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ABSTRACT 

In this survey, several statistical and machine learning tools 

are analyzed and compared in view to forecast the solar 

irradiation in Ajaccio (Corsica, France, 41°55 N, 8°44 E, 4m 

asl). The forecasting horizon is from 1 to 6 hours with an 

hourly time granularity. Eleven forecasting models are 

compared: persistence, scaled persistence, ARMA, MLP, 

regression trees, boosted regression trees, bagged regression 

trees, pruned regression trees, random forest, Gaussian 

processes and support vector regression. The models are 

compared in term of error metrics: nRMSE (normalized root 

mean squared error), MAE (mean absolute error) and skill 

score related to the smart persistence. 

KEYWORDS 

Time Series forecasting, machine learning, variability, ARMA, 

ANN, Regression trees, Gaussian process, SVR. 

1 INTRODUCTION 

Solar radiation is one of the principal energy sources for 

physical, biological and chemical processes, occupying the 

most important role in many engineering applications [1]. 

The process of converting sunlight to electricity without 

combustion allows to create power without pollution. The 

major problem of such energy source is its intermittence and 

its stochastic character which make difficult their 

management into an electrical network [2]. Thereby, the 

development of forecasting models is necessary to use 

ideally this technology [3]. By considering their 

effectiveness, it will be possible for example to identify the 

most optimal locations for developing a solar power project 

or to maintain the grid stability and security of a power 

management system [4]. Thus the solar energy forecasting is 

a process used to predict the amount of solar energy 

available for various time horizons [5]. Several methods 

have been developed by experts around the world and the 

mathematical formalism of Times Series (TS [6]) has been 

often used for the short term forecasting (among 6 hours 

ahead) [5]. 

In this study, the solar forecasting is realized with an hourly 

time granularity for 1 hour to 6 hours’ time horizon. The 

comparison between the models is evaluated by statistical 

indexes and graphical methods, the models are: persistence 

(P) [3,7], scaled or smart persistence (SP) [3,10], auto 

regressive moving average (ARMA) [11], artificial neural 

network (ANN) [10,12], regression trees (RT) [13], pruned 

regression trees (RT-pruned) [13], boosted regression trees 

(RT-boosted), bagged regression trees (RT-bagged) [14], 

random forest (RF) [12], Gaussian processes (GP) [13] and 

support vector regression (SVR) [14]. 

2 METHOD 

Several preliminary stage must be realized before the 

forecasting phase:  

- A quality control of the solar data: an automatic 

quality check used in the frame of GEOSS project 

(Group on Earth Observation System of System) 

(http://www.earthobservations.org/geoss.php) was 

applied to the data;  

- A data preprocessing: removing of the night hours; 

sunset and the sunrise data induce some problems 

(mask effects and bad response of pyranometers at 

high zenith angle): a filter is applied on the datasets 

which remove all the data with a solar elevation 

angle up to 10°. The solar irradiation time series 
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contains some properties like seasonality and 

periodicity which must be deleted to make the time 

series stationary; to do it, a clear sky model [15] is 

used and the clear sky index calculated (paragraph 

2.1). 

- At last, the choice of the input data must be realized 

and is described in paragraph 2.2. 

2.1 Clear Sky Irradiation (CSI) 

The clear sky model is a theoretical model which determines 

the maximum theoretical global horizontal irradiation (GHI) 

for any geographical point at the ground level. The model 

used is SOLIS model [16-17] based on radiative transfer 

models, Beer Lambert function, and their integration on the 

solar spectra uses the information’s of news satellites ERS-

2/ENVISAT. The calculation of the clear sly irradiation 

CS(t) is given by: 

𝐶𝑆(𝑡) = 𝐻0. 𝑒
−𝜏

𝑠𝑖𝑛𝑏(ℎ(𝑡)). 𝑠𝑖𝑛(ℎ(𝑡))   (1) 

h(t) is the solar height in degrees and H0 is the extraterrestrial 

irradiation; τ is the global total atmospheric depth and the 

parameter b is a fitting parameter, both of them depending 

on the meteorological characteristics of the site [19]. τ and b 

have different values for the three studied sites 

(https://aeronet.gsfc.nasa.gov/). The clear sky index (CSI) is 

calculated by: 

𝐶𝑆𝐼(𝑡) =
𝐺𝐻𝐼(𝑡)

𝐶𝑆(𝑡)
    (2) 

For all the machine learning tools used here, the stationary 

hypothesis is necessary and then the different time series, 

CSI are directly used as an input in the forecasting model. 

GHI is then obtained using Eq. 2 and all the errors metrics 

are given in term of GHI in absolute and relative values. 

2.2 Dimension of the input matrix 

We must choose the dimension of the input matrix of the 

forecasting tool. The approach used consists in predicting 

the future solar irradiation (at different time scales) based on 

the past observed data [18]. Mathematically, the researched 

formulation is (ϵ(t+h) is a random white noise): 

𝐺𝐻𝐼(𝑡 + ℎ) = 𝑓(𝐺𝐻𝐼(𝑡), 𝐺𝐻𝐼(𝑡 − 1), … , 𝐺𝐻𝐼(𝑡 − 𝑛)) +

𝜖(𝑡 + ℎ)      (3) 

The future time step (t+h) is forecasted based on the 

observed data at the times (t, t-1…, t-n). In other words, the 

objective is to calculate the value of n and to obtain ϵ as low 

as possible in absolute value. The choice of n, i.e. the 

dimension of the input matrix, is made by an auto mutual 

information method [19-20]. This auto mutual information 

is a property of the time series and depends on each dataset. 

It determinates the degree of statistical dependence of the 

variables specific to each site.  

Another step of preprocess is the k-fold sampling [24]: the 

dataset is divided in ten samples and each sample is used at 

least one time for the training and one time for the test, the 

simulation is repeated as many time as necessary. This 

method allows to have results independent of the set of data 

used for the training (only one data set being able to have 

some particularities that disturbs the robustness of the 

conclusions). 

3 METEOROLOGICAL STATION AND DATA 

The datasets used in this study are time series of horizontal 

global solar irradiation measurements (GHI) in Ajaccio 

(Corsica, France, 41°55 N, 8°44 E, 4m asl) at about 100 m 

from the Mediterranean sea (Figure 1). 

 

Figure 1: Position of the meteorological station 

In this station, the period of available solar data are from 

01/01/1998 to 12/31/2000 with 26280 validated data after 

the quality check. 

After the calculation of the auto-mutual information between 

the solar radiation data [19-20], it has been decided that the 

number of input data n in the forecasting model will be 

n=8.Thus, for estimating the solar irradiation at time t, the 

solar irradiations at time (t-1), (t-2), (t-3)… (t-n) will be 

used. 

4 FORECASTING MODELS 

Eleven models are used to forecast the global horizontal 

irradiations and are briefly described here. These models are 

classified in 3 categories: naïve models, classical machine 

https://aeronet.gsfc.nasa.gov/


 

 

3 

 

learning models and regression trees based models. In this 

paper the symbol ̂  indicates that the value is predicted, 

without this symbol the value is measured. 

4.1 Naïve models 

The two next models are generally used only as a reference 

in view to compare it with more sophisticated models in 

terms of performances.  

The first model is the simplest model, the persistence, it is 

the repetition of the measure at the instant t to the instant t+h 

(h is the forecasting horizon) [18]: 

𝐺𝐻𝐼̂ (𝑡 + ℎ) = 𝐺𝐻𝐼(𝑡)    (4) 

𝐺𝐻𝐼̂ (𝑡) and 𝐺𝐻𝐼(𝑡) are respectively the predicted and 

measured hourly global horizontal solar irradiation at time t. 

This type of model is very simple to use but it gives results 

with very low accuracy. 

In order to improve this model, the daily profile of the solar 

radiation (by clear sky) is taken into account and added in 

using the Solis clear sky model previously presented, then 

Eq. (4) becomes: 

𝐺𝐻𝐼̂ (𝑡 + ℎ) = 𝐺𝐻𝐼(𝑡).
𝐶𝑆(𝑡+ℎ)

𝐶𝑆(𝑡)
   (5) 

This model is named scaled persistence (SP), a simple 

improvement of the persistence model [22]. The advantages 

of naïve models is the fact that no historical data are required 

what makes these models easily usable in all cases and for 

all sites even if no solar radiation measurements exits for a 

long time. The accuracy of such models decreases rapidly 

with the time horizon and is generally not adequate for a 

more than one hour ahead. 

4.2 Machine Learning models 

A. Auto Regressive Mobile Average (ARMA) 

The ARMA model [23] is a predictive model with two 

separate parts, the auto regressive one and the mobile 

average one. This model is able to predict the future 

values of time serie from a combination of past values 

of the time series and a white noise: 

𝐶𝑆𝐼̂(𝑡 + ℎ) =  𝜀𝑡 + ∑ 𝜑𝑖

𝑝

𝑖=0

. 𝐶𝑆𝐼(𝑡 − 𝑖) 

+ ∑ 𝜃𝑖  . 𝜀(𝑡 − 𝑖)
𝑞
𝑖=0     (6) 

CSI (t+h) the clear sky index time series at time t+h, φ 

and θ the parameters of the autoregressive and moving 

average part deduced by a least square method, p and q 

are the orders of the model and ε(t) is an error term 

distributed like a Gaussian white noise for the time t. 

B. Multi-Layer Perceptron (MLP) 

 

The MLP is a type of artificial neural networks, here, a feed 

forward MLP with two layers (one hidden layer and one 

output layer) is used with, in input, the solar irradiation time 

series [9]. The input matrix size was defined according to the 

results of the auto mutual method applied to the solar data. 

The mathematical formula for a MLP with one hidden layer 

of m neurons, one output neuron and p input variables is a 

function described by: 

𝐶𝑆𝐼̂(𝑡 + ℎ) = ∑ 𝜔𝑗,𝑠

𝑚

𝑗=1

. (𝑔. (∑ 𝜔𝑖,𝑗 . 𝐶𝑆𝐼(𝑡 − 𝑗)

𝑛−1

𝑖=0

+ 𝑏𝑗) 

+𝑏𝑠        (7) 

with CSI the input vector of clear sky index constituted by 

the values of n variables, 𝐶𝑆𝐼̂(𝑡 + ℎ) the output vector with 

the predicted values of the model, bj the bias of the hidden 

neuron j and ω(i,j) the weight affected at the measured input  

CSI(t). g is the transfer function of the hidden neurons, bs 

the bias of the output neuron and ω(j,s) his weight affected 

to the output of the hidden neuron j. The optimization of the 

MLP is made by a classical technique: several configurations 

with a different number of hidden nodes are tested (with a 

number of hidden nodes varying between 3 and n+2) and the 

most efficient is selected. 

C. Gaussian Process (GP) 

The Gaussian process (GP) is a nonlinear modeling. It’s a 

generalized Gaussian distribution with an infinity of 

variables [13,24]. As the solar data are often noisy, every 

observation is represented by a function (𝐶𝑆𝐼(𝛕)), with an 

independent Gaussian noise 𝒩(𝑂, 𝜎𝑛
2) characterized by a 

variance 𝜎𝑛
2 with CSI(τ)=(CSI(t),CSI(t-1),⋯,CSI(t0); 

thus, 

𝐶𝑆𝐼̂(𝑡 + ℎ) = 𝑓(𝐶𝑆𝐼(𝛕)) + 𝒩(𝑂, 𝜎𝑛
2)  (8) 

A GP is defined by a mean function m(CSI(τ)) and a 

covariance function. The covariance function k relies 

𝐶𝑆𝐼̂(𝑡𝑝 + ℎ) and 𝐶𝑆𝐼̂(𝑡𝑞 + ℎ)  and is exponential 
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squared function, tp and tq being two successive 

instants. The noise in the prediction allows to note the 

covariance function as follow: 

𝑘(𝐶𝑆𝐼̂(𝑡𝑝 + ℎ), 𝐶𝑆𝐼̂(𝑡𝑞 + ℎ)) =

𝜎𝑓
2𝑒𝑥𝑝 [

−(𝐶𝑆𝐼(𝑡𝑝)−𝐶𝑆𝐼(𝑡𝑞))
2

2𝑙2 ] + 𝛿𝑝𝑞𝜎𝑛
2   (9) 

δpq is Kronecker delta, 𝜎𝑓
2are the hyper parameters of the 

covariance function and are responsible of the complexity of 

the model, l is a length parameter. They are deducted and 

optimized during the training phase [13]. 

D. Support Vector Regression (SVR) 

 

The Support vector regression (SVR) is a Kernel based 

model (as Gaussian process), it was firstly developed for 

regression problems and the application to time series 

forecasting is another successful evolution [25]. Equation 10 

gives the formulation of the SVR applied on forecasting 

problems, with a training dataset 𝐷 = {𝐶𝑆𝐼(), 𝐶𝑆𝐼(𝑡 +

ℎ)}  with the test vector CSI(t+h) and h the prediction 

horizon: 

𝐶𝑆𝐼̂(𝑡 + ℎ) = ∑ 𝛼𝑖 
𝑡−1
𝜏=1 . 𝑘𝑟𝑏𝑓(𝐶𝑆𝐼(𝑡 + ℎ), 𝐶𝑆𝐼(𝑡 − 𝜏) )(10) 

and the Kernel radial basis function defined by: 

  𝑘𝑟𝑏𝑓(𝐶𝑆𝐼(𝑡𝑝), 𝐶𝑆𝐼(𝑡𝑞) ) = 𝑒𝑥𝑝 [
−(𝐶𝑆𝐼(𝑡𝑝)−𝐶𝑆𝐼(𝑡𝑞))

2

2𝜎𝑓
2 ] (11) 

αi is the difference between Lagrange multipliers which are 

the solutions of a quadratic problem, b is the bias determined 

by specific conditions and Eq. (10). 

E. Regression Trees 

Decision trees based on “If-Then” rules are one of the most 

popular methods used in machine learning for classification, 

since they offer results that can be easily interpreted. Thus, 

this approach obtains ordered sets of If-Then rules for 

prediction that produces understandable models. In the last 

years, learning algorithms generating decision trees for 

classification problems have been extended for predicting 

values of attributes when they are numeric. These extensions 

have led to regression trees. A Regression Tree (RT) is a 

decision tree in which the leaf nodes have been set as 

regression models, and therefore, continuous numeric values 

can be predicted [35]. 

Standard and pruned regression trees (RT and RT-

pruned) 

A model of regression trees is directly derived from the 

classification trees, Hastie and Tibshirani [27] propose a 

formalization of the models: 

𝐶𝑆𝐼̂(𝑡 + ℎ) =  ∑ 𝑘𝑖 × 𝐼(𝐶𝑆𝐼(𝑡 − 𝑖))𝑡−1
𝑖=1    (12) 

with ki constant factors, I is a function which return 1 if input 

is used and 0 if it’s not used; The trees are built by splitting 

the data based on the values of predictive attributes. Once 

the tree has been constructed, a regression model is 

computed for each node. The error for each node is the mean 

of the absolute difference between the predicted and the 

actual value of each instance of the training set that reaches 

the node. Pruning aspect of regression tree is operated with 

an elevation of the quadratic error tolerance per node. 

Splitting nodes stops when quadratic error per node drops 

below tolerance. For normal RT, the tolerance is close to 

zero, while for the pruned RT, a higher value is chosen using 

a heuristic method based on the minimizing of the global 

error of prediction. In pruned RT, the function I has more 0 

than in the normal mode. 

Boosted and bagged regression trees (RT-boosted and 

RT-bagged) 

For RT, two types are boosted [28] and bagged of 

classification trees [29]. In boosting, successive trees give 

extra weight to points incorrectly predicted by earlier 

predictors. In the end, a weighted vote is taken for 

prediction. In bagging, successive trees do not depend on 

earlier trees each is independently constructed using a 

bootstrap sample of the data set. In the end, a simple majority 

vote is taken for prediction. 

The boosting method consists in assembly weak RT 

classifiers and take the average of predictions in order to 

improve the efficiency. In this case a weak predictor is a 

simple single split regression tree. The main technique is that 

the next trees give more weights to the data which have a 

bad prediction at the precedent point, at the end of the 

simulation, a weighted vote is taken for the prediction. 

The Bagging method is another version of the prediction 

with regression trees, it was described by Breiman [11]. 

Bagging mean bootstrap aggregating, the model is an 

aggregation of regression trees which grown from samples 

of dataset. The subtrees are employed for the prediction and 

a vote is taken for the prediction. 
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Random Forest 

Breiman [12] proposed the random forests, which add an 

additional layer of randomness to bagging. In addition to a 

construction for each tree using a different bootstrap sample 

of data, random forests change how the regression trees are 

constructed [12]. In standard trees, each node is split using 

the best split among all variables. In a random forest, the 

dataset is equally divided in samples but each regression tree 

grows differently, each node is split using the best among a 

subset of predictors randomly chosen at that node [12]. This 

improvement by randomness give robustness to the model 

and decreases the over-training risks. 

5 ACCURACY PARAMETERS 

In order to evaluate the accuracy of the different models, 

three different statistics are used. 

The mean absolute error (MAE), defines the absolute value 

of the gap between the observed and the predicted value: 

𝑀𝐴𝐸 =
∑ |𝐺𝐻𝐼̂ (𝑖)−𝐺𝐻𝐼(𝑖)|𝑁

𝑖=1

𝑁
     (13) 

N is the number of variables. 

The normalized root mean squared error (nRMSE) is more 

sensitive to big forecast errors, and hence is suitable for 

applications where small errors are more tolerable and larger 

errors cause disproportionately high costs, as for example in 

the case of utility applications. It is probably the reliability 

factor that is most appreciated and used: it’s a good statistical 

index to evaluate the accuracy of a model, the aim of an 

operator is to minimize it in order to improve model 

performances: 

𝑛𝑅𝑀𝑆𝐸 =
√

1

𝑁
∑ (𝐺𝐻𝐼̂ (𝑖)−𝐺𝐻𝐼(𝑖))2𝑁

𝑖=1

𝐺𝐻𝐼̂̅̅ ̅̅ ̅̅    (14) 

where 𝐺𝐻𝐼̂  is the algebraic average of the observed values. 

The skill score is an index calculated in order to compare the 

performance of a given model with a reference model, here 

the reference model is the smart persistence model (SP) 

described in 4.1.). 

𝑆𝑘𝑖𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑒𝑡𝑟𝑖𝑐𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑀𝑒𝑡𝑟𝑖𝑐𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑀𝑒𝑡𝑟𝑖𝑐𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
− 𝑀𝑒𝑡𝑟𝑖𝑐𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 

= 1 −
𝑛𝑅𝑀𝑆𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑛𝑅𝑀𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
    (15) 

The skill score is always inferior at 1, negative if the 

forecaster is less performant than the reference, 0 if the 

performances are similar, and positive if it is better. 

6 FORECASTING MODELS PERFORMANCE 

Tables 1 and 2 show the results of the nRMSE and MAE 

calculations for the eleven models and a forecast horizon 

from 1 to 6 hours with an hourly resolution. 

Table 1: nRMSE vs forecast horizon, the two best models are 

highlighted (results in %) 

Horizon h+1 h+2 h+3 h+4 h+5 h+6  

Persistence 26.60 42.62 54.10 61.39 64.51 63.86 
 

SP 19.26 26.46 31.18 34.15 36.92 38.93 
 

ARMA 18.35 29.27 31.38 32.25 33.18 33.69 
 

MLP 18.26 29.26 31.31 32.47 32.98 33.84 
 

RT 24.64 36.88 38.47 39.74 39.95 41.24 
 

Boosted RT 18.75 29.55 31.89 32.51 33.55 33.98 
 

Bagged RT 18.76 29.80 31.10 32.17 33.35 34.02 
 

Pruned RT 18.72 30.88 32.27 33.76 34.01 35.00 
 

RF 18.97 29.63 31.62 32.38 33.37 33.91 
 

GP 18.97 30.08 31.96 33.29 33.55 34.44 
 

SVR  18.55 38.78 41.03 41.56 41.66 41.60 
 

Table 2: MAE values (in Wh/m²) vs forecast horizon, the two 

best models are highlighted 

Horizon h+1 h+2 h+3 h+4 h+5 h+6  

Persistence 104.6 176.0 220.2 252.2 259.2 256.0 
 

SP 55.5 79.5 96.0 107.1 116.4 124.0 
 

ARMA 60.7 88.8 95.0 97.4 100.6 102.3 
 

MLP 60.6 89.4 95.2 98.9 100.7 103.3 
 

RT 73.3 117.7 125.0 129.8 132.0 135.6 
 

Boosted RT 61.4 91.8 98.1 100.1 103.3 104.6 
 

Bagged RT 61.4 93.3 97.3 101.3 104.6 106.0 
 

Pruned RT 60.8 95.4 100.0 105.0 106.1 108.9 
 

RF 61.1 92.9 99.1 102.0 105.0 106.5 
 

GP 61.9 96.1 101.1 104.8 106.3 108.3 
 

SVR  54.6 126.6 133.3 135.5 135.1 134.6 
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The naïve models (persistence and smart persistence) give 

always bad performances in all the sites and is the worst 

model. 

For Ajaccio with a low variability dataset the better models 

are ARMA and MLP, followed by scaled persistence and 

bagged regression trees; however the calculated error is 

similar for all the models excepted for the persistence and 

the simple regression tree. With such a variability, the 

machine learning models allow a good forecasting. 

Concerning the MAE, excepted for the naïve model, all the 

models are similar in term of absolute error, the results are 

in the same magnitude. 

The skill score was computed in the same conditions for all 

the models, Figure 2 is the graphical representation of the 

skill scores (related to the smart persistence reference 

model). 

 

 

Figure 2: Skill score vs forecast horizon for Ajaccio 

6 CONCLUSION 

Several statistical and machine learning tools (benchmark 

related to 11 forecasting models) were analyzed and 

compared in view to forecast the horizontal solar irradiation 

in Ajaccio. For a weak variability as Ajaccio, the two 

classical methods: ARMA and MLP seem to be the most 

efficient. 

In a future work, we will integer solar data from other sites 

in order to improve the conclusions and maybe to modify the 

number of variability classes using clustering methods. 
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