. The parameter , which determines the amount of numerical di usion introduced, is typically chosen to be of order O( ( x) 2 + ( t) 2 ).

The SDFEM was ÿrst proposed by Hughes and Brooks [START_REF] Hughes | A multidimensional upwind scheme with no crosswind di usion[END_REF]. Since then, various SDFEM schemes have been developed and studied extensively by Brooks and Hughes and Hughes [START_REF] Brooks | Streamline upwind Petrov-Galerkin formulations for convection dominated ows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Hughes | Multiscale phenomena: Green functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods[END_REF] and Johnson et al. [START_REF] Hansbo | A velocity-pressure streamline di usion ÿnite element method for the incompressible Navier-Stokes equations[END_REF][START_REF] Johnson | An analysis of discontinuous Galerkin methods for a scalar hyperbolic equation[END_REF]. The SDFEM adds a numerical di usion only in the direction of streamlines to suppress the oscillation and does not introduce any crosswind di usion. However, the undetermined parameter in the SDFEM scheme needs to be chosen very carefully in order to obtain accurate numerical results. An optimal choice of the parameter is heavily problem-dependent. We refer readers to the work of Shih and Elman on the study of the choice in the SDFEM formulation and the related numerical experiments [START_REF] Shih | Modiÿed streamline di usion schemes for convection-di usion problems[END_REF].

While the SDFEM can capture a jump discontinuity of the exact solution in a thin region, the numerical solution may develop over-and under-shoots about the exact solution within this layer. A modiÿed SDFEM with improved shock-capturing properties was proposed [START_REF] Hughes | A new ÿnite element formulation for computational uid dynamics: III, The general streamline operator for multidimensional advective-di usive systems[END_REF][START_REF] Johnson | On the convergence of shock-capturing streamline di usion ÿnite element methods for hyperbolic conservation laws[END_REF], which consists of adding a "shock-capturing" term to the di usion by introducing a "crosswind" control that is close to the steep fronts or "shocks". This modiÿed SDFEM performs much better in terms of catching the steep fronts or the jump discontinuities of the exact solutions. However, the modiÿed SDFEM is a nonlinear scheme and involves another undetermined parameter.

Total variation diminishing (TVD) methods

Notice that when oscillations arise, the numerical solutions will have larger total variation. TVD methods are designed to yield well-resolved, nonoscillatory shock discontinuities by enforcing that the numerical schemes generate solutions with nonincreasing total variations. One approach is to take a high-order method and add an additional numerical di usion term to it. Since this numerical di usion is needed only near discontinuities, one wants it to vanish su ciently quickly so that the order of accuracy of the method on smooth regions of the solutions is retained. Hence, the numerical di usion should depend on the behavior of the solutions, being larger near shock regions than in smooth regions. This leads to a nonlinear method even for the linear advection equation (2.3). The idea of adding a variable amount of numerical di usion dates back to some of the earliest work on the numerical solution of uid dynamics [START_REF] Courant | On the solution of nonlinear hyperbolic di erential equations by ÿnite di erences[END_REF][START_REF] Lax | Systems of conservation laws[END_REF][START_REF] Von Neumann | A method for the numerical calculation of hydrodynamic shocks[END_REF]. The di culty with this approach is that it is hard to determine an appropriate amount of numerical di usion that introduces just enough dissipation without causing excessive smearing.

For this reason, the high-resolution methods developed more recently are based on fairly di erent approaches, including ux-and slope-limiter approaches that impose the nonoscillatory requirement more directly. In the ux-limiter approach, one ÿrst chooses a high-order numerical ux F H (c; i) = F H (c i-lH ; c i-l+1 ; : : : ; c i+rH ) that generates accurate approximations in smooth regions and a low-order numerical ux F L (c; i) = F L (c i-lL ; c i-l+1 ; : : : ; c i+rL ) that yields nonoscillatory solutions near shock discontinuities. One then combines F H and F L into a single numerical ux F, e.g. in the form of

F(c; i) = F L (c; i) + (c; i)(F H (c; i) -F L (c; i)); (3.2)
such that F reduces to F H in smooth regions and to F L in shock regions. Here (c; i), the ux limiter, should be near one in smooth regions and close to zero near shock discontinuities.

The ux-corrected transport (FCT) method of Boris and Book can be viewed as one of the earliest ux limiter methods [START_REF] Boris | Flux-corrected transport I, SHASTA, a uid transport algorithm that works[END_REF][START_REF] Boris | Flux-corrected transport, III, Minimal-error FCT algorithms[END_REF][START_REF] Zalesak | Fully multidimensional ux-corrected transport algorithms for uids[END_REF]. In the FCT method, an anti-di usive term (i.e., the correction term in (3.2)) is added to reduce the excessive numerical di usion introduced by the lower-order ux F L as much as possible without increasing the total variation of the solution.

Sweby studied a family of ux-limiter methods in [START_REF] Sweby | High resolution schemes using ux limiters for hyperbolic conservation laws[END_REF]. By choosing

F L (c m ; i) = Vc m i and F H (c m ; i) = Vc m i + 1 2 V (1 -Cr)(c m i+1 -c m i )
; to be the ÿrst-order upwind ux in (2.5) and the Lax-Wendro ux in (2.8) and using (3.2), a family of ux-limiter methods can be deÿned

c m+1 i = c m i - t x [F(c m ; i) -F(c m ; i -1)] (3.3)
with the ux F(c m ; i) being given by

F(c m ; i) = Vc m i + (c m ; i) 2 V (1 -Cr)(c m i+1 -c m i ):
One way to measure the smoothness of the solution is to look at the ratio of consecutive gradients and to deÿne the ux limiter accordingly

(c m ; i) = ( i ) with  i = c m i -c m i-1 c m i+1 -c m i :
Sweby obtained algebraic conditions on the limiter functions that guarantee second-order accuracy and the TVD property of the derived methods [START_REF] Sweby | High resolution schemes using ux limiters for hyperbolic conservation laws[END_REF]. Harten proved a su cient condition on that can be used to impose constraints on [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF][START_REF] Harten | On ÿnite-di erence approximations and entropy conditions for shocks[END_REF]. Among the di erent choices of limiters are the "superbee" limiter of Roe [START_REF] Roe | Some contributions to the modeling of discontinuous ows[END_REF] (Â) = max{0; min{1; 2Â}; min{Â; 2}} and a smoother limiter by van Leer [START_REF] Van Leer | Towards the ultimate conservative di erence scheme II, Monotonicity and conservation combined in a second order scheme[END_REF] (Â) = |Â| + Â 1 + |Â| :

The extension of ux limiter methods to nonlinear conservation laws and numerical comparisons can be found in [START_REF] Colella | The piecewise-parabolic method (PPM) for gasdynamical simulations[END_REF][START_REF] Sweby | High resolution schemes using ux limiters for hyperbolic conservation laws[END_REF][START_REF] Zalesak | A preliminary comparison of modern shock-capturing schemes: linear advection equation[END_REF].

Another approach is to use slope limiters. These intend to replace the piecewise-constant representation of the solutions in Godunov's method by more accurate representations, and can be expressed in the following steps for Eq. (2.11):

(i) Given the piecewise-constant cell-average representation { c m i } i=+∞ i=-∞ of the solution at time level t m , deÿne a (e.g., piecewise-linear) reconstruction at time t m by ĉ(x;

t m ) = c m i + m i (x -x i ) (3.4) for x on the cell [x i-1=2 ; x i+1=2 ].
Here m i is a slope on the ith cell that is based on the data { c m i }. (ii) Solve Eq. (2.11) with the data ĉ(x; t m ) at time t m to obtain the solution c(x; t m+1 ) at time t m+1 . (iii) Compute the cell average { c m+1 i } i=+∞ i=-∞ of the solution c(x; t m+1 ) at time t m+1 . Note that the cell average of reconstruction (3.4) is equal to c m i on the cell [x i-1=2 ; x i+1=2 ] for any choice of m i . Since Steps 2 and 3 are also conservative, the methods with slope limiters are conservative. Secondly, the choice of m i = 0 in Eq. (3.4) recovers Godunov's method. It is well known that Godunov's method generates solutions with excessive numerical di usion. More accurate reconstructions, such as Eq. (3.4), could be used to reduce the numerical di usion and to improve the accuracy of the numerical solutions.

In the context of the linear advection PDE (2.3), the solution of Step (ii) is simply c(x; t m+1 ) = ĉ(x-V t; t m ). Computing the cell average of c(x; t m+1 ) in Step (iii) leads to the following expression:

c m+1 i = c m i -Cr( c m i -c m i-1 ) - x 2 Cr(1 -Cr)( m i -m i-1 ): (3.5) A natural choice of m i = ( c m i+1 -c m i )=
x in Eq. (3.5) leads to the Lax-Wendro method. Thus, it is possible to obtain second-order accuracy by this approach. Secondly, the slope-limiter methods could generate oscillatory solutions (since the Lax-Wendro method could do so), if the slope limiters m i are not chosen properly. Geometrically, the oscillations are due to a poor choice of slopes, which leads to a piecewise-linear reconstruction ĉ(x; t m ) with much larger total variation than the given data { c m i } i=+∞ i=-∞ [START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF]. Hence, because of their importance, extensive research has been conducted on how to choose the slope m i in Eq. (3.4) to ensure the resulting methods to be total variation diminishing (TVD). These methods include the monotonic upstream-centered scheme for conservation laws (MUSCL) of van Leer and Minmod methods among others [START_REF] Colella | A direct Eulerian MUSCL scheme for gas dynamics[END_REF][START_REF] Goodman | A geometric approach to high-resolution TVD schemes[END_REF][START_REF] Van Leer | Towards the ultimate conservative di erence scheme II, Monotonicity and conservation combined in a second order scheme[END_REF][START_REF] Van Leer ; Engquist-Osher | On the relation between the upwind-di erencing schemes of Godunov[END_REF]. The simplest choice of the slope is probably the minmod slope deÿned by

m i = minmod c m i+1 -c m i x ; c m i -c m i-1
x with minmod(a; b) = 1 2 (sgn(a) + sgn(b))min(|a|; |b|).

In concluding this part, we notice the connection between the ux-and slope-limiter methods. Using formulation (3.3), we see that the numerical ux for the slope-limiter method (3.5) is

F(c m ; i) = Vc m i + x 2 V (1 -Cr) m i ;
which is of the same form as the ux-limiter method (3.3) if the slope-limiter m i is related to the ux-limiter (c m ; i) by m i = [(c m i+1 -c m i )= x] (c m ; i).

Essentially nonoscillatory (ENO) schemes and weighted essentially nonoscillatory (WENO) schemes

Traditional ÿnite di erence methods are based on ÿxed stencil interpolations of discrete data using polynomials. The resulting scheme is linear for linear PDEs. However, ÿxed stencil interpolation of second-or higher-order accuracy is necessarily oscillatory across a discontinuity; this is why the Lax-Wendro scheme (2.8) and the Beam-Warming scheme (2.9) introduce oscillations across shock discontinuities (see Remark 3). One common approach to eliminate or reduce spurious oscillations near discontinuities is to add a numerical di usion as in the SDFEM presented earlier. The numerical di usion should be tuned so that it is large enough near discontinuities but is small enough elsewhere to maintain high-order accuracy. One disadvantage of this approach is that it is hard to determine an appropriate amount of numerical di usion that introduces just enough dissipation without causing excessive smearing. Another approach is to apply ( ux or slope) limiters to eliminate the oscillations. By carefully designing such limiters (e.g., reducing the slope of a linear interpolant or using a linear rather than a quadratic interpolant near shock discontinuities), the TVD property could be achieved for some numerical schemes for nonlinear scalar conservation laws in one space dimension. Unfortunately, Osher and Chakravarthy proved that TVD methods must degenerate to ÿrst-order accuracy at local maximum or minimum points [START_REF] Osherm | High resolution schemes and the entropy condition[END_REF].

The ENO and WENO schemes are high-order accurate ÿnite di erence=volume schemes designed for nonlinear hyperbolic conservation laws with piecewise smooth solutions containing discontinuities [START_REF] Harten | Uniformly high-order accurate essentially nonoscillatory schemes, III[END_REF][START_REF] Harten | Uniformly high-order accurate nonoscillatory schemes, I[END_REF][START_REF] Jiang | E cient implementation of weighted ENO schemes[END_REF][START_REF] Liu | Weighted essentially nonoscillatory schemes[END_REF]. By delicately deÿning a nonlinear adaptive procedure to automatically choose the locally smooth stencil, the ENO and WENO schemes avoid crossing discontinuities in the interpolation procedure and thus generate uniformly high-order accurate, yet essentially nonoscillatory solutions. These schemes have been quite successful in applications, especially for problems containing both shock discontinuities and complicated smooth solution structures [START_REF] Shu | Essentially nonoscillatory (ENO) and weighted essentially nonoscillatory (WENO) schemes for hyperbolic conservation laws[END_REF].

The discontinuous Galerkin (DG) method

The original discontinuous Galerkin ÿnite element method was introduced by Reed and Hill for solving a linear neutron transport equation [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF], in which the method can be carried out element by element when the elements are suitably ordered according to the characteristic directions. Lesaint and Raviart [START_REF] Lesaint | On a ÿnite element method for solving the neutron transport equation[END_REF] carried out the ÿrst analysis for this method and proved a convergence rate of ( x) k for general triangular partitions and ( x) k+1 for Cartesian grids. Johnson and Pitkar anta [START_REF] Johnson | An analysis of discontinuous Galerkin methods for a scalar hyperbolic equation[END_REF] obtained an improved estimate of ( x) k+1=2 for general triangulations, which is conÿrmed to be optimal by Peterson [START_REF] Peterson | A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation[END_REF]. Chavent and Salzano [START_REF] Chavent | A ÿnite element method for the 1D water ooding problem with gravity[END_REF] constructed an explicit DG method for Eq. (2.11), in which piecewise linear FEM is used in space and an explicit Euler approximation is used in time. Unfortunately, the scheme is stable only if the Courant number Cr =O( √ x). Chavent and Cockburn [START_REF] Chavent | The local projection P 0 ; P 1 -discontinuous Galerkin ÿnite element method for scalar conservation laws[END_REF] modiÿed the scheme by introducing a slope limiter, and proved the scheme to be total variation bounded (TVB) when Cr 6 1 2 . However, the slope limiter introduced compromises the accuracy of the approximation in smooth regions. Cockburn and Shu [START_REF] Cockburn | The Runge-Kutta local projection P 1 -discontinuous Galerkin ÿnite element method for scalar conservation laws[END_REF] introduced the ÿrst Runge-Kutta DG (RKDG) method, which uses an explicit TVD second-order Runge-Kutta discretization and modiÿes the slope limiter to maintain the formal accuracy of the scheme at the extrema. The same authors then extended this approach to construct higher-order RKDG methods [START_REF] Cockburn | The Runge-Kutta local projection P 1 -discontinuous Galerkin ÿnite element method for scalar conservation laws II: general framework[END_REF], to multidimensional scalar conservation laws [START_REF] Cockburn | TVB Runge-Kutta local projection discontinuous Galerkin ÿnite element method for conservation laws IV: the multidimensional case[END_REF][START_REF] Cockburn | The Runge-Kutta discontinuous Galerkin ÿnite element method for conservation laws V: multidimensional systems[END_REF], and to multidimensional systems. We refer interested readers to the survey article [START_REF] Cockburn | Finite element methods for conservation laws, this volume[END_REF] in this volume for detailed discussions on the DG methods.

Characteristic methods

Because of the hyperbolic nature of advective transport, characteristic methods have been investigated extensively for the solution of advection-di usion PDEs. In a characteristic (or Lagrangian) method, the transport of the uid is referred to a Lagrangian coordinate system that moves with the uid velocity. One tracks the movement of a uid particle and the coordinate system follows the movement of the uid. The time derivative along the characteristics of the advection-di usion PDE (3.1) is expressed as

Dc Dt = @c @t + u • c: (3.6)
Consequently, the advection-di usion PDE (3.1) is rewritten as the following parabolic di usionreaction PDE in a Lagrangian system:

Dc Dt -• (Dc) = cq (3.7)
and the advection has seemingly disappeared. In other words, in a Lagrangian coordinate system (that moves with the ow) one would only see the e ect of the di usion, reaction, and the the right-hand side source terms but not the e ect of the advection or moving steep fronts. Hence, the solutions of the advection-di usion PDEs are much smoother along the characteristics than they are in the time direction. This explains why characteristic methods usually allow large time steps to be used in a numerical simulation while still maintaining its stability and accuracy. Unfortunately, Eq. (3.7) is written in a Lagrangian coordinate system, which is constantly moving in time. Consequently, the corresponding characteristic or Lagrangian methods often raise extra and nontrivial analytical, numerical, and implementational di culties, which require very careful treatment. In contrast, Eq.

(1.2) or (3.1) is written in an Eulerian system which is ÿxed in space. Hence, Eulerian methods are relatively easy to formulate and to implement.

Classical characteristic or Eulerian-Lagrangian methods

The classical Eulerian-Lagrangian method is a ÿnite di erence method based on the forward tracking of particles in cells. In this method, the spatial domain is divided into a collection of elements or cells and a number of particles are placed within each cell. Then the governing PDE is used to determine the movement of the particles from cell to cell. In this algorithm, the solution is determined by the number of particles within a cell at any given time. Related works can be found in [START_REF] Farmer | A moving point method for arbitrary Peclet number multi-dimensional convection-di usion equations[END_REF][START_REF] Garder | Numerical calculations of multidimensional miscible displacement by the method of characteristics[END_REF][START_REF] Thomaidis | An explicit ÿnite di erence scheme based on the modiÿed method of characteristics for solving di usion-convection problems in one space dimension[END_REF]. In these methods, the di usion occurs at the time step t m and the solution is advected forward in time to the time step t m+1 , leading to the following scheme for Eq. (2.1):

c m+1 i -c m i t -D c m i+1 -2c m i + c m i-1 ( x) 2 = 0:
Here c m+1 i = c( xi ; t m+1 ) with xi = x i + V t. Because the advected nodes xi need not be nodes at time t m+1 , they are irregular, in general.

Neuman developed an Eulerian-Lagrangian ÿnite element method using a combination of forward and backward tracking algorithms [START_REF] Neuman | An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids[END_REF][START_REF] Neuman | Adaptive Eulerian-Lagrangian ÿnite element method for advection-dispersion equation[END_REF]. Near a steep front, a forward tracking algorithm is used to move a cloud of particles from time t m to new positions at time t m+1 according to the advection, as done by Garder et al. [START_REF] Garder | Numerical calculations of multidimensional miscible displacement by the method of characteristics[END_REF]. An implicit scheme is then used to treat the di usion at time t m+1 . Away from a front, a backward tracking algorithm is used, in which one ÿnds a point that ends up at position x at time t m+1 .

Eulerian methods carry out the temporal discretization in the time direction, so they cannot accurately simulate all of the wave interactions that take place if the information propagates more than one cell per time step (i.e., if the CFL condition is violated), either for the reason of stability (for explicit methods) or for the reason of accuracy (for implicit methods). By using characteristic tracking, characteristic methods follow the movement of information or particles as well as their interactions. However, forward tracked characteristic methods often distort the evolving grids severely and greatly complicate the solution procedures, especially for multi-dimensional problems.

The modiÿed method of characteristics (MMOC)

In this part we brie y review the MMOC, which was proposed by Douglas and Russell for solving advection-di usion PDEs in a nonconservative form [START_REF] Douglas | Numerical methods for convection-dominated di usion problems based on combining the method of characteristics with ÿnite element or ÿnite di erence procedures[END_REF] and can be viewed as a representative of the Eulerian-Lagrangian methods developed during the same time period [START_REF] Benque | Quelques di culties des modeles numeriques en hydraulique[END_REF][START_REF] Pironneau | On the transport-di usion algorithm and its application to the Navier-Stokes equations[END_REF][START_REF] Pudykiewicz | Some properties and comparative performance of the semi-Lagrangian method of robert in the solution of the advection-di usion equation[END_REF]. Using the Lagrangian form (3.7), we can combine the ÿrst two terms on the left-hand side of (3.1) to form one term through characteristic tracking (3.6) (see, e.g. [START_REF] Douglas | Numerical methods for convection-dominated di usion problems based on combining the method of characteristics with ÿnite element or ÿnite di erence procedures[END_REF])

Dc(x; t m+1 ) Dt ≈ (x) c(x; t m+1 ) -c(x * ; t m ) t (3.8) 
with x * = x -u(x; t m+1 ) t= (x). Substituting (3.8) for the ÿrst two terms on the left-hand side of Eq. (3.1) and integrating the resulting equation against any ÿnite element test functions w(x), one obtains the following MMOC scheme [START_REF] Douglas | Numerical methods for convection-dominated di usion problems based on combining the method of characteristics with ÿnite element or ÿnite di erence procedures[END_REF][START_REF] Ewing | Simulation of miscible displacement using mixed methods and a modiÿed method of characteristics[END_REF] for Eq. (3.1):

(x) c(x; t m+1 ) -c(x * ; t m ) t w(x) dx + w(x) • Dc(x; t m+1 ) dx = cq(x; t m+1 )w(x) dx: (3.9) 
Eq. (3.9) follows the ow by tracking the characteristics backward from a point x in a ÿxed grid at the time step t m+1 to a point x * at time t m . Hence, the MMOC avoids the grid distortion problems present in forward tracking methods. Moreover, MMOC symmetrizes and stabilizes the transport PDEs, greatly reducing temporal errors; therefore MMOC allows for large time steps in a simulation without loss of accuracy and eliminates the excessive numerical dispersion and grid orientation e ects present in many Eulerian methods [START_REF] Douglas | Simulation of the transient behavior of a one-dimensional semiconductor device[END_REF][START_REF] Ewing | The Mathematics of Reservoir Simulation[END_REF][START_REF] Russell | Finite element and ÿnite di erence methods for continuous ows in porous media[END_REF]. However, the MMOC and the characteristic methods presented earlier have the following drawbacks:

Remark 4. In the context of the MMOC and other characteristic methods using a backtracking algorithm, the (x)c(x * ; t m )w(x) dx term in Eq. (3.9) is deÿned on the domain at time t m+1 . In this term, the test functions w(x) are standard FEM basis functions on at time t m+1 , but the value of c(x * ; t m ) has to be evaluated by a backtracking method where x * = r(t m ; x; t m+1 ) is the point at the foot corresponding to x at the head [START_REF] Douglas | Numerical methods for convection-dominated di usion problems based on combining the method of characteristics with ÿnite element or ÿnite di erence procedures[END_REF][START_REF] Ewing | Simulation of miscible displacement using mixed methods and a modiÿed method of characteristics[END_REF]. For multidimensional problems, the evaluation of this term with a backtracking algorithm requires signiÿcant e ort, due to the need to deÿne the geometry at time t m that requires mapping of points along the boundary of the element and subsequent interpolation and mapping onto the ÿxed spatial grid at the previous time t m [START_REF] Binning | A ÿnite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase ow systems[END_REF][START_REF] Morton | Stability of the Lagrangian-Galerkin method with nonexact integration[END_REF]. This procedure introduces a mass balance error and leads to schemes that fail to conserve mass [START_REF] Celia | A new numerical approach for the advective-di usive transport equation[END_REF][START_REF] Morton | Stability of the Lagrangian-Galerkin method with nonexact integration[END_REF][START_REF] Wang | Eulerian-Lagrangian localized methods for convection-di usion equations and their convergence analysis[END_REF]. Moreover, in these methods it is not clear how to treat ux boundary conditions in a mass-conservative manner without compromising the accuracy, when the characteristics track to the boundary of the domain [START_REF] Celia | A new numerical approach for the advective-di usive transport equation[END_REF][START_REF] Russell | Eulerian-Lagrangian localized adjoint methods with variable coe cients in multiple dimensions[END_REF][START_REF] Wang | An ELLAM Scheme for advectiondi usion equations in two dimensions[END_REF][START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF][START_REF] Wang | Eulerian-Lagrangian localized methods for convection-di usion equations and their convergence analysis[END_REF].

The modiÿed method of characteristics with adjusted advection (MMOCAA)

Recently, Douglas et al. proposed an MMOCAA scheme to correct the mass error of the MMOC by perturbing the foot of the characteristics slightly [START_REF] Douglas | On the numerical simulation of water ooding of heterogeneous petroleum reservoirs[END_REF][START_REF] Douglas | The modiÿed method of characteristics with adjusted advection[END_REF]. For Eq. (3.1) with a no-ow or periodic boundary condition, the summation of Eq. (3.9) for all the test functions (that add exactly to one) yields the following equation: (x)c(x; t m+1 ) dx -(x)c(x * ; t m ) dx = t cq(x; t m+1 ) dx:

Recall that the term on the right-hand side of this equation is obtained by an Euler approximation to the temporal integral in this term. On the other hand, integrating the original PDE (1.2) on the domain × [t m ; t m+1 ] yields the following equation:

(x)c(x; t m+1 ) dx - (x)c(x; t m ) dx = t m+1
t m cq dx dt:

Therefore, to maintain mass balance, we must have

(x)c(x; t m ) dx ≡ Q m = Q m * ≡ (x)c(x * ; t m ) dx:
For some ÿxed constant Ä ¿ 0, we deÿne

x * + = x - u(x; t m+1 ) (x) t + Ä u(x; t m+1 ) (x) ( t) 2 ; x * -= x - u(x; t m+1 ) (x) t -Ä u(x; t m+1 ) (x) ( t) 2 :
We also deÿne

c # (x * ; t m ) = max{c(x * + ; t m ); c(x * -; t m )}; if Q m * 6Q m ; min{c(x * + ; t m ); c(x * -; t m )}; if Q m * ¿ Q m : Because c(x; t m+1
) is unknown in the evaluation of Q m , an extrapolation of 2c(x; t m ) -c(x; t m-1 ) is used. We set

Q m # = (x)c # (x * ; t m ) dx: If Q m # = Q m * , we let Ä c(x * ; t m ) = c(x * ; t m
). In this case, the mass is not conserved. Otherwise, ÿnd

 m such that Q m =  m Q m * + (1 - m )Q m # and let Ä c(x * ; t m ) =  m c(x * ; t m ) + (1 -Â)c # (x * ; t m ).
In latter case, one has

(x) Ä c(x * ; t m ) dx = Q m :
Hence, mass is conserved globally. In the MMOCAA procedure one replaces c(x * ; t m ) in (3.8) and (3.9) by Ä c(x * ; t m ).

The Eulerian-Lagrangian localized adjoint method (ELLAM)

The ELLAM formalism was introduced by Celia et al. for the solution of one-dimensional advection-di usion PDEs [START_REF] Celia | An Eulerian-Lagrangian localized adjoint method for the advection-di usion equation[END_REF][START_REF] Herrera | Eulerian-Lagrangian localized adjoint methods: the theoretical framework[END_REF]. It provides a general characteristic solution procedure for advectiondominated PDEs, and it presents a consistent framework for treating general boundary conditions and maintaining mass conservation. The ELLAM formulation directly applies to Eq. (1.2) in a conservative form. Multiplying Eq. (1.2) with space-time test functions w that vanish outside × (t m ; t m+1 ] and are discontinuous in time at time t m , and integrating the resulting equation over the space-time domain ×(t m ; t m+1 ], we obtain a space-time weak formulation for Eq. (1.2) with a no ow boundary condition (x)c(x; t m+1 )w(x; t m+1 ) dx +

t m+1 t m w • (Dc) dx dt - t m+1 t m c ( w t + u • w) dx dt = (x)c(x; t m )w(x; t m + ) dx + t m+1
t m cqw dx dt; (3.10) where w(x; t m + ) = lim t→t m + w(x; t) takes into account that w(x; t) is discontinuous in time at time t m . Motivated by the localized adjoint method, the ELLAM formalism chooses the test functions from the solution space of the homogeneous adjoint equation of Eq. (1.2) (e.g. see [START_REF] Celia | An Eulerian-Lagrangian localized adjoint method for the advection-di usion equation[END_REF][START_REF] Herrera | Eulerian-Lagrangian localized adjoint methods: the theoretical framework[END_REF])

-(x) @w @t -u • w -• (Dw) = 0: (3.11)
Because the solution space for Eq. (3.11) is inÿnite dimensional and only a ÿnite number of test functions should be used, an operator splitting technique is applied to Eq. (3.11) to deÿne the test functions.

(i) In the ÿrst splitting, the two terms involving spatial derivatives are grouped together, leading to the following system of equations:

-(x) @w @t = 0; -u • w -• (Dw) = 0:
This splitting leads to a class of optimal test function methods involving upstream weighting in space [START_REF] Barrett | Approximate symmetrization and Petrov-Galerkin methods for di usion-convection problems[END_REF][START_REF] Celia | A new numerical approach for the advective-di usive transport equation[END_REF][START_REF] Christie | Finite element methods for second order di erential equations with signiÿcant ÿrst derivatives[END_REF], which yield solutions with signiÿcant temporal errors and numerical di usion. (ii) In the second splitting, the terms involving ÿrst-order derivatives are grouped together, leading to the following system of equations:

-(x) @w @t -u • w = 0; -• (Dw) = 0:
(3.12)

The ÿrst equation in (3.12) implies that the test functions should be constant along the characteristics deÿned by dr dt = u(r; Â) (r) ;

which re ects the hyperbolic nature of Eq. (1.2) and assures Lagrangian treatment of advection.

The second equation in (3.13) is an elliptic PDE, so standard FEM approximations would be a natural choice for the spatial conÿguration of the test functions.

Using splitting (3.12), we deÿne the test functions to be standard FEM basis functions on the spatial domain at time t m+1 and extend them by a constant into the space-time strip × [t m ; t m+1 ] along the characteristics deÿned by (3.13). Incorporating these test functions into the reference equation (3.10), we obtain an ELLAM scheme as follows:

(x)c(x; t m+1 ) dx + t (w [START_REF] Russell | Eulerian-Lagrangian localized adjoint methods for advection-dominated problems[END_REF][START_REF] Wang | An ELLAM Scheme for advectiondi usion equations in two dimensions[END_REF][START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF]. Second, it is proved that the ELLAM scheme conserves mass [START_REF] Celia | An Eulerian-Lagrangian localized adjoint method for the advection-di usion equation[END_REF][START_REF] Russell | Eulerian-Lagrangian localized adjoint methods with variable coe cients in multiple dimensions[END_REF]. Third, in contrast to the MMOC and many other characteristic methods that treat general boundary conditions in an ad hoc manner, the ELLAM formulation can treat any combinations of boundary conditions and provides a systematic way to calculate the boundary conditions accurately [START_REF] Celia | Eulerian-Lagrangian localized adjoint methods for contaminant transport simulations[END_REF][START_REF] Celia | An Eulerian-Lagrangian localized adjoint method for the advection-di usion equation[END_REF][START_REF] Wang | An ELLAM Scheme for advectiondi usion equations in two dimensions[END_REF][START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF]. Thus, the ELLAM formulation overcomes the drawbacks of many previous characteristic methods while maintaining their numerical advantages.

Remark 6. Most integrals in the ELLAM scheme (3.14) are standard in FEMs and can be evaluated in a straightforward manner. The only exception is the (x)c(x; t m )w(x; t m + ) dx term on the right-hand side of Eq. (3.14). This term corresponds to the (x)c(x * ; t m )w(x) dx term in the MMOC scheme (3.9). As discussed in Remark 4, in the MMOC and other characteristic methods using a backtracking algorithm the evaluation of the (x)c(x * ; t m )w(x) dx term requires signiÿcant e ort and introduces mass balance error [START_REF] Binning | A ÿnite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase ow systems[END_REF][START_REF] Morton | Stability of the Lagrangian-Galerkin method with nonexact integration[END_REF]. In the ELLAM scheme (3.14), the term (x)c(x; t m )w(x; t m + ) dx is evaluated by a forward tracking algorithm that was proposed by Russell and Trujillo [START_REF] Russell | Eulerian-Lagrangian localized adjoint methods with variable coe cients in multiple dimensions[END_REF]. In this approach, an integration quadrature would be enforced on at time t m with respect to a ÿxed spatial grid on which c(x; t m ) is deÿned. The di cult evaluation of w(x; t m + ) = lim t→t m + w(x; t m ) = w( x; t m+1 ) is carried out by a forward tracking algorithm from x at time t m to x = r(t m+1 ; x; t m ) at time t m+1 . Because this forward tracking is used only in the evaluation of the right-hand side of (3.14), it has no e ect on the solution grid or the data structure of the discrete system. Therefore, the forward tracking algorithm used here does not su er from the complication of distorted grids, which complicates many classical forward tracking algorithms.

In the past few years, Wang et al. developed ELLAM schemes for multidimensional advectiondi usion PDEs [START_REF] Wang | Eulerian-Lagrangian localized adjoint methods: analyses, implementations, and applications[END_REF][START_REF] Wang | An ELLAM Scheme for advectiondi usion equations in two dimensions[END_REF][START_REF] Wang | An ELLAM scheme for advection-di usion equations in multi-dimensions[END_REF]; Ewing and Wang [START_REF] Ewing | Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis[END_REF] and Wang et al. [START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF] also developed ELLAM schemes for multidimensional advection-reaction PDEs; Celia and Ferrand [START_REF] Celia | A comparison of ELLAM formulations for simulation of reactive transport in groundwater[END_REF] and Healy and Russell [START_REF] Healy | A ÿnite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation[END_REF][START_REF] Healy | Solution of the advection-dispersion equation in two dimensions by a ÿnite-volume Eulerian-Lagrangian localized adjoint method[END_REF] developed ELLAM schemes in a ÿnite-volume setting. Dahle et al. developed ELLAM for two-phase ow [START_REF] Dahle | Eulerian-Lagrangian localized adjoint methods for a nonlinear convection-di usion equation[END_REF][START_REF] Ewing | Simulation of multiphase ows in porous media[END_REF]. The computational experiments carried out in [START_REF] Wang | An ELLAM Scheme for advectiondi usion equations in two dimensions[END_REF][START_REF] Wang | A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations[END_REF] showed that the ELLAM schemes often outperform many widely used and well-received numerical methods in the context of linear advection-di usion or advection-reaction PDEs. In addition, Binning and Celia developed a backtracking ÿnite-volume ELLAM scheme for unsaturated ow [START_REF] Binning | A ÿnite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase ow systems[END_REF], Wang et al. developed an ELLAM-MFEM solution technique for porous medium ows with point sources and sinks [START_REF] Wang | An ELLAM-MFEM solution technique for compressible uid ows in porous media with point sources and sinks[END_REF]. These works illustrate the strength of the ELLAM schemes in solving the coupled systems of advection-di usion PDEs. From a viewpoint of analysis, ELLAM methods introduce further di culties and complexities to the already complicated analyses of characteristic methods. We refer readers to the works of Wang et al. for the convergence analysis and optimal-order error estimates for the ELLAM schemes for advection-di usion or advection-di usion-reaction PDEs [START_REF] Wang | A family of ELLAM schemes for advection-di usion-reaction equations and their convergence analyses[END_REF][START_REF] Wang | An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-di usion equations[END_REF][START_REF] Wang | Optimal-order convergence rates for Eulerian-Lagrangian localized adjoint methods for reactive transport and contamination in groundwater[END_REF][START_REF] Wang | Eulerian-Lagrangian localized methods for convection-di usion equations and their convergence analysis[END_REF], and the corresponding analysis of Ewing and Wang for the ELLAM schemes for advection-reaction PDEs [44 -46].

The characteristic mixed ÿnite element method (CMFEM)

The CMFEM was presented by Arbogast et al. in [START_REF] Arbogast | A characteristic-mixed method for contaminant transport and miscible displacement[END_REF][START_REF] Arbogast | A characteristic-mixed ÿnite element method for advection-dominated transport problems[END_REF] and Yang in [START_REF] Yang | A characteristic-mixed method with dynamic ÿnite element space for convection-dominated di usion problems[END_REF], and can be viewed as a procedure of ELLAM type [START_REF] Arbogast | A characteristic-mixed ÿnite element method for advection-dominated transport problems[END_REF]. It is also based on the space-time weak formulation (3.10), but uses a mixed ÿnite element approach by introducing the di usive ux z = -D as a new variable. Let V h × W h be the lowest-order Raviart-Thomas spaces [START_REF] Raviart | A mixed ÿnite element method for second order elliptic problems[END_REF], and Ŵ h be the space of discontinuous piecewise-linear functions on the same partition. Then, the CMFEM scheme can be formulated as follows: ÿnd c(x; t m+1 ) ∈ W h and z(x; t m+1 ) ∈ V h such that (x) c(x; t m+1 ) -ĉ(x * ; t m ) t w(x) dx + • z(x; t m+1 )w(x) dx = ( c -c)q(x; t m+1 )w(x) dx; ∀w ∈ W h ; D -1 z(x; t m+1 ) dx -c(x; t m+1 ) • C dx = 0; ∀C ∈ V h ; where x * is deÿned in (3. 8) and cˆ(x;t m ) ∈ W ˆ h is a post-processing of c(x;t m ) and z(x;t m ) deÿned by (x) ĉ(x; t m )w(x) dx = c(x; t m )w(x) dx; ∀w ∈ W h ; ŵ(x) • (D ĉ)(x; t m ) dx = -z(x; t m ) ŵ(x) dx; ∀ ŵ ∈ Ŵ h :

It is well known that in the mixed method, the scalar variable c(x; t m+1 ) is of ÿrst order accuracy in space. This post-processing procedure is used to improve the accuracy to the order of O(( x) 3=2 ) [START_REF] Arbogast | A characteristic-mixed ÿnite element method for advection-dominated transport problems[END_REF].

Remark 7. Theoretically the CMFEM is locally mass conservative. The situation might not be so clear numerically due to the following reasons: (i) The post-processing procedure is anti-di usive and, hence, could yield ĉ with undershoot or overshoot. A slope limiter has been used in the implementation of CMFEM to overcome this problem [START_REF] Arbogast | A characteristic-mixed method for contaminant transport and miscible displacement[END_REF]. It is not clear how the local mass conservation is achieved in this case. (ii) The CMFEM inherently requires a backtracking procedure and thus has to exactly determine the backtracked image at the previous time step t m of each cell at the future time step t m+1 in order to conserve mass. Since the backtracked image of each cell typically has curved boundaries in general, it is not clear how to trace these cell boundaries exactly to conserve mass numerically. Finally, the theoretically proved error estimate for the CMFEM is obtained only for Eq. (1.2) with a periodic boundary condition and is of O(( x) 3=2 ) which is suboptimal by a factor O(( x) 1=2 ).

Characteristic methods for immiscible uid ows, operator splitting techniques

In the governing equation (1.5) for immiscible ows, the hyperbolic part is given by Eq. (2.11) with a typically S-shaped function of the unknown, while the unknown function is a decreasing function in space. Hence, Eq. (2.11) could develop a non-unique solution [START_REF] Buckley | Mechanism of uid displacement in sands[END_REF][START_REF] Finlayson | Numerical Methods for Problems with Moving Fronts[END_REF][START_REF] Lax | Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[END_REF][START_REF] Leveque | Numerical Methods for Conservation Laws[END_REF]. Thus, characteristic methods do not apply directly. Espedal and Ewing [START_REF] Espedal | Characteristic Petrov-Galerkin sub-domain methods for two-phase immiscible ow[END_REF] presented an operator-splitting technique to overcome this di culty. The fractional ow function f(c) is split into an advective concave hull f(c) of f(c), which is linear in what would be the shock region of Eq. (2.11), and a residual anti-di usive part. The modiÿed advection PDE @c @t + @ f(c) @x = 0; x ∈ ; t ∈ [0; T ] yields the same entropy solution as the PDE (2.11), and thus deÿnes characteristic directions uniquely. The residual anti-di usive advection term is grouped with the di usion term in the governing PDE so that correct balance between nonlinear advection and di usion is obtained. Numerically, the PDE is solved by a quadratic Petrov-Galerkin FEM. This technique has been applied in numerical simulation for immiscible ow by Espedal, Ewing, and their collaborators [START_REF] Dahle | Characteristic adaptive sub-domain methods for reservoir ow problems[END_REF][START_REF] Espedal | Simulation techniques for multiphase and multicomponent ows[END_REF]. Subsequently, Ewing [START_REF] Ewing | Operator splitting and Eulerian-Lagrangian localized adjoint methods for multi-phase ow[END_REF] and Dahle et al. have applied the operator-splitting technique to develop an ELLAM scheme for nonlinear advection-di usion PDEs, which has shown very promising results.

  The ELLAM scheme(3.14) symmetrizes the transport PDE (1.2), and generates accurate numerical solutions without excessive numerical di usion or nonphysical oscillation even if coarse spatial grids and large time steps are used
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