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March 25, 2018

Abstract

We consider weighted ray-transforms Py (weighted Radon transforms along straight lines) in R¢, d > 2,
with strictly positive weights W. We construct an example of such a transform with non-trivial kernel in the
space of infinitely smooth compactly supported functions on R?. In addition, the constructed weight W is
rotation-invariant continuous and is infinitely smooth almost everywhere on R% x S¥=1. In particular, by this
construction we give counterexamples to some well-known injectivity results for weighted ray transforms for
the case when the regularity of W is slightly relaxed. We also give examples of continous strictly positive
W such that dimker Py > n in the space of infinitely smooth compactly supported functions on R? for
arbitrary n € NU {oo}, where W are infinitely smooth for d = 2 and infinitely smooth almost everywhere
for d > 3.
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1 Introduction

We consider the weighted ray transforms Py, defined by

P f(z,0) = /W(az 10,0)f(x +t0)dt, (2.0) € TS™, d> 2, (L1)

TS = {(z,0) € R x S*' : 20 = 0}, (1.2)
where f = f(z), W = W(x,0), v € R%, 0 € S"1. Here, W is the weight, f is a test

function on R¢. In addition, we interpret T'S?~! as the set of all rays in R%. As a ray
v we understand a straight line with fixed orientation. If v = ~y(x, ), (x,0) € TS4!,
then

Y(z,0) ={y € R*: y =2 +1t0, t € R} (up to orientation),

1.3
where 6 gives the orientation of ~. (13)
We assume that
W=W2>c>0 WeL®Rx S, (1.4)
where W denotes the complex conjugate of W, ¢ is a constant.
Note also that
Puf(e.0) = [ W) (@) o,y = 2(2.0), (15)
il
where
W(z,v) = W(x,0) for x € v, v = y(z,0), (z,0) € TS* . (1.6)
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The aforementioned transforms Py, arise in various domains of pure and applied
mathematics; see [LB73], [TM80], [Q83], [Be84], [MQ85], [Fi86], [BQ87], [Sh92],
[Kun92], [BQ93], [B93], [Sh93], [KLMO95], [Pa96], [ABKIS], [Na01], [N0O2a], [NO2b],
[BS04], [Bal09], [Gil0], [BJ11], [PG13], [N14], [I16], [Ng17] and references therein.

In particular, the related results are the most developed for the case when W = 1.
In this case Py is reduced to the classical ray-transform P (Radon transform along
straight lines). The transform P arises, in particular, in the X-ray transmission
tomography. We refer to [R17], [J38], [C64], [GGG82], [HO1], [Na01] and references
therein in connection with basic results for this classical case.

At present, many important results on transforms Py with other weights W satis-
fying (1.4) are also known; see the publications mentioned above with non-constant
W and references therein.

In particular, assuming (1.4) we have the following injectivity results.

Injectivity 1 (see [Fi86]). Suppose that d > 3 and W € C?(R? x S~1). Then Py is
injective on LH(R?) for p > 2, where L} denotes compactly supported functions from
LP.

Injectivity 2 (see [MQS85]). Suppose that d =2, W € C*(R?* x S') and
0< Co S VI/, ”W”CQ(RQXSl) S N, (17)

for some constants ¢y and N. Then, for any p > 2, there is § = d(co, N, p) > 0 such
that Py is injective on LP(B(xg,)) for any zy € R? where

LP(B(x0,0)) = {f € L*(R?) : supp f C B(xo,0)},
B(xg,0) = {x € R? : |z — 20| < I}

Injectivity 3 (see [Q83]). Suppose that d =2, W € C'(R? x S') and W is rotation
invariant (see formula (2.18) below). Then Py is injective on L(R?) for p > 2.

In a similar way with [Q83], we say that W is rotation invariant if and only if

W (x,~) is independent of the orientation of ~,

1.8
W(x,v) = W(Ax, Ay) for x € v, v € TS Ae O(d), (1.8)

where T'S?! is defined in (1.2), O(d) denotes the group of orthogonal transformations
of R4

Note also that property (1.8) can be rewritten in the form (2.18), (2.19) or (2.20),
(2.21); see Section 2.

Injectivity 4 (see [BQ87]). Suppose that d = 2, W is real-analytic on R? x S!. Then
Py is injective on LE(R?) for p > 2.

Injectivity 1 is a global injectivity for d > 3. Injectivity 2 is a local injectivity for
d = 2. Injectivity 3 is a global injectivity for d = 2 for the rotation invariant case.
Injectivity 4 is a global injectivity for d = 2 for the real-analytic case.

The results of Injectivity 1 and Injectivity 2 remain valid with C'*, o > 1, in place
of C? in the assumptions on W; see [I16].

Injectivity 1 follows from Injectivity 2 in the framework of the layer-by-layer re-
construction approach. See [Fi86], [N02al, [[16] and references therein in connection
with the layer-by-layer reconstruction approach for weighted and non-abelian ray
transforms in dimension d > 3.



The work [B93] gives a counterexample to Injectivity 4 for Py in C5°(R?) for the
case when the assumption that W is real-analytic is relaxed to the assumption that
W is infinitely smooth, where C§° denotes infinitely smooth compactly supported
functions.

In somewhat similar way with [B93], in the present work we obtain counterexamples
to Injectivity 1, Injectivity 2 and Injectivity 3 for the case when the regularity of W is
slightly relaxed. In particular, by these counterexamples we continue related studies
of [MQ85], [B93] and [GN17].

More precisely, in the present work we construct W and f such that
Pyf=00onTS* ! d>2, (1.9)
where W satisfies (1.4), W is rotation-invariant (i.e., satisfies (1.8)),

W is infinitely smooth almost everywhere on R? x S%~! and
W e C*(R? x S¥71), at least, for any o € (0, ap), where ag = 1/16;

f is a non-zero spherically symmetric infinitely smooth and

(1.10)

1.11
compactly supported function on R%; ( )

see Theorem 1 of Section 3.

These W and f directly give the aforementioned counterexamples to Injectivity 1
and Injectivity 3.

Our counterexample to Injectivity 1 is of particular interest (and is rather surpris-
ing) in view of the fact that the problem of finding f on R? from Py f on TS*! for
known W is strongly overdetermined for d > 3. Indeed,

dimR? = d, dim7S* ! = 2d — 2,
d<2d—2ford>3.

This counterexample to Injectivity 1 is also rather surprising in view of the aforemen-
tioned layer-by-layer reconstruction approach in dimension d > 3.

Our counterexample to Injectivity 3 is considerably stronger than the preceeding
counterexample of [MQ85], where W is not yet continuous and is not yet strictly
positive (i.e., is not yet separated from zero by a positive constant).

Using our W and f of (1.10), (1.11) for d = 3 we also obtain the aforementioned
counterexample to Injectivity 2; see Corollary 1 of Section 3.

Finally, in the present work we also give examples of W satisfying (1.4) such that
dim ker Py > n in C§°(RY) for arbitrary n € NU {oo}, where W € C*(R? x St) for
d =2 and W satisfy (1.10) for d > 3; see Theorem 2 of Section 3. To our knowledge,
examples of W satisfying (1.4), where dim ker Py > n (for example in LZ(R?)) were
not yet given in the literature even for n = 1 in dimension d > 3 and even for n = 2
in dimension d = 2.

In the present work we adopt and develop considerations of the famous work [B93]
and of our very recent work [GN17].

In Section 2 we give some preliminaries and notations.
Main results are presented in detail in Sections 3.
Related proofs are given in Sections 4-9.



2 Some preliminaries

Notations. Let

Q=R*x S (2.1)
r(z,0) = |x — (20)0)|, (x,0) € Q, (2.2)
() = {(x,0) € Q:r(z,0) > 0}, (2.3)
1(6) = Q\Q0(0) = {(z,0) € Q: r(z,0) <}, 0 >0, (2.4)

QA) = {(z,0) e R x S . r(x,0) € A}, A C [0, +00), (2.5)

To(6) = {(x,0) € TS* ' : x| > 6}, (2.6)
T1(6) = {(x,0) € TS* " : |x| <6}, 0 >0, (2.7)
T(A) = {(z,0) € TS** : |z| € A}, A C [0, +00), (2.8)
Tre=(r—e,r+e)NJ0,+00), r € [0,+00), € > 0. (2.9)

The set Ty(d) in (2.6) is considered as the set of all rays in R? which are located
at distance greater than ¢ from the origin.

The set T1(5) in (2.7) is considered as the set of all rays in R? which are located
at distance less or equal than J.

We also consider the projection

T = TS (2.10)
7(x,0) = (mpx,0), (x,0) € Q, (2.11)
mor = x — (20)6. (2.12)

In addition, r(z,0) of (2.2) is the distance from the origin {0} € R? to the ray
v =~(m(x,0)) (ie., r(z,0) = |mpz|). The rays will be also denoted by
def
v =7(,0) = (xn(2,0)), (z,0) € Q. (2.13)
We also consider

Py f(z,0) = Py f(m(x,0)) for (x,0) € Q. (2.14)
We also define
B(x0,0) = {zx € R : |z — x| < 6},
B, 6) = {x € R : |2 — 2| < 3}, 20 €R?, 6 > 0,
B = B(0,1), B=B(0,1). (2.16)

(2.15)

For a function f on R? we denote its restriction to a subset ¥ C R? by f|s.

By Cy, C§° we denote continuous compactly supported and infinitely smooth com-
pactly supported functions, respectively.

By C*(Y), a € (0,1), we denote the space of a-Hélder functions on Y with the
norm:

[ullcaryy = lulloay + llulla

lillsegyy = sup |u(yr) — u(y)| (2.17)
Y1,y2€Y Y1 — yal®
ly1—y2|<1

where ||u|c(y) denotes the maximum of |u| on Y.



Rotation invariancy. Using formula (1.6), for positive and continous W, property
(1.8) can be rewritten in the following equivalent form:

W(z,0) = U(|z — (20)8],20), z € RY, § € S (2.18)
for some positive and continuous U such that
U(r,s) =U(-r,s) =U(r,—s), r e R, s € R. (2.19)
In addition, symmetries (2.18), (2.19) of W can be also written as
W(z,0) = U(|z|,z0), (z,0) € Q, (2.20)
U(r,s) =U(—=r,s) =U(r,—s), r € R, s € R. (2.21)
where U is positive and continuous on R x R. Using the formula |z|*> = |26+ 12(z, 8),

one can see that symmetries (2.18), (2.19) and symmetries (2.20), (2.21) of W are
equivalent.

Partition of unity. We recall the following classical result (see, e.g., Theorem 5.6
in [M92]):
Let M be a C*-manifold, which is Hausdorff and has a countable base. Let also
{U;}32, be an open locally-finite cover of M.

Then there exists a C*°-smooth locally-finite partition of unity {1;}32, on M, such
that

supp ¥; C U;. (2.22)

In particular, any open interval (a,b) C R and € satisfy the conditions for M of

this statement. It will be used in Subsection 3.1.

3 Main results

Theorem 1. There exist a weight W satisfying (1.4) and a non-zero function
f€CEMY), d> 2, such that

Pyf=0 on TS, (3.1)

where Py is defined in (1.1). In addition, W is rotation invariant, i.c., satisfies
(2.18), and f is spherically symmetric with supp f C B. Moreover,

W e C*(Q\Q(1)), (3.2)
W e C*(R* x S*Y) for any o € (0, ), ap = 1/16, (3.3)
W >1/2 onQ and W =1 on Q([1,400)), (3.4)
W(z,0) =1 for || > R>1,0¢c8S" (3.5)

where Q, Q(1), Q([1,+00)) are defined by (2.1), (2.5), R is a constant.

The construction of W and f proving Theorem 1 is presented below in Subsec-
tions 3.1, 3.2. In addition, this construction consists of its version in dimension d = 2
(see Subsection 3.1) and its subsequent extension to the case of d > 3 (see Subsec-
tion 3.2).

Theorem 1 directly gives counterexamples to Injectivity 1 and Injectivity 3 of
Introduction. Theorem 1 also implies the following counterexample to Injectivity 2
of Introduction:



Corollary 1. For any o € (0,1/16) there is N > 0 such that for any 6 > 0 there are
W, fs satisfying
Ws > 1/2, Ws € CQ(RQ X Sl), ||W6||CQ(R2><81) <N (36)
f5 S COO(R2)7 f(5 7_é 07 supp f(5 g E(Oaé)a
Py, fs =0 on TS'.
The construction of Wy, fs proving Corollary 1 is presented in Subsection 5.1.

Theorem 2. For any n € NU {oo} there ezists a weight W, satisfying (1.4) such

that
dimker Py, > n in C°(R?), d > 2, (3.9)
where Py is defined in (1.1). Moreover,
W, € C(R?* x S') for d = 2, (3.10)
W, is infinitely smooth almost everywhere on R® x S*! and (3.11)
W, € C*(R? x $*1), a € (0,1/16) for d > 3, '
Wz, 0) =1 for || >R>1,0S"" forneN,d>2, (3.12)

where R is a constant.

The construction of W,, proving Theorem 2 is presented in Section 4. In this con-
struction we proceed from Theorem 1 of the present work for d > 3 and from the
result of [B93] for d = 2. In addition, for this construction it is essential that n < 400
in (3.12).

3.1 Construction of f and W for d =2

In dimension d = 2, the construction of f and W adopts and develops considerations
of [B93] and [GN17]. In particular, we construct f, first, and then W (in this con-
struction we use notations of Section 2 for d = 2). In addition, this construction is
commented in Remarks 1-5 below.

Construction of f. The function f is constructed as follows:

f= Z%, (3.13)
k=1
fio(@) = fellz]) = ®(2F(1 — |z|)) cos(8*|z[?),z € R?, k € N, (3.14)
for arbitrary ® € C*°(R) such that
supp ® = [4/5,6/5], (3.15)
0<®(t)<1lforte (4/5,6/5), (3.16)
o(t) = 1, for t € [9/10,11/10], (3.17)

® monotonously increases on [4/5,9/10] (3.18)
and monotonously decreases on [11/10,6/5]. '

Properties (3.15), (3.16) imply that functions i (and functions fx) in (3.14) have
disjoint supports:

suppﬁ N suppfj =0 ifi # j,

_ 4 3.19
supp fi, = [1 — 27" <g),1—2"“ <5)],i, j, keN. (3-19)

This implies the convergence of series in (3.13) for every fixed x € R?,
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Lemma 1. Let f be defined by (3.13)-(3.17). Then f is spherically symmetric,
f € C°(R?) and supp f C B. In addition, if v € TS*, yN B # 0, then f|, # 0 and
fly has non-constant sign.

Lemma 1 is similair to Lemma 1 of [GN17] and it is, actually, proved in Section 4.1
of [GN17].
Remark 1. Formulas (3.13)-(3.17) for f are similar to the formulas for f in [B93],
where Py was considered in R?, and also to the formulas for f in [GN17], where the
weighted Radon transform Ry, along hyperplanes was considered in R3. The only
difference between (3.13)-(3.17) and the related formulas in [GN17] is the dimension
d =2 in (3.13)-(3.17) instead of d = 3 in [GN17]. At the same time, the important
difference between (3.13)-(3.17) and the related formulas in [B93] is that in formula
(3.14) the factor cos(8¥|z|?) depends only on |z|, whereas in [B93] the corresponding
factor is cos(3¥¢) which depends only on the angle ¢ in the polar coordinates in
R? In a similar way with [B93], [GN17], we use the property that the restriction
of the function cos(8*|z|?) to an arbitrary ray v intersecting the open ball oscillates
sufficiently fast (with change of the sign) for large k.

Construction of W. In our example W is of the following form:

W (z,0) = ¢1() (Z &(7“(5679))%(%9)) + ¢a()

N
= ¢1(x) (fo('r’(:c, 0))Wo(x,0) + Z&('r’(:c, 0))W;(zx, 9)) + ¢o(x), (,0) € Q,
- (3.20)
where
¢1 = ¢1(|7]), P2 = ¢o(|7|) is a C*-smooth partition of unity on R? such that,

¢ =0for || > R>1, ¢ =1 for |z] <1,
¢ =0 for |z| < 1,

(3.21)
{&(s), s € R}Y, is a C™- smooth partition of unity on R, (3.22)
gl(s) = gi(_8)7 s € R? L= 07 N7 (323)

Wi;(x, 8) are bounded, continuous, strictly positive
and rotation invariant (according to (2.18)), (2.21) on (3.24)

the open vicinities of supp &;(r(x,0)), i = 0, N, respectively.

From the result of Lemma 1 and from (3.21) it follows that

Py f(,0) = &ol|=]) Pw, f (. 0) + Z&(M\)Pwif(x’ 0), (x.0) € TS, (3.25)

where W is given by (3.20).
From (3.20)-(3.24) it follows that W of (3.20) satisfies the conditions (1.4), (2.20),
(2.21).



The weight W, is constructed in next paragraph and has the following properties:

W, is bounded, continuous and rotation invariant on §2(1/2, 4+00), (3.26)
Wo e C*(Q((1/2,1) U (1,+00))) and (3.27)
Wy € C*(Q(1/2,4+00)) for a € (0,1/16),
there exists dg € (1/2,1) such that:
Wo(x,0) > 1/2 if r(z,0) > by, (3.28)
Wo(z,0) =1 if r(z,0) > 1,
Py, f(x,0) =0 on Q((1/2, 4+00)), (3.29)

where Py, is defined according to (1.1) for W = W, f is given by (3.13), (3.14).
In addition,

supp & C (—00, —d) U (b9, +00), (3.30)
&o(s) =1 for |s| > 1, (3.31)

where 4y is the number of (3.28).
In particular, from (3.28), (3.30) it follows that

Wo(z,0)&o(r(z,0)) > 0if & (r(z,6)) > 0. (3.32)

In addition,
&i(r(x,0))W,;(z,0) are bounded, rotation invariant and C*° on (2, (3.33)
Wi, 6) > 1/2if &(r(z,0)) £0, (3.34)
Pyw.f(z,0) =0 on (x,0) € TS', such that &(r(z,8)) # 0, (3.35)

i=1,N, (x,0) € Q.

Weights Wy, ..., Wy of (3.20) and {&;}, are constructed in Subsection 3.1.

Theorem 1 for d = 2 follows from Lemma 1 and formulas (3.20)-(3.29), (3.32)-
(3.35).

We point out that the construction of Wy of (3.20) is substantially different from
the construction of Wi,..., Wy. The weight Wy is defined for the rays v € T'S!
which can be close to the boundary 0B of B which results in restrictions on global
smoothness of Wj.

Remark 2. The construction of W summarized above in formulas (3.20)-(3.35) arises
in the framework of finding W such that

Py f =0 on TS for f defined in (3.13)-(3.18), (3.36)

under the condition that W is strictly positive, sufficiently regular and rotation in-
variant (see formulas (1.4), (2.18), (2.19)). In addition, the weights W;, i =0,..., N,
in (3.20) are constructed in a such a way that

Py,f=0onV;,i=0,...,N, (3.37)

under the condition that W; = W;(z, ) are strictly positive, sufficiently regular and
rotation invariant for x € v, y € V; C TS', i =0, ..., N, where
{Vi}Y, is an open cover of T'S' and V; = Ty(dp), (3.38)
Vi = T(A;) for some open A; CR,i=0,...,N, (3.39)
where Tj is defined in (2.6), dy is the number of (3.28), T'(A) is defined in (2.8). In
addition, the functions &;, 7 = 0,..., N, in (3.20) can be interpreted as a partition

of unity on T'S! subordinated to the open cover {V;}¥ ;. The aforementioned con-
struction of W is a two-dimensional analog of the construction developed in [GN17],
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where the weighted Radon transform Ry, along hyperplanes was considered in R3. At
the same time, the construction of W of the present work is similar to the construc-
tion in [B93] with the important difference that in the present work f is spherically
symmetric and W, W;, ¢ =0, ..., N, are rotation invariant.

Construction of W. Let {4}, be a C* partition of unity on (1/2,1) such that

supp ¢ C (1 —27F1 1 —27F=1) 'k e N, (3.40)
first derivatives 1, satisfy the bounds: sup |i}| < C2F, (3.41)

where C'is a positive constant. Actually, functions {¢y}72, satisfying (3.40), (3.41)
were used in considerations of [B93].
Note that
1—270=271 <1 _97k(6/5), k > 3. (3.42)

Therefore,
for all s, ty € R, 59 € supp p_s, to € supp ®(2°(1 — 1)) = s < to, k > 3. (3.43)
Weight W) is defined by the following formulas

Ur—a(r(z,0))

1/2 0 1
Fwg s M2 < @) <1,

1 - G(z,0) lik:!fk(x)
1, r(z,0) > 1

G(z,0) = /f(y) dy, Hx(z,0) = /f,?(y) dy, v € R? 0 e S, (3.45)

7 (x,0) v(2,0)

Wo(z,0) = . (3.44)

where f, fi are defined in (3.13), (3.14), respectively, rays v(z, §) are given by (2.13).
Formula (3.44) implies that Wy is defined on 4(1/2) C 2.
Due to (3.14)-(3.17), (3.40), (3.43), in (3.45) we have that

Hi(2,0) 4 0 if dpo(r(z,0)) £ 0, (2,0) € O, (3.46)
% € C=(Q(1/2,1)), (3.47)

where r(x,0) is defined in (2.2), Q, Q(-) are defined in (2.1), (2.5), d = 2.

Also, for any fixed (z,0) € Q, 1/2 < r(z,0), the series in the right hand-side of
(3.44) has only a finite number of non-zero terms (in fact, no more than two) and,
hence, the weight W) is well-defined.

By the spherical symmetry of f, functions G, Hy in (3.44) are of the type (2.18)
(and (2.20)). Therefore, W, is rotation invariant (in the sense of (2.18) and (2.20)).

Actually, formula (3.29) follows from (3.13), (3.14), (3.44), (3.45) (see Subsec-
tion 6.2 for details).

Using the construction of Wy and the assumption that r(z,6) > 1/2 one can see
that Wy is C'™ on its domain of definition, possibly, except points with r(z,0) = 1.

Note also that due to (3.13), (3.14), the functions fi, G, Hy, used in (3.44), (3.45)
can be considered as functions of one-dimensional arguments.

Formulas (3.26)-(3.28) are proved in Subsection 6.1.

Remark 3. Formulas (3.44), (3.45) given above for the weight Wy are considered
for the rays from 75(dp) (mentioned in Remark 2) and, in particular, for rays close
to the tangent rays to 0B. These formulas are direct two-dimensional analogs of the
related formulas in [GN17]. At the same time, formulas (3.44), (3.45) are similar to
the related formulas in [B93] with the important difference that f, fi are spherically
symmetric in the present work and, as a corollary, Wy is rotation invariant. Also, in



a similar way with [B93], [GN17], in the present work we show that G(z,#) tends to
zero sufficiently fast as r(z,0) — 1. This is a very essential point for continuity of
Wy and it is given in Lemma 3 of Subsection 6.1.

Construction of Wy,... . Wy and &,...,&y

Lemma 2. Let f € C5°(R?) be spherically symmetric, (zo,00) € TS, flyo.00) Z 0
and flyo.00) changes the sign. Then there exist ¢g > 0 and weight Wiz 60).e, Such
that

PW(IO’GO)vsof = 0 on Q<jr(1'07€0)7€0)7 (3.48)

Wizo.00),e0 18 bounded, infinitely smooth, (3.49)
strictly positive and rotation invariant on Ty (z0,00),20) '

where U Ty z)s Trey are defined in (2.5) and (2.9), respectively.
Lemma 2 is proved in Section 7. This lemma is a two-dimensional analog of the
related lemma in [GN17].
Remark 4. In Lemma 2 the construction of W, g,)., arises from
1. finding strictly positive and regular weight Wy, g,). on the rays v = v(x,6) with
fixed § = 60y, where r(x,00) € Jr(w0,00),c for some € > 0, such that (3.48) holds for
# = 0y and under the condition that

W(ro,eo)ﬁ(yv 7) = W(:B0790)7€(|y90|7 7)7 yey= 7<x7 90)7 T(SL’, 90) € *7T(:B0790)7€; (350)

2. extending W,(z.00) to all rays v = v(z,0), 7(2,0) € Trwo00)e, 0 € S, via for-
mula (1.8).
We recall that r(z,0) is defined in (2.2).
Let f be the function of (3.13), (3.14). Then, using Lemmas 1, 2 one can see that

for all § € (0,1) there exist {J; = T, c0, Wi = Wiai 010 s
such that J;, i =1, N, is an open cover of [0,0] in R, (3.51)
and W; satisfy (3.48) and (3.49) on §2(J;), respectively.

Actually, we consider (3.51) for the case of § = dy of (3.28).
Note that in this case {Q(J;)}Y, for J; of (3.51) is the open cover of 2 (dp).
To the set Q4(dy) we associate the open set

Jo = (8, +00) C R. (3.52)

Therefore, the collection of intervals {£J;, ¢ = 0, N} is an open cover of R, where
—J; is the symmetrical reflection of J; with respect to {0} € R.
We construct the partition of unity {&}Y, as follows:

§ils) = &ills]) = %(é(s) +&(-s)), s €R, (3.53)
suppé&; C J; U (—JZ‘), 1= O,—N, (354)

where {&~, is a partition of unity for the open cover {J; U(—=J;)}Y, (see Section 2,
Partition of unity, for U; = J; U (—J;)).

Properties (3.30), (3.54) follow from (2.22) for {1}, with U; = J; U (—J;), the
symmetry of J; U (=J;), i =1, N, choice of Jy in (3.52) and from (3.53).

In turn, (3.31) follows from (3.52) and the construction of J;, i = 1, N, from (3.51)
(see the proof of Lemma 2 and properties (3.51) in Section 7 for details).

Properties (3.33)-(3.35) follow from (3.51) for 6 = dg and from (3.52)-(3.54).

This completes the description of Wi, ..., Wy and {&}X,.
Remark 5. We have that J; = A;, i = 1,..., N, where A; are the intervals in formula
(3.39) of Remark 2 and J; are the intervals considered in (3.51), (3.52).
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3.2 Construction of W and f for d > 3

Consider f and W of Theorem 1, for d = 2, constructed in Subsection 3.1. For these
f and W consider f and U such that

f() = f(jz]), W(z,0) = U(jz],|26]), v € R, 0 € S". (3.55)

Proposition 1. Let W and f, for d > 3, be defined as
W(z,0) = U(|zl],|z0]), (z,0) € R? x S¢1, (3.56)
f(z) = f(la]), z € RY, (3.57)

where U, f are the functions of (3.55). Then
Pyf=0 on TS, (3.58)

In addition, weight W satisfies properties (3.2)-(3.5), f is spherically symmetric in-
finitely smooth and compactly supported on R?, f # 0.

Proposition 1 is proved in Subsection 5.2.
This completes the proof of Theorem 1.

4 Proof of Theorem 2

4.1 Proof for d >3

Let
W be the weight of Theorem 1 for d > 3, (4.1)
R be the number in (3.5) for d > 3, (4.2)

{y;}32, be a sequence of vectors in R? such that y; = 0, |y; — y;| > 2R

for i # j, i,5 € N,

{B;}2°, be the closed balls in R? of radius R centered at y; (see (4.2), (4.3)). (4.4)
The weight W, is defined as follows

( n o __
i=1

W(x —y1,0) = W(x,0) if x € By,

W(x — yo,0) if 2 € By,

W(l‘ - yk,H) ifx e Fk,

| Wz —yn0)ifz e B,,

0 S neNU{oo}, d>3,

where W is defined in (4.1), y; and B; are defined in (4.3), (4.4), respectively.
Properties (1.4), (3.11) and (3.12) for W,,, defined in (4.5), for d > 3, follow from
(3.2)-(3.5), (4.1), (4.2).
Let

f@) ™ f@), fole) Y fa =), Sae) Y fa =) a e R d 23, (46)
where y; are defined in (4.3) and

f is the function of Theorem 1 for d > 3. (4.7)
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One can see that
fi € CP(RY), d >3, f; Z0, supp fi C By, BiN B, = 0 for i # j, (4.8)

where B; are defined in (4.4),i=1,...,n.
The point is that

Py fi=0on TS, d>3,i=1,...,n, (4.9)

fi are linearly independent in C3°(R%), d >3,i=1,...,n, (4.10)
where W, is defined in (4.5), f; are defined in (4.6).

To prove (4.9) we use, in particular, the following general formula:
Pw, fy(z,0) = / Wy —y,0)f(y —y)dy

7o) (4.11)

/ W, 0)f(y)dy = Pyf(x—vy,0), e R 6 e S,

v(z—y,0)

Wy(x,0) = W(x —y,0), f, = flx —y), =,y € R%, € S (4.12)

where W is an arbitrary weight satisfying (1.4), f is a test-function, v(z, 0) is defined
according to (2.13).

Formula (4.9) follows from formula (3.1), definitions (4.5), (4.6), (4.7), properties
(4.8) and from formulas (4.11), (4.12).

Formula (4.10) follows from definitions (4.6), (4.7) and properties (4.8).
This completes the proof of Theorem 2 for d > 3.

4.2 Proof for d =2
In [B93], there were constructed a weight W and a function f for d = 2, such that:

Pyf=0onTS, (4.13)
W=W>c>0WeC?R*xS"), (4.14)
feCFE(R?), f#0, suppf C B, (4.15)

where c is a constant, B is defined in (2.16).

We define
W(z,0) = ¢ ¢y (2)W(x,0) + ¢o(z), z € R?, 6 € S, (4.16)
where W is the weight of (4.13), (4.14), ¢ is a constant of (4.14).
b1 = ¢1(x), ¢y = ¢o(x) is a C*°-smooth partition of unity on R? such that,
p1=0for || >R>1,¢,=1for |z| <1, ¢ >0 on R (4.17)
¢y =0 for |2| <1, ¢ > 0 on R?,

where R is a constant.
From (4.13)-(4.17) it follows that

Pzf=0onTS", (4.18)
W>1,WeC®R*x S,
W(z,@) =1for|z|>R>1,0¢cS.

The proof of Theorem 2 for d = 2 proceeding from (4.15), (4.16), (4.18), (4.19) is
completely similar to the proof of Theorem 2 for d > 3, proceeding from Theorem 1.
Theorem 2 is proved.

(4.19)
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5 Proofs of Corollary 1 and Proposition 1

5.1 Proof of Corollary 1
Let

X, = {161 + 960 +1e3 : (11, 72) ER*}, 0< 7 < 1, (5.1)
S=XoNS?={(cosg,sing,0) € R*: ¢ € [0,27)} ~ S". (5.2)

where (e, €5, €3) is the standard orthonormal basis in R?.

Without loss of generality we assume that 0 < § < 1. Choosing r so that
V1 —462 <r <1, we have that the intersection of the three dimensional ball B(0,1)
with X, is the two-dimensional disk B(0,d’), ¢’ < § (with respect to the coordinates
(21, z2) induced by basis (eq,e2) on X,.).

We define N, W5 on R? x S and f5 on R? as follows:

N = [|[W||gamsxs?), (5.3)
Ws == W|x,xs, (5.4)
fs = [lx., (5.5)
for r = V1 — 62,

where W and f are the functions of Theorem 1 for d = 3.
Due to (3.2)-(3.4), (5.3), (5.4) we have that

W > 1/2, |[Wlcomexs < N. (5.6)

Properties (5.6) imply (3.6).

In view of Lemma 1 for the function f of Theorem 1, we have that fs is spherically
symmetric, fs € C5°(B(0,¢")), fs 0.

Using (3.1), (5.4), (5.5) one can see that (3.8) holds.

This completes the proof of Corollary 1.

5.2 Proof of Proposition 1
Let
1) = [ Oul.F D dy. > 0.9 =2 (resser). (5.7

Ir

where (z,0) is defined by (1.3), (ey,...,eq) is the standard basis in R%.
Due to formula (3.1) of Theorem 1 for d = 2 and formulas (3.55), (5.7) we have
that
I(r) = Py f(reg,e;) =0 for r > 0. (5.8)

Next, using (1.1), (3.55), (5.8) we have also that

Py f(x,0) = / U(lyl.ly = WO f(lyl) dy = I(|x]) = 0 for (x,0) € TS™, (5.9)
v(2,0)
where y(x,0) is defined in (1.3).
Formula (5.9) implies (3.58). Properties of W and f mentioned in Proposition 1

follow from properties (3.2)-(3.5) of W and of f of Theorem 1 for d = 2.
This completes the proof of Proposition 1.
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6 Proofs of formulas (3.26)-(3.29)

6.1 Proof of formulas (3.26)-(3.28)

Lemma 3. Let Wy be defined by (3.44), (3.45). Then Wy admits the following rep-
resentation:

Wolz,0) = Uy(a0, |x — (20)8)), (x,0) € Q((1/2, +00)), (6.1)
~ s ra 2 2\1/2 ¢k—2(r) r
Ua(s. ) = 1— G(r)];:gk:!fk((s + r2)V )Tk(r) J1/2<r <1, | (6.2)
L,r>1
G0 [ Floldy. ()™ [ Bty F=>- 2%, (6.3
r r k=1

s € R, x € R? ~, is an arbitrary ray in T(r), r > 1/2,

where fy, are defined by (3.14), T(r) is defined by (2.8), d = 2. In addition:

Uy is infinitely smooth on R x {(1/2,1) U (1, 400)}, (6.4)

Up(s,r) = 1 asr — 1 (uniformly in s € R), (6.5)

Us(s,r) =11if s> +r2>1, (6.6)
1

11— Us(s,7)| < Co(1 —1)*log} <1—> : (6.7)
—r

forseR, 1/2<r <1,
\Us(s,r) — Up(s',7")| < Cils — &[4+ Cy|r — ')/, (6.8)
for a € (0,1/16), s,s' € R, r,7' > 1/2,

where Cy, Cy are positive constants depending on ® of (3.15)-(3.17).

Lemma 3 is proved Section 8.

Lemma 3 implies (3.26)-(3.28) as follows.

The continuity and rotation invariancy of W in (3.26) follow from (2.18), (2.19),
(6.1), (6.8).

Due to (3.40), (6.1), (6.2), (6.3) we have also that

Up admits a continuous extension to R x [1/2, +00). (6.9)

Properties (6.6), (6.9) imply the boundedness of Wy on Q(1/2), where Qq(-) is defined

in (2.3), d = 2. This completes the proof of (3.26).
Formula (3.27) follows from (6.1), (6.4), (6.8) and from the fact that 26, |z — (x6)0

are infinitely smooth functions on €y(1/2) and are Lipshitz in (x, §) for z € B(0, R), R > 1.
Formula (3.28) follows from (3.26), (6.1), (6.2), (6.5), (6.6).
This completes the proof of (3.26)-(3.28).
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6.2 Proof of formula (3.29)
From (1.1), (3.13)-(3.16), (3.40), (3.44), (3.45) it follows that:

I fly
Pw, f( /f )dy — G(x,0) Zk'q/;k o(r(z 9))%966 i @.0)
~y(z,0) f o0
i)f y)dy — i)f dyzwk o(r(z,0)) W{g) 0 (6.10)

- 1w~ [ 1) dy > ialr(,0) = 0 for (x,6) € 0(1/2).

where ~y(z,0) is defined in (1.3), Q(+) is defined in (2.3), d =
Formula (3.29) is proved.

7 Proof of Lemma 2

By u € R we denote the coordinates on a fixed ray ~(z,0), (x,0) € Q, d = 2, taking
into account the orientation, where u = 0 at the point z—(x0)8 € v(x,0); see notation
(2.13).

Using Lemma 1, one can see that

flh@o) € C°(R), fly@e(w) = flywo(lul), v e R (7.1)

Using (7.1) and the assumption that f|,(,,6,) (¢) changes the sign, one can see that
there exists 14, ,) such that

w(mo,eo) € CSO(R)’ ,lvz)(l“oﬂo) > 0, ,lvz)(l“o,@o)(u) = w(ro,eo)(|u|)’ u € R? (72)
/f¢(mo,eo) do # 0, (7.3)
¥(z0,60)
and if
/ fdo#0 (7.4)
~(z0,00)
then also
sgn(/fda) Sgn(/fw(foﬂo) dO') =—1, (7'5)
v(x0,00) v(x0,00)

where do = du (i.e., o is the standard Euclidean measure on y(z,#)).
Let

[ fdo
Wiao.00) (2, 0) = 1 — (g 0 (26 i zeR? 0eS, 7.6
( 0790)< ) 0:60) ( )f'y(x76)fw(1'0790) do (7.6)
where do = du, where u is the coordinate on ~y(z, 6).
Lemma 1 and property (7.2) imply that
/f do and /fi/}(x(),go) do depend only on r(z,0), where (z,0) € €, (7.7)

’y(l‘ﬂ) ’y(l‘ﬂ)
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where 7(z, ) is defined in (2.2), € is defined in (2.1), d = 2.

From (7.2), (7.6), (7.7) it follows that W(,, g, is rotation-invariant in the sense
(2.18).

Formulas (7.3), (7.6), (7.7), properties of f of Lemma 1 and properties of 14, g,)
of (7.2) imply that

Je1 >0 /fi/f(mo,eo) do # 0 for (z,0) € QU Tr(z0,00)e1) (7.8)
v(z,0)
where sets Q(J;), Js. are defined in (2.5), (2.9), respectively.

In addition, using properties of f of Lemma 1 and also using (3.13), (3.19), (7.2),
(7.6), (7.8), one can see that

W(l“oﬂo) < COO(Q(‘Z‘(JEO#gO)ﬁl))' (79)
In addition, from (7.1)-(7.7) it follows that
[ fdo

¥(z0,60)

f f¢(ro,90) do

¥(z0,60)

[ fdo

~(z0,00) >1

ff¢(x0,90) do — ’

¥(z0,60)

if r(x,0) = r(zo,0y) then W(mgo)(x, 0)=1-— ¢(x0790)(x0)

=1- ¢(x0790)(x0)

(7.10)

where 7(x,0) is defined in (2.2), d = 2.
From properties of f of Lemma 1, properties of 94, g,) of (7.2) and from formulas
(7.6), (7.8), (7.9), (7.10) it follows that

deg > 0 (Eo < 51) : W(xmgo)(l‘,@) > 1/2 for (ZL‘,@) € Q(\Z’(ﬂcoﬂo),ao)' (711)

Let
W($0790)750 = W(ﬂﬁoﬂo) for (SL’,@) & Q(*Z’(xoﬂo),ao)v (7.12)

where Wz, 4, is defined in (7.6).
Properties (7.7), (7.9), (7.11) imply (3.49) for W, 44).c, Of (7.12).
Using (1.1), (7.6), (7.8), (7.12) one can see that

PW(zo,eo),sof(xv 9) = /W(roﬂo)('v G)f do
)

~v(x,0
[ fdo
(,0)
do— 7 sty do = 0 for (2,0) € UTrso.00)0):
/f [ f(zo.00) do /fw( 0,00) 40 or (z,0) (Tr(@0,00).20)
7(x,0) +(x,0) ~+(x,0)

(7.13)

where €Q(-) is defined in (2.5), d = 2, J,. is defined in (2.9). Formula (3.48) follows
from (7.13).
Lemma 2 is proved.
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8 Proof of Lemma 3

Proof of (6.1)-(6.3). Using (2.2), (3.13), (3.14), (3.45), (6.3) we obtain

G(z,0) = G(r(x,0)) f(z)dx, (8.1)
L
Hy(z,0) = Hy(r(z,0)) :/f,?(x) dz, (8.2)
v(2,0)
fellzl) = fil (120 + |z — (20)0]*)'/?), (z,0) € Q0(1/2), (8.3)

where (-) is defined in (2.3), d = 2, vy(z, 0) is defined as in (2.13).
Formulas (3.44), (3.45), (8.1)-(8.3) imply (6.1)-(6.3).

Proof of (6.4). Let

Ap=(1—-2""3 12" LeN, k>4 (8.4)
From (3.40) it follows that, for k > 4:

supp ¥—1 C (1 — 2752 1—27%),

SUpp Yp_p C (1 — 27K 1 —27F+F) = A}

supp ¢p_g C (1 —27FH 1 — 27+F2),
Due to (6.2), (6.3), (8.5)-(8.7), we have the following formula for Uy:

Un(s,r) = 1= Gr) <<k: - (2 )
k!~k s? 4 r? UQM 8.8
PR 07 (59

(ke + D) e ((s° + 7’2)1/2)7@9_1(70)

forre A, seR, k> 4.
Hieya(r)

From (6.3), (8.8) it follows that

Ty G 0" fia((5” + 7)) i 5(r)
5 (7)== G() ((k—l)! o ffl;dr)
(8 7)) ia(r)
o Os™ Hi(r) (8.9)
+(k + 1)1 5’"fk+1<(§sn+r ') ZZ 1(< >> ) |
PG [ s D= [ 2 e, e

relA,seR m>1,n>0 k>4,

where G, H,, are defined in (6.3).
Using Lemma 1 and formulas (3.13), (3.14), (3.40)-(3.47), (6.3) one can see that:
fy fma, G, H,, belong to C°(R),

Um—2 (8.11)
H— belongs to C3°((1/2,1)) for any m > 3.

m
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From (8.9)-(8.11) it follows that Uy(s,r) has continuous partial derivatives of all
orders with respect to r € Ag, s € R. It implies that Uy € C*°(R x Ay). From the
fact that Ag, k& > 4, is an open cover of (1/2,1) and from definition (6.2) of Uy, it
follows that Uy € C°(R x {(1/2,1) U (1, +00)}).

This completes the proof of (6.4).

Proof of (6.6). From (3.14)-(3.17) it follows that

fel(lz)) = 0if || > 1 for k € N. (8.12)
Formula |z|? = |z6|* + |z — (z0)0]?, x € R?, § € S', and formulas (6.2), (8.12) imply
(6.6).

Proofs of (6.7)-(6.8).

Lemma 4. There are positive constants ¢, k1 depending on ® of (3.15)-(3.17), such
that

(i) for all k € N the following estimates hold:
fol <1, (8.13)
|fil < 8", (8.14)
where f] denotes the derivative of fy, defined in (6.3).
(ii) for k > ki and 1/2 < r <1 the following estimates hold:

Vi—a(r)

Hk('f’)

i @Z)k—Q(T)
dr ﬁ[k(r)

where 1y, are defined in (3.40), Hy, is defined in (6.3).
(iii) for k >3 and r > 1 —27% the following estimates hold:

< 2", (8.15)

< 2%, (8.16)

G(r)| < C(z\fl) , (8.17)
%(T) < c%, (8.18)

where G is defined in (6.3).
Lemma 5. Let Uy be defined by (6.2)-(6.3). Then the following estimates are valid:

Uy C Uy c¢
— < < — .
‘ s (s,r)| < a7 |or (s,r)‘ ST forse R, re(1/2,1), (8.19)

where C' is a constant depending only on ® of (3.15)-(3.17).
Lemmas 4, 5 are proved in Subsections 9.1, 9.2, respectively.

Proof of (6.7). From (8.15), (8.17) it follows that

IG(r)] < c(2v2)7F3/(k — 3)!, (8.20)
M < 2", (8.21)
Hk<T’)

for r € Ay, k > max(4, k1),
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where Ay is defined in (8.4).
Properties (8.5)-(8.7) and estimate (8.15) imply that

(V—1(r) =0,
zﬁk,g(r) c b1 TE (1 —27FF3 1 — 27+, (8.22)
(| Hi—a ()|
(Vro(r) =0,
V1 (1) if e (1—27F2 1 27k (8.23)

{w’““; - 8’ if r=1-—2"2 (8.24)

for k > max(4, k).

Note that the assumption that r € A, is splitted into the assumptions on r of
(8.22), (8.23), (8.24).

Using formulas (8.8), (8.20)-(8.24), we obtain the following estimates:

_ s ) = |C(r 1T §2 4 p2)1/2 Yi—3(r) (2 4 r2)1/2 Yr—a(1)
11— Us(s,r)| = [G(r)] |(k = D! fe-a((s” +77) )71?;9_1(7“) + KUfi((s” +77) )Tk(r)
< c(2V2) T (e(k — 2)(k — )28 + e(k — 2)(k — 1)k2F)

< PV2e227RREE i e (1 — 2788 1 — 27k,
(8.25)
11— Up(s, )| = |G(r)] [k Ful(s® + TQ)W)%TZ(«;) (kD) g (0 + 7“2)1/2)%

< e(2v2)7FF3 (2R (k — 2)(k — 1)k + 281k — 2)(k — 1)k(k + 1))
< 2102297kt if e (1 —27FF2 1 — o7k

Y

(8.26)
1 —Uy(s,r)| = Gr)| |k fu (82 + r2)2/2 LE_Q(T)
1= Uo(s,r)| = |G(r)] |FLfi(( )7) () (8.27)
< 2N 7RREE i =1 —27FF2
for s € R, k > max(4, k1). Estimates (8.25)-(8.27) imply that
11— Up(s,r)| < C27*2k* r € Ay, s € R, k > max(4, ky), (8.28)

where C' is a positive constant depending on ¢ of Lemma 4.

In addition, for r € Ay we have that 271 < (1 —r) < 27%%3 which together with
(8.28) imply (6.7).

This completes the proof of (6.7).

Proof of (6.8). We consider the following cases of s, s', r, 7’ in (6.8):

1. Let
s,s e Rand r,r' > 1. (8.29)
Due to (6.2) we have that

Us(s,r) =1, Up(s',r") = 1. (8.30)
Identities in (8.30) and assumption (8.29) imply (6.8) for this case.
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2. Let

s,s eR1/2<r<landr >1. (8.31)

Then, due to (6.2), (6.7) we have that
11— Us(s,r)| < C(1 — 7)Y, (8.32)
Uog(s',r") =1, (8.33)

where s, s',r, r’" satisfy assumption (8.31), C' is a constant depending only on ®.
In particular, inequality (8.32) follows from (6.7) due to the following simple
property of the logarithm:

1
logs (1—) < Cl(a,e)(1—=r)Fforany e >0, r€[0,1), a >0, (8.34)

where C'(a, €) is some positive constant depending only on a and e.
Due to (8.31), (8.32), (8.33) we have that

|Uo(s',7") — Up(s,7)| = |1 — Up(s,7)| < C(1 — 7“)1/3

8.35
§C|7’—7’/|l/3 SC(|7’—7’/|1/3+|S—8/|1/3), ( )
where C' is a constant depending only on ®.
Estimate (8.35) and assumptions (8.31) imply (6.8) for this case.
3. Let
s,s € Rand r,7" € (1/2,1). (8.36)
In addition, without loss of generality we assume that r > r’.
Next, using (6.4) one can see that
[Uo(s,7) = Up(s',7")| = [Un(s,7) — Up(s',7) + Up(s', 1) — Up(s',7)]|
< |U0<57 T) - UO<8/7T)‘ + |U0<8/7T) - UO(S/7 T/)‘ (8 37)
U, U, '
< 6—80<§7T> ‘8 - 8/| + 8—7“0(SI772) ‘T - Tl‘v

for s, € R, r,7’ >1/2, and for appropriate §, 7.

Note that §,7 belong to open intervals (s, s’), (1, r), respectively.

Using (6.7), (8.19), (8.32), (8.37) and the property that 1/2 <7’ <7 <r <1 we
obtain

\Uo(s,7) — Up(s',7")| < C((1 — )2 + (1 —r)V3), (8.38)

Uo(s,r) = Up(s', )] < (Is = ' + [r = r']), (8.39)

C
(1—r)°
where C' is a constant depending only on .
We have that

(1 — r)1/3 + (1 _ 7“/)1/3 _ (1 N T)1/3 + ((1 . ’I“) n (T B 7“/))1/3
<201 =)V fr =o'V

Blr =V 1 —r < |r—7|,
< - 8.40
_{3(1—T)1/3if1—7“>|7“—7°l|, (8.40)

where 7,7’ satisfy (8.36). Note that in (8.40) we used the following inequality:
(a+b)Y™ < a/™ £ Y™ for a >0, b >0, m € N. (8.41)
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In particular, using (8.38), (8.40) we have that
\Uo(s,7) — Up(s',7)|** <380 (1 —r)?if 1 —r > |r — 1|, (8.42)

where s, ¢, r, 7’ satisfy assumption (8.36), C' is a constant of (8.38), (8.39).
Multiplying the left and the right hand-sides of (8.39), (8.42) we obtain

|Uo(s,7) — Up(s',7)|'® < 3PCH(|s —&'| + |r —7|), if 1 =7 > |r —7/|. (8.43)
Using (8.38), (8.40) we obtain
\Uo(s,7) — Ug(s',7")| < 3C|r — /|3, if 1 — 7 < |r — /], (8.44)

where C' is a constant of (8.38), (8.39) depending only on ®. Using (8.43) and
(8.41) for m = 16, a = |s — §|, b = |r — 1’|, we have that

Uo(s,7) — Up(s',7")] <3C(|s — &'V | — /|10 if 1 — 7 > |r —#|, (8.45)

where s, s, r, 1’ satisfy assumption (8.36), C' is a constant of (8.38), (8.39) which
depends only on ®.

Formulas (8.44), (8.45) imply (6.8) for this case.

Note that assumptions (8.29), (8.31), (8.36) for cases 1, 2, 3, respectively, cover all
possible choices of s, s',r, 7" in (6.8).

This completes the proof of (6.8).

This completes the proof of Lemma 3.

9 Proofs of Lemmas 4, 5
9.1 Proof of Lemma 4
Proof of (8.13), (8.14). Estimates (8.13), (8.14) follow directly from (3.14)-(3.17).

Proof of (8.17). We will use the following parametrization of the points y on
y(x,0) € TSY, (z,0) € Q, r(x,0) # 0 (see notations (2.1), (2.2), (2.13) for d = 2):

y(B) =z — (20)0 + tan(B)r(x,0) 0, 5 € (—7/2,7/2), (9.1)

where [ is the parameter.
We have that:

do(B) =rd(tan(B)) = ——, r = r(x,0), (9.2)

where o is the standard Lebesgue measure on 7(z,0).
From definitions (3.13), (6.3) it follows that

G = 0 0.3
Gulr) = / FulluD dy, e € T(r), 1 > 1/2, (9.4)

Yr

where T'(r) is defined by (2.8).
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Using (3.14), (9.1), (9.2), (9.4) we obtain the following formula for Gy

/2

/
~ _ r r? dg
Gi(r)=r / o (2’“ (1 — cosﬁ)) cos (8]600526) o2

—Tr

= {u=tan(B)} =2r /OO(IJ <2k (1 — m/ﬁ)) cos (8"r*(u* +1)) du

0

w_ [ : d

={t=u"}=r 0/ o (2’1C (1—T\/t+1)>cos (8’“7‘ (t+1)) 72

2 2
= 1 cos(8%r?) / d(2F(1 —rv/t + 1))%(&

+00 ) 9
— rsin(85r?) / B(2"(1 — r\/zwr—l))%dt

T (0
= 87F/2p~L cos(8Fr?) / Oy (t,r) NV dt

o (9.5)
—k/2,.—1 o (Qk. 2 sin(t)

— 87F/2p L gin(8kr?) / Oy (t,r) Ny dt, r>1/2,

0

where

p(t,r) = P21 — rv/8Fr=2t +1)),t >0, r >1/2, k€ N, (9.6)

For integrals arising in (9.5) the following estimates hold:

+o0

/ @k(t,r)sn\l/(;)dt < () < +oo, (9.7)
/ @k(t,r)“’j(;)dt < Cy < +oo, (9.8)

for1/2<r <1, k>1.

where @y, is defined in (9.6), C4, Cy are some positive constants depending only on ®
and not depending on £ and r.

Estimates (9.7), (9.8) are proved in Subsection 9.3.

From (9.5)-(9.8) it follows that

1Gi(r)] < 2-87%2(Cy + Cy) for r > 1/2, k € N. (9.9)
Note that for y € ~,, the following inequality holds:
P~y <2"(1 —r) <2 <1/2 < 4/5

9.10
for1—2""<r<1, k<m,m?>3, ( )
where v, is a ray in 7'(r) (see notations of (2.8), d = 2).
Formulas (3.14), (3.15), (6.3), (9.10) imply that
Y Osupp fr =0if r>1-2"" k <m, (9.11)
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In turn, (9.4), (9.11) imply that
ék(r):OforrZI—Q_m,k:<m,m23.

Due to (9.3), (9.4), (9.9), (9.12) we have that:

o0

G(r)] < Z |G(r)|/k!
(2\/5)*’”“
<2(Cy + 02 ' kz: 2\/_ I
4\f
ca =(Cy +02)2\/§_ %

forr>1-—2"" m > 3.

This completes the proof of estimate (8.17).

Proof of (8.18). Using (9.3), (9.4) we have that:
) <> h
k!

k=1
Formulas (3.14), (8.10) for n = 1, (8.14), (9.4) imply that

de
dr

IA

~ +oo  ~
G, B rfi((s% 4 12)1/?)
W(T)‘ = / : /12 ¥ §2 ds

[e.e]

/|f s% 1)) |d5—/|fk lyl) |dy<08k/dy<208k

Yr ~v~NB(0,1)
where B(0,1) is defined in (2.16), d = 2.
At the same time, formula (9.12) implies that
dGy(r)
dr

=0forr>1—-2""k<m,m>3.

Formulas (9.14), (9.15), (9.16) imply the following sequence of inequalities:

e}

S

k=m

de m‘Sk “m
m‘z ,r>1-=2"""m>3.

The series in the right hand-side in (9.17) admits the following estimate:

o0

18k ]k
Z 7(];1 )l = Z i = €% and the estimate does not depend on m.

Formulas (9.17), (9.18) imply (8.18).

Proof of (8.15). For each 1y from (3.40) we have that
|| < 1.

Therefore, it is sufficient to show that

H,>C2%fork >k, C=c".
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Proceeding from (6.3) and in a similar way with (9.5) we obtain the formulas

_ e - rTT)
Hy(r)=r / Ny

0

HI“() 2/@(2 <1_\/;/t+1)>dt,
H, 2(r) = 9 / red _\[Z t+1) cos(2 - 8Fr2(t 4 1)) dt.

In addition, we have that:

supp,®?(28(1 —rv/t +1) C [0,3] for 1/2 < r <1 —27F k>3

cos? (852 (t + 1)) dt = Hy,o(r) + Heo(r), r > 1/2,

(9.21)

(9.22)

(9.23)

(9.24)

where supp, denotes the support of the function in variable ¢. Property (9.24) is

proved below in this paragraph (see formulas (9.26)-(9.29)).
Note that

k1 —r)y>2". 27" >956/5for 1/2<r<1-—27F"1 k>3,
From (3.15), (3.16) and from (9.25) we have that:
supp,®*(2"(1 — rvt +1) C [0, +00) for 1/2 < r < 1—27%1 k> 3.
We have that
=0y > 0,6 =P ) >0, 1 > ¢, such that

2k(1 —ry/tF + 1) = 11/10,
28(1 =/t + 1) = 9/10,

2 1 = 2 1 - 5 - 5 ?

for 1/2<r<1-—27F"1 k>3

In addition, from (9.27) it follows that

1 —27k1y2 11
tgk):4—1§4<1—2kﬁ)2_1§37
T
1—27k2 11
t;’ﬂ:% 1<4(1-27 ’“10) —1<3,
T

for 1/2<r<1—27"1 k>3

Using (3.15)-(3.17), (9.22), (9.24), (9.27)-(9.29) we have that

t(k) 3+|t(k) t(k)‘
dt
H
kalr) 2 2/ Vi© 2
t(k)

3+[t5" —t{"|

6
3
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r Tk k) o 2" kst
Z— dt:6|t2 —t1|25f0r 1/2<T‘§1—2 ,k’zg

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)
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On the other hand, proceeding from using (9.23) and, in a similar way with (9.5)-(9.9),
we have
+oo

-~ 2(2F(1 — ry/I+ 1
|Hya(r)] = = / QA =rVEFD) o 85200+ 1)) e
2 Vi
i 2 - 8kr?t
< S| cos(2 - 8512)] /(IJQ(Qk(l—r\/tJrl))Mdt
2 Vi
0
+oo
+ Z|sin(2 - 8572)| /@2(2k(1—r\/t+1))wdt
2 / Vi
+o00 “+o0
<g el /qﬂ(t r)cos@t)dt LgknT /qﬂ(t T)Sm(%)dt
- 2 N 2 ROt

<8HF2C for1/2<r<1—27%1 k>3,

where @y (t,r) is defined in (9.6), C' is some constant depending only on ¢ and not
depending on k,7. In (9.31) we have also used that ®*(¢) satisfies assumptions (3.15)-
(3.17).

Note also that ®%(t) satisfies assumptions (3.15)-(3.17) for ®(¢).

Using (9.21)-(9.23), (9.30), (9.31) we obtain

[Hi(r)] = | Hia(r)] = [Hia(r)]

27 k/2
>Z2 _ _¢o'.8
Z 35 C" -8
1 C’
&
=2 (5~ ) 032

>C27% for1/2<r<1—27F"1 >k >3,
1
C=——-C'(V2)™

where C’" depends only on ®, k; is arbitrary constant such that k& > 3 and C is

positive.
Formulas (8.15) follows from (3.40), (9.32).
This completes the proof (8.15).

Proof of (8.16). The following formula holds:

i (1%2(7’)) _ _ﬁé(r)wk—Z(T) - ﬁk(r)@%fz(?”) 1/2<r<1 (9.33)

dr \ H(r) H(r)

where H iy Ur_o denote the derivatives of f]k, Yy, defined in (6.3), (3.40), respectively.
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Using (3.14), (6.3), (8.10), n =1, (8.13), (8.14) we have that

[Hi(r)] =2 frVr2 4 2) fu(vr? + $2) ds

+o0o
/ T
V2 4+ s2

<2 [ | E A RVEE ) ds=2 [ IR Rl s (039

§208k/dy§4c8k, v eT(r), k>31r>1/2,

~v+NB(0,1)

where we use notations (2.8), (2.16), d = 2.
Using (3.40), (3.41), (8.15), (9.32)-(9.34) we have that

i Yr—2(r)
dr ﬁk(r)

for 1/2<r<1—2"F"1 k>Fk >3,

< COM(FY) |+ [Her)| - W4(r)]) < 2%, (9.35)

where C” is a constant not depending on k and r and depending only on ®.
This completes the proof of Lemma 4.

9.2 Proof of Lemma 5
It is sufficient to show that

oUy(s, ) C

Os = (1—r)% (9:36)
AUy (s,r) C

or = (1—r)>’ (5:37)

for s e R, r € Ay, k > max(4, k),

where C'is a positive constant depending only on ® of (3.14), Ay is defined in (8.4),
ky is a constant arising in Lemma 4 and depending only on ®.

Indeed, estimates (8.19) follow from (6.4), (9.36), (9.37) and the fact that Ay, k& > 4,
is an open cover of (1/2,1).

In turn, estimates (9.36), (9.37) follow from the estimates

6L0<87T) k

Z < . .
) - C -8k, (9.38)
ols,r) [Of’” < C-(32)F, (9.39)

for s e R, r € Ay,

and from the fact that 2%t < 1 —r < 27583 k& > max(4, k1), for r € Ay, where C
is a positive constant depending only on .

Estimate (9.38) follows from formula (8.9) for n = 1 and estimates (8.14), (8.15),
(8.20)-(8.24).

Estimate (9.39) follows from (8.8), (8.13)-(8.16), (8.20)-(8.24) and from the esti-
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mates:

A Deilr) ] o gtei,
dr \ Hy_i5(r)
dG(r) gh+3

ar | = “k—3)

for r € Ay, i € {1, 2,3},

where ¢ is a constant arising in Lemma 4.

(9.40)

(9.41)

Estimate (9.40) follows from (8.16) (used with k—1, k, k41 in place of k). Estimate

(9.41) follows from (8.18) (used with k£ — 3 in place of k).
This completes the proof of Lemma 5.

9.3 Proof of estimates (9.7), (9.8)

We use the following Bonnet’s integration formulas (see, e.g., [F59], Chapter 2):

&

/f1 t)dt = fi(a /h
/ F(Oh(t) dt = fo(b

for some appropriate &3, & € [a, b], where

ff'\m
3‘

f1 is monotonously decreasing on [a, ], f; >0,
f2 is monotonously increasing on [a, b], fo > 0,
h(t) is integrable on [a, b].

Let
n(t) == ) = 00
G (s) :/SH;(;) dt, Ga(s) :/Coj(;) dt, s >0

We recall that
lim Gi(s) = lim Gsy(s) = g

s§——+00 s——+00

From (9.45), (9.46), (9.47) it follows that

G, Go are continuous and bounded on [0, +00).

Due to (3.15)-(3.18), (9.6) and monotonicity of the function 2(1

in ¢t on [0, 4+00) it follows that

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

(9.47)

(9.48)

— V8 kr=2t +1)

®y(t,7) is monotonously decreasing on [0, +-00), if 2¢(1 —r) < 11/10, (9.49)

®,(t,r) is monotonously increasing on [0, ¢] for some t5 > 0

and is monotonously decreasing on [ty, +00), if 2%(1 —r) > 11/10.

forr > 1/2, k € N,
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Moreover, due to (3.15)-(3.17), (9.6), for T}, = 8%, k € N, we have that

Op(Ti,7) = P21 —rvr24+1)) = &(2"(1 — V1 +1r2)) =0, (9.51)

O (t,r) =0 for t > Ty, (9.52)
|k (t,7)] < 1fort >0, (9.53)
r>1/2, keN.
Using (9.6), (9.45)-(9.50), (9.52) and (9.42)-(9.44) we obtain

+o0 Ty, £

/Q)k(t, r)gi(t) dt = /Cbk(t, r)gi(t) dt = @i (0,7 /gZ (9.54)

0 0 0

= ®4(0,7)G;(€) for appropriate ¢ € [0, Ty, if 28(1 —r) < 11/10,
oo Tk T

/cI)k (t,r)g:(t) dt = /q)k(t,'r’)gi(t) dt = /q)k(t,r)gi(t) dt—l—/cbk(t,'r)gi(t) dt

0

to 3
:@@mm/gﬁyﬁ+@ﬁmm/%@mt
4 to
= Oy (to, 7)(Gi(€") — Gi(£))) (9.55)

for appropriate & € [0, o], £ € [to, Tx], if 28(1 —r) > 11/10,

where i = 1, 2.
Estimates (9.7), (9.8) follow from (9.45), (9.46), (9.48), (9.53)-(9.55).
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