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Numerical simulation of the dynamics of an impacting bar

Laetitia Paoli a,*, Michelle Schatzman b

a LaMUSE (Laboratoire de Mathématiques de l’Université de Saint-Etienne), Université de Saint-Étienne,

23 rue du Dr Paul Michelon, 42023 Saint-Étienne Cedex 2, France
b MAPLY, CNRS et Université Claude Bernard, Lyon 1, 69622 Villeurbanne Cedex, France
We calculate numerically the motion of a slender bar dropped on a rigid foundation. For the computation the bar is discretized by a 
system of rigid bodies linked by spiral springs or by a pair of linear springs. We assume that the impact is frictionless and we model it by 
Newton’s law. We compute the motion by using either an event-driven method based on the detection of impacts or a time-stepping 
scheme avoiding the detection of impacts. We calculate also the apparent restitution coefficient and we compare our results with the 
experimental and numerical results of Stoianovici and Hurmuzlu.

Keywords: Dynamics of discrete mechanical systems; Frictionless unilateral constraints; Microimpacts; Restitution coefficient; Event-driven scheme;
Time-stepping scheme
1. Introduction

This article is devoted to the numerical calculation of
motion with impact of a discrete mechanical system subject
to unilateral frictionless constraints. The transmission of
velocities at impacts is modelled by Newton’s law: the nor-
mal impulsion is reflected and multiplied by a restitution
coefficient e 2 ½0; 1� and the tangential impulsion is
conserved.

The article contains the description of two numerical
methods and of their implementation. The first method is
the so-called event-driven method which integrates the
motion by a Newmark’s scheme when the constraints are
inactive and seeks the instants of impact; once these
instants are found with a satisfactory precision, we apply
the impact law and we start again. The event-driven
method is not efficient, but we trust its numerical results
and use it as a reference.
* Corresponding author. Tel.: +33 4 77 48 15 42; fax: +33 4 77 25 60 71.
E-mail address: laetitia.paoli@univ-st-etienne.fr (L. Paoli).
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The second method is a time-stepping scheme, which
avoids the detection of the instants of impact and therefore
is faster than the previous one. For impacting systems
modelled by unilateral rigid and frictionless constraints,
the convergence of this scheme has been proved for an arbi-
trary coefficient of restitution; see [1,2]; when the mass
matrix is not constant, this scheme is probably the only
one for which a convergence proof is known.

It could be easily argued that the second method is not
very precise—which is true—but since the class of prob-
lems with impact is usually very sensitive to initial data,
it is quite possible that the trajectorywise precision is less
reassuring than a good old proof cum estimates.

We compare the time-stepping scheme to the event-dri-
ven method on specific examples.

We have chosen an application which allowed compari-
son to experiments, viz. the experiments described by Hur-
muzlu and Stoianovici [3] and by Hurmuzlu [4]. Consider
indeed a thin cylindrical bar whose impacting end is shaped
as a half-sphere. Initially, the bar makes an angle h with the
horizontal; the bar is dropped onto a rigid foundation,
bounces back and the apparent restitution coefficient of



Table 1
Geometrical and physical data

Length of the bar 0.2 m
Radius of the bar 0.00635 m
Density of the bar 7876.74 kg/m3

Young’s modulus 2.1 · 1011 S.I. units
the impacting degree of freedom is measured. The motion
is planar.

This model is interesting for several reasons; first the
coefficient of restitution is a rather ill-defined concept, as
this set of experiments definitively proved: the apparent
coefficient of restitution as observed by Hurmuzlu and Sto-
ianovici depends very strongly on the initial angle of the bar
with the horizontal. Therefore, knowing whether our
scheme will simulate this behavior is an interesting question,
all the more because our model of impact uses a coefficient
of restitution. Second, the mass matrix in our beam models
is not trivial for reasonable generalized coordinates. Third,
the articles of Stoianovici and Hurmuzlu include some com-
putations based on normal compliance models, and there-
fore, it is nice to compare our results to their calculations.

Indeed, the observation that the apparent restitution
coefficient depends strongly on the angle h is the conse-
quence of the interaction between the continuous medium
mode and the impact. This interaction has been explained
in [3,4], and a mathematical argument based on asymptot-
ics has been given in [5]. The reader will observe that the
results of our simulations are quite comparable to the
above-mentioned experimental results.

The reader may wonder why we kept to a restitution
coefficient model, while in the same time these experiments
radically nullify that concept. The reason is that, experi-
mentally, as we shall show, the simulations corresponding
to different numerical coefficients of restitution are quite
close, and moreover, the energy loss implied by the shock
law concerns only a small part of the energy, since the bar
is discretized into elements. Therefore, the influence of this
choice can be reasonably thought to tend to 0 as the size of
the elements tends to 0. In other words, the numerical dis-
cretization of a continuous medium by our methods is
rather indifferent to the detailed shock law we have chosen
in order to perform the time integration, but however, our
simulations retain the physics of the phenomenon.

Let us mention that we used two different discretizations
of the bar for the following reason: the model with spiral
springs seems more natural to us from the mechanical
point of view; however, the model with pairs of spring is
basically the same as the one used by Stoianovici and Hur-
muzlu [3], who, however, employed a normal compliance
model of the impact. Since we wanted to compare our
results with their calculations and with their experiments,
we needed to take a model of the beam which was as close
a possible to their model.

The implementation and numerical results for model 1
have been briefly described in [7], which appeared as a
CD-ROM, and even more concisely in [2]. The implemen-
tation and the numerical results for model 2 have never
been published.

It is reasonable to ask whether we could have used
instead of a rigid contact a compliant contact, also known
as a penalty method. In some cases, such as those treated
by Stronge [6], it is feasible to get values for the compli-
ance, and then, to integrate the corresponding system of
2

differential equations with the help of a standard O.D.E.
integration package, such as can be found in MATLAB or
SCILAB. In the most common situations, we have no rea-
sonable estimate of the compliance. If the solution
depended strongly on the compliance coefficient, it would
not be a good option to calculate a numerical solution
through a compliant approximation. Stating that the solu-
tion does not depend strongly on the compliance coeffi-
cient, as it tends to infinity, is a way of stating in
practical terms a convergence theorem, and we refer to
[8–12] for a number of convergence results.

However, practically, we are dissatisfied with compliant
approximation: they require the introduction of an extra
parameter, and the numerical integration of the corre-
spondingly very stiff systems is not terribly efficient, as
compared to our time-stepping scheme. We refer the reader
to [13] for a more detailed comparison of methods with
rigid constraints to methods with compliant constraints.

2. The models

In this section, we describe the mechanics of our prob-
lem. We have chosen to treat the bar which was the object
of most attention in [3]; its physical and geometrical
parameters are given in Table 1.

2.1. The discretization of the continuous beam

We use two different mechanical models of a bar with a
finite number of degrees of freedom:

(1) The bar is discretized by a finite number n of identical
cylindrical segments (of circular section) and a half-
sphere at the impacting end; the nearest segment to
the impacting half-sphere is joined by a linear spring;
every other segment is joined to its neighbor by three
springs and an articulation: two of these springs of
stiffness k extend the segments, and the third is a flexion
spring of stiffness C which responds linearly to the
angle difference between adjoining segments. The
length 2L is the sum of the length of one segment
and its two compression springs in the reference state.
We make a simplifying assumption by imposing that
the extension of the springs on either side of a beam
segment is the same, and that the spiral spring is
centered at the intersection of the axis of one beam
segment with the axis of its neighbor. The reader is
referred to Fig. 1 to see the setup. We choose as gener-
alized coordinates for this model the coordinates
ðx0; y0Þ of the centre of the half-sphere, the angles hi



Fig. 1. The discretization of the bar in model 1 and the associated generalized coordinates.
and the lengths ni shown on the figure, with the conven-
tion that 2ni is the sum of the length of the beam seg-
ment and of its neighboring two springs. Of course,
there is different convention for the last segment, since
it has a neighbor on one side only: nn is the length of the
half-segment plus the spring. Therefore, the extension
of each spring attached to the ith segment is ni � L.

(2) In the second model, the beam is decomposed as
above, and the impacting half-sphere is joined to its
neighbor as previously. The other segments are joined
by pairs of linear springs, which are offset by a/2
away from the axes of the beam segment. All the lin-
ear springs in this model have the same stiffness k.
The main geometrical assumption is that each pair
of neighboring beam segments is symmetric with
respect to the mediatix of the segment between the
facing extremities; see Fig. 2 to picture this assump-
tion. Here 2L is the length of the beam segment plus
the length of one spring at rest. We choose as general-
ized coordinates ðx0; y0Þ and the hi’s, which have the
same meaning as above, and the ki pictured at
Fig. 2; k1 denotes the extension the first spring; for i

varying from 2 to n, ki is as indicated on the figure.

The reader should observe that model 2 comes from [3],
so as to have a truly comparable situation.
Fig. 2. The discretization of the bar in model 2
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2.1.1. The Lagrangian of the first model

The Lagrangian relative to the first discretization of the
bar is defined as follows: the mass of each segment is m, the
mass of the end hemisphere is l, the moment of inertia of
each segment with respect to its center of gravity and the
axis orthogonal to the plane of the experiment is I and
the moment of inertia of the hemisphere with respect to
its center (not its center of inertia!) and the axis orthogonal
to the plane of the experiment is J.

The center of gravity of the ith segment has coordinates

xi ¼ x0 þ 2
Xi�1

j¼1

nj cos hj þ ni cos hi;

yi ¼ y0 þ 2
Xi�1

j¼1

nj sin hj þ ni sin hi:

The center of gravity of the end hemisphere has
coordinates

xG ¼ x0 �
3R
8

cos h1; yG ¼ y0 �
3R
8

sin h1:
We recall our choice of generalized coordinates:

q ¼ ðx0; y0; h1; . . . ; hn; n1; . . . ; nnÞ:
and the associated generalized coordinates.



Then the kinetic energy and the potential energy are de-
fined respectively by

T ¼ l
2
ð _x2

G þ _y2
GÞ þ

m
2

Xn

i¼1

ð _x2
i þ _y2

i Þ þ
J _h2

1

2
þ I

2

Xn

i¼1

_h2
i ; ð1Þ

U ¼ lgyG þ mg
Xn

i¼1

yi þ k
Xn�1

i¼1

ðni � LÞ2 þ k
2
ðnn � LÞ2 ð2Þ

þ C
2

Xn�1

i¼1

ðhi � hiþ1Þ2:
2.1.2. The Lagrangian for the second model

For the second model, the coordinates of the center of
mass of the ith segment are

xi ¼ x0 þ
Xi�1

j¼1

ð2Lþ kj þ kjþ1Þ cos hj þ ðLþ kiÞ cos hi;

yi ¼ y0 þ
Xi�1

j¼1

ð2Lþ kj þ kjþ1Þ sin hj þ ðLþ kiÞ sin hi;

and the generalized coordinates are

q ¼ ðx0; y0; h1; . . . hn; k1; . . . knÞ:

The kinetic energy is given by Eq. (1). The potential energy
is now given by

U ¼ lgyG þ mg
Xn

i¼1

yi þ
k
2

k2
1 þ

Xn

i¼2

U i; ð3Þ

where Ui, which is the elastic potential energy of the pair of
springs between segments i� 1 and i, is given by the
expression

Ui ¼ 2k
a2

4
þ k2

i þ cosðhi � hi�1Þ k2
i �

a2

4

� �� �
: ð4Þ
2.1.3. Computation of the mechanical parameters k, C and a

In both cases, we use the strategy of Stoianovici and
Hurmuzlu’s article [3]. Denote by E Young’s modulus of
the material, by R the radius of the bar. Then, for the first
model, the stiffness k is given by

k ¼ EpR2

3nL
ðn� 1Þð3n� 1Þ

n
;

and the value of C is given by

C ¼ EpR4

56nL
ðn� 1Þð7n� 5Þ

n
:

Let q be the volume mass of the material of the bar. The
values of I, J, m and l are

I ¼ m
L2

3
þ R2

4

� �
; J ¼ 2lR2

5
; m ¼ 2LpR2q; l ¼ 2qpR3

3
:

4

Another calculation gives for the second model

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3R2

7

7n� 5

3n� 1

s
and k ¼ EpR2

6nL
ðn� 1Þð3n� 1Þ

2n
:

2.2. Equations of dynamics

Whenever convenient, we will denote by qi the ith coor-
dinate of q; the mass matrix M(q) is defined through the
identity

T ¼ _qTMðqÞ _q
2

;

where the superscript T denotes the transposition of
vectors.

In these generalized coordinates, without constraints,
the dynamics of the bar can be written as

MðqÞ€q ¼ f ðq; _qÞ: ð5Þ

This definition provides us with a consistent mass matrix:
the mass matrix is not lumped.

Let us consider now the description of the impact. The
constraint is

y0 P R;

and therefore, the set of constraints is

K ¼ fq 2 R2nþ2 : /ðqÞP 0g;

where the function / is defined by

/ðqÞ ¼ y0 � R ¼ q2 � R:

The generalized impulsion is

p ¼ MðqÞ _q:

Let t be an instant at which the constraint is active, that is:

/ðqðtÞÞ ¼ 0:

The local impact law consists in the transmission of the
tangential component of the impulsion and the reflexion
of the normal component of the impulsion, which is then
multiplied by the restitution coefficient e. Here, the normal
has to be defined in the local metric in the space of impul-
sions, which can be interpreted in a mathematical sense as
the cotangent Riemannian metric at q; therefore, the nor-
mal component of the impulsion before the impact is

pNðt � 0Þ ¼ grad/ðqÞTMðqÞ�1pðt � 0Þ
grad/ðqÞTMðqÞ�1grad/ðqÞ

grad/ðqÞ:

The normal component of the impulsion after impact will
be �epNðt � 0Þ, and therefore, the impulsion after impact
will be

pðt þ 0Þ ¼ pðt � 0Þ � ð1þ eÞ

� grad/ðqÞTMðqÞ�1pðt � 0Þ
grad/ðqÞTMðqÞ�1grad/ðqÞ

grad/ðqÞ: ð6Þ



It is convenient to write our system with constraints as

MðqÞ€q ¼ f ðq; _qÞ þ mgrad/ðqÞ; ð7Þ
where m is a measure. Indeed we know that the velocities
are discontinuous and, from the physical point of view,
we expect however the percussions to be finite. Hence,
the choice of a reaction belonging to a space of measures
therefore makes sense, and all the more since integrals of
measures, which are functions of bounded variation, do
have limits on the left and on the right. The acceleration
will be therefore a (vector-valued) measure and the velocity
will be (locally) of bounded variation.

During all the motion, q is constrained to remain in K,
that is /(q) is non-negative. Writing the reaction as the prod-
uct of a scalar measure with grad/ expresses that the con-
straints are perfect; in particular, there is no friction. The
measure m is supported in the set of times t such that
/ðqðtÞÞ vanishes, since there can be no reaction from the con-
straints if the constraints are inactive. The measure is also
non-negative, otherwise there could be an adhesive effect,
which is excluded by the perfect constraints assumption.

This information can be abstracted as a complementar-
ity relation

0 6 /ðqÞ ? m P 0: ð8Þ
Here, the orthogonality relation means that the duality
product hm;/ðqÞi vanishes; this is a product which makes
sense if m is a measure and /(q) is a continuous function;
by the sign conditions /ðqÞP 0 and m P 0, if this duality
product vanishes, then the measure /ðqÞm vanishes, which
implies the support condition as described above.

Of course, we have to add (6)–(8) to obtain a reasonable
formulation. Observe indeed that in the cases studied here,
all the data are analytic in their arguments. Therefore,
Ballard’s uniqueness theorem [14] applies.

We observe moreover that (6)–(8) can be much simpli-
fied, since the gradient of / is simply e2, the second vector
of the canonical basis of R2nþ2. Let

vðqÞ ¼ MðqÞ�1e2; ð9Þ
and denote by vi(q) the ith component of v(q). With these
notations, the transmission law at impact is given for all
i ¼ 1; . . . ; 2nþ 2 by

_qiðt þ 0Þ ¼ _qiðt � 0Þ � ð1þ eÞ viðqÞ
v2ðqÞ

_q2ðt � 0Þ:

For i ¼ 2, we find

_q2ðt þ 0Þ ¼ �e _q2ðt � 0Þ;
which is precisely Newton’s law for the impacting degree of
freedom.
3. The time-stepping scheme

This section is devoted to the description of the theoret-
ical form of the time-stepping scheme; questions of imple-
mentation will be treated in Section 4.2.
5

The rationale for our scheme in the one-dimensional
case has been explained in details in [1], and in the multidi-
mensional case, the scheme is given in [2]. Here, we modify
slightly these explanations in order to give the linear com-
plementarity problems viewpoint.

After obvious reductions, in the one-dimensional case,
with K ¼ Rþ, we can write our problem as

€q ¼ f þ m; ð10aÞ
0 6 q ? m P 0; ð10bÞ

with the impact condition

_qðt þ 0Þ ¼ �e _qðt � 0Þ whenever qðtÞ ¼ 0; ð10cÞ

or equivalently

0 6 q ? €q� f P 0: ð11Þ

Problem (11) looks like a classical linear complementarity
problem; observe however that its unknown q is a function
and not a finite dimensional vector and that it involves a
second differentiation. Nevertheless, there is a simple way
of constructing a numerical method out of (11). We replace
the second derivative in (11) by a centered finite difference;
the approximation of q must depend on qn+1; if we choose
qn+1 itself, it is easy to check in the case of a vanishing f

that the solution converges to a limit with vanishing resti-
tution coefficient. A better choice is to approximate q by
ðqnþ1 þ eqnÞ=ð1þ eÞ, and we have proved in [1] that the
restitution coefficient is indeed e in the limit.

In this case, the linear complementarity problem can be
written

0 6 qnþ1 þ eqn�1 ? qnþ1 � 2qn þ qn�1 � Dt2f n P 0;

whose explicit solution is given by

qnþ1 þ eqn�1 ¼ ð2qn � ð1� eÞqn�1 þ Dt2f nÞþ: ð12Þ

The reader is referred to a calculation in [1] which shows
that the discrete velocity is reversed and multiplied by e

in two steps when f vanishes in (12). This calculation also
works in the general multidimensional case as shown in
[2]. More detailed computations in the one-dimensional
case and a comparison with Moreau’s scheme [15,16] and
its generalization by Mabrouk [17] can be found in [18].

Eq. (12) is equivalent to

qnþ1 þ eqn�1

1þ e
¼ P K

2qn � ð1� eÞqn�1 þ Dt2f n

1þ e

� �
;

where PK is the standard projection on the convex set
K ¼ Rþ. In generalized coordinates, the set of admissible
positions K is not necessarily convex anymore. However,
for q in the complement of K but close enough to oK, there
is a unique point q0 2 oK which is closest to q in terms of
geodesic distance. Recall that if t 7! qðtÞ is a path of class
C1 parameterized by t 2 ½0; L�, the length of this path isZ L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_qðtÞTMðqðtÞÞ _qðtÞ

q
dt



and the geodesic distance from q0 to q1 is the lower bound
of all the lengths of paths such that qð0Þ ¼ q0 and
qðLÞ ¼ q1.

Denote by PK this projection according to geodesic dis-
tance; then the scheme in dimension d is defined by

qnþ1 ¼ �eqn�1 þ ð1þ eÞP K
2qn � ð1� eÞqn�1 þ Dt2F n

1þ e

� �
;

ð13Þ

F n ¼ MðqnÞ�1f qn;
qnþ1 � qn�1

2Dt

� �
: ð14Þ

We have defined this numerical method in [1,2], and we
have proved its convergence. These are long and technical
articles, while the main ideas are described in [19] in a per-
haps more accessible format. In particular, we prove that
qn remains always close to K. Indeed, by definition of the
scheme, the weighted mean ðqnþ1 þ eqn�1Þ=ð1þ eÞ always
remains in K; after proving that the velocity remains
bounded independently of the time step, we conclude that
qn is at most at a distance OðDtÞ from K.

4. From the numerical method to the implementation

In this section, we first describe the implementation of
the event-driven method; in particular, we describe the
numerical method used when the constraints are inactive
and the algorithm used for detecting the impacts. In the sec-
ond subsection, we describe the modifications that are nec-
essary to make the time-stepping scheme effective; in
particular, we replace PK by the projection with respect to
the frozen metric at qn in order to provide an approximate
solution of (13), which is precise enough for our purposes.

4.1. Event-driven method

We approximate the motion without constraints (5) by
the Newmark’s scheme

qnþ1 ¼ qn þ Dtwn þ Dt2

4
ðF nþ1 þ F nÞ; ð15Þ

wnþ1 ¼ wn þ Dt
2
ðF nþ1 þ F nÞ; ð16Þ

where

F n ¼ MðqnÞ�1f ðqn;wnÞ:

At each stage, we perform a test: if /ðqnþ1Þ is non-negative,
we continue; if /ðqnþ1Þ is strictly negative, we seek
timpact ¼ tn þ d such that

qn
2 þ dwn

2 þ
d2

4
ðF nþ1

2 þ F n
2Þ ¼ R: ð17Þ

This is an equation of second degree with respect to d, and
we seek the smallest strictly positive root of (17). Then we
apply the impact law, and we restart the numerical scheme.

The implementation of the Newmark method demands
some numerical caution; we would like to avoid inverting
6

Mðqnþ1Þ, since it is implicit in qn+1. Therefore, we multiply
by Mðqnþ1Þ (15) and (16), which become

Mðqnþ1Þðqnþ1 � AnÞ ¼ Dt2

4
f ðqnþ1;wnþ1Þ;

Mðqnþ1Þðwnþ1 � BnÞ ¼ Dt
2

f ðqnþ1;wnþ1Þ:

Here An and Bn are given by

An ¼ qn þ Dtwn þ Dt2

4
M�1ðqnÞf ðqn;wnÞ;

Bn ¼ wn þ Dt
2

M�1ðqnÞf ðqn;wnÞ;

and there is no problem in inverting MðqnÞ, since qn is al-
ready known: the vectors An and Bn are known explicitly
from the calculation at the previous time step. If we define
a transformation Hn by

T ¼
q

w

� �
; H nðT Þ ¼

MðqÞðq� AnÞ � Dt2f ðq;wÞ=4

MðqÞðw� BnÞ � Dtf ðq;wÞ=2

� �
;

we have to solve the equation

HnðT Þ ¼ 0;

which we do by a Newton’s method, initialized by the val-
ues obtained at the previous time step.

4.2. The time-stepping scheme

Let us explain how to implement the time-stepping
scheme: there are two difficulties

(i) we have to approximate PK efficiently and
(ii) the scheme (13), (14) is implicit with respect to qn+1.

Let us define �qnþ1 by

�qnþ1 ¼ 2qn � qn�1 þ Dt2MðqnÞ�1f qn;
�qnþ1 � qn�1

2Dt

� �
: ð18Þ

Since the mapping ðq; vÞ7!MðqÞ�1f ðq; vÞ is Lipschitz
continuous with respect to v, Eq. (18) admits an unique
solution �qnþ1 for Dt small enough and the following alter-
native holds:

� eitherð�qnþ1 þ eqn�1Þ=ð1þ eÞ belongs to K; and

then qnþ1 is equal to �qnþ1;

� or ð�qnþ1 þ eqn�1Þ=ð1þ eÞ does not belong to K; and

then ðqnþ1 þ eqn�1Þ=ð1þ eÞ belongs to oK:

ð19Þ

For this reason, the implementation of scheme (13) and
(14) works as follows: we calculate the candidate �qnþ1 by
a Newton’s method, initialized by the values obtained at
the previous time step; we test whether the calculated value
of ð�qnþ1 þ eqn�1Þ=ð1þ eÞ belongs to K. If it belongs to K,
we proceed to next time step; otherwise, we approximate
the projection on K according to the geodesic distance by



the projection on K with respect to the kinetic metric frozen
at qn.

It has been proved in the case of a penalty approxima-
tion that approximating a geodesic projection by a linear
projection relatively to the frozen metric at the point under
consideration does not destroy the convergence properties
of the method [11]. We expect therefore that it should be
possible to retain the convergence properties of the time-
stepping numerical scheme when the metric is frozen as
described here.

For convenience, we rewrite K in a fashion that displays
the matrix MðqnÞ. Define indeed

mn ¼ MðqnÞ�1e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT

2 MðqnÞ�1e2

q
and

sn ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT

2 MðqnÞ�1e2

q :

Then the condition qTMðqnÞmn P sn is equivalent to

qTMðqnÞMðqnÞ�1e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT

2 MðqnÞ�1e2

q P
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eT
2 MðqnÞ�1e2

q ;

proving

K ¼ fq : qTMðqnÞmn P sng:
Then the frozen projection, or projection onto K with
respect to the metric at qn is P n

K , given by

P n
Kq ¼ qþ ðsn � qTMðqnÞmnÞþmn; ð20Þ

as can be checked immediately. But there is a simpler form
of (20): thanks to the definition of mn and qn, we may write

sn � qTMðqnÞmn ¼ R� q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT

2 MðqnÞ�1e2

q ;

with notation (9), we obtain finally

P n
Kq ¼ qþ ðR� q2Þ

þvðqnÞ
v2ðqnÞ :

Instead of solving (13) and (14) we solve

qnþ1 ¼ �eqn�1 þ ð1þ eÞP n
K

2qn � ð1� eÞqn�1 þ Dt2F n

1þ e

� �
;

F n ¼ MðqnÞ�1f qn;
qnþ1 � qn�1

2Dt

� �
:

The argument working for alternative (19) works with the
projection PK replaced by the projection P n

K ; in particular,
if ð�qnþ1 þ eqn�1Þ=ð1þ eÞ does not belong to K, then
ðqnþ1 þ eqn�1Þ=ð1þ eÞ belongs to oK. If we write

Qn ¼ 2qn � ð1� eÞqn�1 þ Dt2F n

1þ e
; ð21Þ

R� Qn
2 is non-negative; therefore, the action of the projec-

tion P n
K is linear, and we have only to solve
7

qnþ1 ¼ 2qn � qn�1 þ Dt2F n þ ð1þ eÞ ðR� Qn
2ÞvðqnÞ

v2ðqnÞ : ð22Þ

Observe that (22) is still an implicit equation, since Fn and
Qn depend on qnþ1; but the Lipschitz constant of this
dependency is proportional to Dt2, hence resolution meth-
ods will be fast and efficient.

The resolution of (21) and (22) are performed by New-
ton’s method; this resolution is almost the same as that
of (18), after obvious changes.
5. Quantitative and qualitative results

5.1. Conservation of the energy for a restitution

coefficient of 1

For a coefficient of restitution e ¼ 1, we have checked
the conservation of the energy, and we have found the
results given in Tables 2–5. The expected energy W exp is
the energy of the model at the initial time, i.e. the kinetic
plus the potential energy. Observe that they are slightly dif-
ferent in the event-driven method, where we have used the
continuous velocity and in the time-stepping method where
we have used the discrete velocity.

We observed that before the first impact, energy is very
well conserved; therefore, we considered only the energy
after the first impact; its mean is denoted by W mean. The rel-
ative deviation of the mean is the quotient

drel ¼
W mean � W exp

W exp

: ð23Þ

Finally, we give the relative standard deviation of the en-
ergy, i.e. the standard deviation of the energy divided by
the expected energy

srel ¼
standard deviation of the energy

expected energy
: ð24Þ

Tables 2–5 show that in any case, the relative deviation of
the mean of the energy is less than one percent and the rel-
ative standard deviation is at most 0.005. There is no obvi-
ous advantage or disadvantage of time-stepping with
respect to an event-driven method. Model 2 seems to give
a better conservation of energy.
5.2. Microimpacts

Let us recall that the height of the constraint R is the
radius of the half-sphere at the impacting tip of the beam;
therefore, it is equal to 0.00635 m.

The case of an initial angle of 90� is very special: we
observe that there is an interval of contact, after which
the beam leaves definitively the obstacle.

This behavior is consistant with the exact analytical
solution of the dropped vertical impacting bar, which can
be deduced from [20,21]; if we take the vertical downward
velocity of the bar to be v, the velocity of (compression)



Table 2
Conservation of the energy: this table is relative to model 1 and time-
stepping

Initial angle 30� 45� 60� 90�

Expected energy,
W exp

0.2097923 0.2477831 0.2769345 0.3015103

Maximum of the
energy

0.2109452 0.2507776 0.2784425 0.3027040

Minimum of the
energy

0.2057284 0.2447674 0.2718261 0.2972322

Relative deviation
of the mean, drel

0.0001307 �0.0033585 0.0042075 0.0080910

Relative standard
deviation, srel

0.0013758 0.0050805 0.0017898 0.0011738

Table 3
Conservation of the energy: this table is relative to model 1 and the event-
driven method

Initial angle 30� 45� 60� 90�

Expected energy,
W exp

0.2098117 0.2478025 0.2769539 0.3015296

Maximum of the
energy

0.2098119 0.2478026 0.2769539 0.3015296

Minimum of the
energy

0.2093891 0.2472332 0.2755980 0.2987939

Relative deviation
of
the mean, drel

0.0018814 0.0021392 0.0045401 0.0088352

Relative standard
deviation, srel

0.0003568 0.0004093 0.0008881 0.0013079

Table 4
Conservation of the energy: this table is relative to model 2 and time-
stepping

Initial angle 30� 45� 60� 90�

Expected energy,
W exp

0.2097923 0.2477831 0.2769345 0.3015103

Maximum of the
energy

0.2099478 0.2482459 0.2773455 0.3024273

Minimum of the
energy

0.2035948 0.2446564 0.2710462 0.2943953

Relative deviation
of the mean, drel

0.0006016 �0.0008674 �0.0005949 0.0042328

Relative standard
deviation, srel

0.0003776 0.0003454 0.0004893 0.0008600

Table 5
Conservation of the energy: this table is relative to model 2 and event-
driven method

Initial angle 30� 45� 60� 90�

Expected energy,
W exp

0.2098117 0.2478025 0.2769539 0.3015296

Maximum of the
energy

0.2099018 0.2479740 0.2770799 0.3015296

Minimum of the
energy

0.2097672 0.2476450 0.2766999 0.3014754

Relative deviation
of the mean, drel

�0.0000346 0.0000271 0.0001091 0.0001739

Relative standard
deviation, srel

0.0000837 0.0002058 0.0002774 0.0000293
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waves to be c in the bar and the length of the bar to be ‘,
this analytical solution is

uðx; tÞ ¼
�vt if maxð0; ctÞ 6 x 6 L;
�vx=c if ct 6 x 6 2L� ct;
vðt � 2L=cÞ if 2L� ct 6 x 6 L:

8<
:

Here the origin of times is the instant when the bar hits the
obstacle.

It is natural to ask whether there exists a numerical
method which does not give microimpacts in this special
case. If one reduces the problem to a first order equation
with a multivalued maximal monotone term, as has been
done in [20], no microimpacts are expected. However, this
conclusion depends very much on a very precise knowledge
of the problem. If we wish to use rather general methods for
integrating problems with impact, we cannot hope to have a
priori this kind of knowledge, and we will be content if, in
the vertical case, the microimpacts are very small. This is
exactly what we obtained, and the reader is referred to
Fig. 4 of the supplement at http://math.univ-lyon1.fr/
~schatz/beamsimu.html.

For other angles, there is first a very similar interval of
contact, with slightly larger microbounces, after which
the beam leaves the obstacle (see Fig. 3); depending on
the initial angle, the beam hits again or does not hit again
(see Fig. 4). The reason for this behavior is that the flexion
modes are excited; if the initial angle is large enough, then
the flexion oscillations of the beam are not large enough to
cause secondary contact intervals.

Since the microimpacts have been observed by Stoiano-
vici and Hurmuzlu [3], our method should give them, and
indeed it does.

The computations were performed on a PC Pentium 4,
1.8 GHz, 256 MRam. A comparison of the CPU times
(see Fig. 3) shows that the time-stepping scheme is almost
40% faster than the event-driven method.

5.3. Apparent coefficient of restitution

In order to obtain concrete results, we calculated an
apparent coefficient of restitution. For this purpose, we
averaged the vertical velocity of the impacting degree of
freedom, i.e. _q2 over a time interval of 0.00250 s after the
last microbounce. We have chosen this time interval
because we thought that the outgoing velocity after the last
impact might be irregular; this choice is larger than Hur-
muzlu’s averaging over one millisecond. The averaging
process reflects the behavior of measuring instruments,
which never give a precisely instantaneous velocity.

Results are obtained for the event-driven method and
the time-stepping scheme and for the two models consid-
ered here: they are displayed in Fig. 5. On each picture, five
different values of e are represented, namely (a) e ¼ 1, (b)
e ¼ 0:75, (c) e ¼ 0:50, (d) e ¼ 0:25 and (e) e ¼ 0.

For comparison purposes, we display at Fig. 6 an anal-
ogous set of results for model 2 and time-stepping, with an
averaging over one millisecond.
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Fig. 3. The dynamics of the center of the half-sphere at the tip of the beam (coordinate q2) for an initial angle of 30� relatively to the horizontal; the two
models and the two methods are represented here: (a) event-driven, model 1; (b) event-driven, model 2; (c) time-stepping, model 1; (d) time-stepping, model
2. CPU times: (a) 66.755 s; (b) 78.148 s; (c) 46.061 s; (d) 53.279 s.
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Fig. 4. For initial angles of (a) 65� and (b) 70�, the beam has different behaviors; the computation displayed here is for time-stepping and model 2.
We could not enclose all the relevant figures in the pres-
ent article, and the reader is referred to the web page http://
maply.univ-lyon1.fr/~schatz/beamsimu.html for a wealth
of extra results, in color and with much more information.

The dip in the curve, which can be seen very stably on all
the figures, corresponds to the transition from a situation
where there is only one contact interval to a situation where
9

there is more than one, as observed and then analyzed first
in [3,4], and then justified mathematically in [5].

We have determined theoretically in [5] a condition
under which this secondary contact interval appears. See
Fig. 7 for a comparison between the apparent coefficient
restitution as calculated in [5] and by the present
calculations.
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Fig. 5. The apparent coefficient of restitution as a function of the initial angle, for (a) e ¼ 1, (b) e ¼ 0:75, (c) e ¼ 0:50, (d) e ¼ 0:25 and (e) e ¼ 0. Top left: model 1, event-driven; bottom left: model 2,
event-driven; top right: model 1, time-stepping; bottom right: model 2, time-stepping.
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Fig. 6. The present figure corresponds to the same choice of parameters as the bottom right figure in Fig. 5, save for the averaging time, which is 10�3 s, as
in Stoianovici and Hurmuzlu [3].
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Fig. 7. Comparison between the calculation of the apparent restitution of coefficient for the time-stepping scheme and model 2 (a) e ¼ 1, (b) e ¼ 0:75, (c)
e ¼ 0:5, (d) e ¼ 0:25, (e) e ¼ 0 and (f), the theoretical prediction from [5].
5.4. Non-equilibrium initial data

In order to estimate the influence of very small uncer-
tainties on the initial data, we simulated the same problem
assuming that the beam was not initially at equilibrium.

Initially, the beam is excited along its discrete first eigen-
mode, with an energy which is a fraction g of the total ini-
11
tial kinetic energy; the phase of the initial excitation varied
from 0� to 180� by intervals of 20�. The simulation whose
results are shown in Figs. 8 and 9 emphasize that the dip
is still there, very stably. However, what goes on for angles
smaller than the abscissa of the dip displays a very chaotic
situation, which depends strongly on the coefficients g
and e.
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Fig. 8. Model 2, time-stepping, three different levels of relative energy of the perturbation: g ¼ 10�3, g ¼ 5� 10�3 and g ¼ 10�2, from left to right and
from top to bottom. The restitution coefficient is e ¼ 1 and the phase of initial excitation is (a) 0�, (b) 40�, (c) 80�, (d) 120� and (e) 160�.
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Fig. 9. Model 2, time-stepping, g ¼ 5� 10�3, e ¼ 0:5 and e ¼ 0 from left to right. Same conventions as above.
This is a question that had been asked by David Stewart
in his article [22], who wondered whether the phase in the
initial data might have an influence on the behavior of
the beam. The answer is twofold: for angles larger than
the abscissa of the dip, there is almost no influence, and
12
for angles below this critical abscissa, the influence is very
important, and depends on the coefficients g and e.

There are qualitative differences for different values of e,
but they do not affect what is going on for angles larger
than the critical abscissa.



6. Conclusion

The time-stepping scheme described here converges,
according to our work [1,2]; we have shown that it can
be implemented without difficulty and that it gives results
which compare well with experiments. Moreover, the dif-
ferent numerical methods and models agree together and
with the asymptotics from [5].

The notion of restitution coefficient does not make much
sense when continuous medium vibrations are present, and
its value has little influence on the final results. We believe
that the influence of the value of e tends to 0 as the discret-
ization becomes finer, but we have not confirmed this state-
ment numerically.
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