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Introduction

For nowcasting and short term forecasting of salar irradiation, the usual technics are based on machine learning predictions such as Artificial Neural Network (ANN) [START_REF] Voyant | Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[END_REF], Support Vector Machines (SVM) [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF], AutoRegressive-Moving-Average (ARMA) models [START_REF] Hamilton | Time series analysis[END_REF], etc. A significant inconvenience of these methods is related to the large historic data set required during the training phase of the predictors; thus, in this work, we propose a simple methodology able to predict a global radiation time series without the need of historical data, making the method easily applicable for poor instrumented areas. We suggest to call these intuitive methods in the following "training-less" methods. The accuracy of these methods will be compared against other classical prediction methods, taking into account the time horizon of the prediction.

Data

The solar data used in the models are global horizontal irradiations (GHI) measured at the meteorological station of Ajaccio (Corsica Island, France, 41°55 N, 8°44 E, 4m asl) with pyranometers (CM 11 Kipp & Zonen). Data are related to an hourly basis from 1998 to 2009 (11 complete years).

Models

Data driven methods

-Linear model: AutoRegressive process (AR). In an AR model, the future value of a variable namely 𝐺𝐻𝐼 ̂(𝑡 + ℎ) is assumed to be a linear combination of several past observations (𝑡 -𝑖). In this study, the complexity of the model depends on the autoregressive order p which is optimized using the auto-mutual information factor.

-Non-linear model: neural network model (ANN). It is the predominant method in the domain of time series forecasting. Indeed, the availability of meteorological historical data databases and the fact that ANN are data driven approaches capable of performing a non-linear mapping between sets of input and output variables make this modelling tool very attractive. In the present study, the ANN model has been computed with the Matlab © software and its Neural Network toolbox. The Levenberg-Marquardt learning algorithm with a max fail parameter before stopping training equal to 3 was used to estimate the ANN model's parameters. The max fail parameter corresponds to a regularization tool limiting the learning steps after a characteristic number of predictions failures. Consequently it is a means to control the model complexity [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF].

3.2.

Training-less methods -The persistence. This naïve method is the most cost-effective forecasting model, it provides a reference against which more sophisticated models can be compared. Using the naïve approach produced forecasts are equal to the last observed value. It simply states that future GHI values will be equal to observed GHI at time t (i.e. the atmospheric conditions and solar irradiation remain unchanged between current time t and future time t+h).

-Scaled persistence. Using the clear sky model (simplified solis model [START_REF] Mueller | Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module[END_REF]), this training-free prediction model can be defined by:

𝐺𝐻𝐼 ̂𝑆𝑃 (𝑡 + 1) = 𝐺𝐻𝐼(𝑡). 𝐺𝐻𝐼 𝑐𝑙𝑠𝑘 (𝑡+1) 𝐺𝐻𝐼 𝑐𝑙𝑠𝑘 (𝑡) (1) 
-Kalman filter. It is a recursive estimator. This means that only the estimated state from the previous time step and the current measurement are needed to compute the estimate for the current state. The Kalman filter can be written as a single equation, however it is most often constructed with two distinct phases: prediction and update. The prediction phase uses the state estimated from the previous timestep (t-1) to produce an estimation of the state at the current timestep (t). This predicted state estimated is also known as the a priori state estimated because, although it is an estimation of the state at the current timestep, it does not include observation information from the current timestep. In the update phase, the current a priori prediction is combined with current observation information to refine the state estimated. This improved estimation is termed the a posteriori state estimated. With this methodology, the forecasting algorithm becomes [START_REF] Grewal | Kalman filtering[END_REF]:

𝐺𝐻𝐼(𝑡 + 1) = 𝐴(𝑡). 𝐺𝐻𝐼(𝑡) + 𝜔(𝑡) (2) 
With 𝜔 a multivariate normal distribution with covariance Q (=ℵ(0,Q)) and 𝐴(𝑡) = 𝐺𝐻𝐼 𝑐𝑙𝑠𝑘 (𝑡+1)

𝐺𝐻𝐼 𝑐𝑙𝑠𝑘 (𝑡) . At time t, an observation (or measurement) z(t) of the true state GHI(t) is made according to:

𝑧(𝑡) = 𝐻(𝑡). 𝐺𝐻𝐼(𝑡) + 𝑣(𝑡) (3) 
Where v is the observation noise which is assumed to be zero mean Gaussian white noise with covariance R (=ℵ (0,R)) [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF]. The initial state, and the noise vectors at each step are all assumed to be mutually independent. In our problem, the prediction defining the state vector is defined by:

𝐺𝐻𝐼 ̂(𝑡|𝑡 -1) = 𝐺𝐻𝐼 ̂(𝑡 -1|𝑡 -1). 𝐴(𝑡 -1) (4) 
𝐺𝐻𝐼 ̂(𝑡|𝑡) is the predicted value of GHI given the measured value of GHI at time (t). It is in fact, an a posteriori state estimated at time t given observations up to and including time t. Then the a posteriori error covariance matrix P (a measure of the estimated accuracy of the state estimated) is calculated [START_REF] Shumway | An approach to time series smoothing and forecasting using the EM algorithm[END_REF].

𝑃(𝑡|𝑡 -1) = 𝐴(𝑡 -1). 𝑃(𝑡 -1|𝑡 -1). 𝐴(𝑡 -1) 𝑇 + 𝑄

From this last equation, we define the filter gain K which is then computed:

𝐾(𝑡) = 𝑃(𝑡|𝑡 -1). 𝐻(𝑡). (𝐻(𝑡). 𝑃(𝑡|𝑡 -1) + 𝑅) -1 (6)

A correction factor is then introduced and defined by [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF]:

𝐺𝐻𝐼 ̂(𝑡|𝑡) = 𝐺𝐻𝐼 ̂(𝑡|𝑡 -1) + 𝐾(𝑡). (𝑧(𝑡) -𝐻(𝑡). 𝐺𝐻𝐼 ̂(𝑡|𝑡))

𝑃(𝑡|𝑡) = 𝑃(𝑡|𝑡 -1) -𝐾(𝑡). 𝐻(𝑡). 𝑃(𝑡|𝑡 -1) (8)

The prediction for the horizon 1 becomes:

𝐺𝐻𝐼 ̂𝑘𝑎𝑙𝑚𝑎𝑛 (𝑡 + 1|𝑡) = 𝐴(𝑡). 𝐺𝐻𝐼 ̂(𝑡|𝑡) =

𝐺𝐻𝐼 𝑐𝑙𝑠𝑘 (𝑡+1) 𝐺𝐻𝐼 𝑐𝑙𝑠𝑘 (𝑡) . 𝐺𝐻𝐼 ̂(𝑡|𝑡) [START_REF] Harvey | Forecasting, structural time series models and the Kalman filter[END_REF] Note that the approach is easily generalizable for other horizons h (𝐺𝐻𝐼 ̂𝑘𝑎𝑙𝑚𝑎𝑛 (𝑡 + ℎ|𝑡)).

Results

This section details the main results we obtained on the previous presented models for time granularity 1 hour and for 10 horizons (t+1 to t+10). In the We can see that the best predictors (in the Annual case) are AR and NN but these are also the more elaborated methods. It is essentially during the second and last quarters that errors are very large, during these seasons it is ANN and AR which give the best results. Because the prediction of the global forecasting is not only interesting 1 hour in advance, we will propose to study the impact of the considered horizon on the predictors. Figure 1 shows the nRMSE related to the horizon. Previously (1 hour horizon case) we've shown that trainless model (scaled persistence and Kalman filter) were similar to NN and AR models. When horizon increases, this effect becomes false, from the 2 hours horizon, the two last one are very better than the first ones. Moreover the NWP is better than NN and AR from the 6 hours horizon and better than the order_1 and Kalman filter from the 3 hours horizon.

Conclusion

In the scope of satisfying electrical operator needs, several kinds of short term prediction methodologies: a naïve model, a linear model, non-linear models and models without training phase have been described. The difference of performance being very small, it is very difficult to compare all the presented predictors. All of them seem interesting to predict the global solar radiation depending on use situation: timestep, horizon, size of the training set, etc. Applying the parsimony concept, a model using the recursive Kalman method of scaled persistence is used performing the prediction from an ad-hoc filtering. The Kalman filter is a recursive estimator, this means that only the estimated state from the previous time step and the current measurement are needed to compute the estimate for the current state. In contrast to batch estimation techniques, no history of observations and/or estimates is required. Kalman filter is applied here for short-term forecasting for both one hour and one minute data sets timestep. The presented approach presents interesting results as it allows to improve quasisystematically the order_1 prediction and Kalman model performances are, for one hour's horizons, competitive with much more complicated models such as ANN which require both consistent historical data sets (at least 200 days) and computational resources (time consuming, Matlab toolboxes, etc.). This method is easily applicable for poor instrumented or isolated sites but it will be tested on several distinct geographical spots.
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 1 Figure 1. nRMSE evolution in term of time horizons
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 1 Table 1 are shown results of prediction for all the predictors described previously.

	Annual	Quarter 1	Quarter 2	Quarter 3	Quater 4

Results (nRMSE) in the hourly case of the 8 predictors among the 3 types of forecasters (models, trainless models and recursive trainless model), in bold the best results for each column.