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Introduction

Several analytical models have been proposed to represent the process of earthquake occurrence. Some of them are based on empirical observations of precursory phenomena, others on physical modelling of the earthquake process and a third class on statistical analysis of patterns of seismicity. The most common statistical model is the Poisson model, which assumes temporal independence of earthquakes. The simplest time-dependent model is the non-homogeneous Poisson model, which is not appropriate for seismic hazard assessment in long time intervals, because the hazard should be updated when a new earthquake occurs.

A semi-Markov model that considers the non-random character of earthquake magnitude and recurrence time was proposed by [START_REF] Cluff | Estimating the probability of occurrences of surface faulting earthquakes on the Wasatch fault zone, Utah[END_REF]. In this model a parametric method 2 Notation and Preliminaries of Semi-Markov Processes Firstly, we briefly recall the main definitions from the theory of semi-Markov processes which are directly useful for our study (see, e.g., [START_REF] Limnios | Semi-Markov Processes and Reliability[END_REF]. Let us consider a Markov Renewal Process (MRP), (J, S) = (J n , S n ) n≥0 , defined on a complete probability space, where (J n ) n≥0 is a Markov chain with values in the state space of the process, E = {1, 2, ..., s}, and (S n ) n≥0 are the jump times which take values in R + = [0, ∞). J 0 , J 1 ,...,J n ,... are the consecutive states to be visited by the MRP and X 0 = S 0 = 0, X 1 , X 2 , ... defined by X n = S n -S n-1 for n ≥ 1, are the sojourn times in these states. Define also the Semi-Markov Process (SMP) (Z t ) t∈R + by Z t = J N (t) , t≥ 0, where N (t) is the counting process of the SMP up to time t. The stochastic behavior of the SMP is determined completely by its initial law, P (J 0 = k) = a(k), and its semi-Markov kernel,

Q ij (x) = P (J n+1 = j, X n+1 ≤ x|J 0 , J 1 , ..., J n = i, X 1 , X 2 , ..., X n ), (1) 
for all x ∈ R + and i, j ∈ E. The probabilities p ij = lim t→∞ Q ij (t) = Q ij (∞) are the transition probabilities of the Embedded Markov Chain (EMC), (J n ) n≥0 . It is worth noticing that in the present study we consider Q ii (t) = 0, for all i ∈ E.

Let us now consider the distribution function associated with the sojourn time in state i before going to state j, F ij (x) = P (X n+1 ≤ x|J n = i, J n+1 = j), and the sojourn time distribution in state i, H i (x) = P (X n+1 ≤ x|J n = i). For a fixed time T (T ≥ 0), let N i (T ) be the number of visits of (J n ) n≥0 to state i ∈ E up to time T , and let N ij (T ) be the number of transitions from state i to state j up to time T , that is

N i (T ) := N (T ) n=1 1 {Jn=i} = ∞ n=1 1 {Jn=i,Sn≤T } (2) 
and

N ij (T ) := N (T ) n=1 1 {Jn-1=i,Jn=j} = ∞ n=1 1 {Jn-1=i,Jn=j,Sn≤T } , (3) 
where 1 stands for the indicator function. The observation of a sample path of a SMP in the time interval [0, T ] is described as

H T = {J 0 , J 1 , ..., J N (T ) , X 1 , X 2 , ..., X N (T ) }.
Here the aim is to estimate the considerable quantities of a finite state space SMP by observing a sample path in the time interval under consideration, in order to contribute to the seismic hazard assessment in Northern Aegean Sea. We aim to treat the SMP from a nonparametric perspective, by proposing and calculating empirical estimators of the most important indicators in the respective theory.

In the sequel, the empirical estimators of the aforementioned functions are presented. Let us define the following empirical estimator of the semi-Markov kernel (Moore and Pyke, 1968; Ouhbi and Limnios, 1999):

Q ij (x, T ) := 1 N i (T ) N (T ) n=1 1 {Jn-1=i,Jn=j,Xn≤x} . (4) 
The empirical estimator of the semi-Markov kernel is strongly consistent and asymptotically normal. From this definition we obtain

Q ij (x, T ) = p ij (T ) • F ij (x, T ) where p ij (T ) := N ij (T ) N i (T ) and F ij (x, T ) := 1 N ij (T ) N (T ) n=1 1 {Jn-1=i,Jn=j,Xn≤x} , (5) 
are the empirical estimators of the transition probabilities and the conditional transition functions, respectively. The conditional transition mechanism describes the probability function of the process moving into each possible new state, given the old state and the new one. At this point, we proceed to the definition of the convolution operation, a crucial operation for the aims of the paper. If we denote by φ(i, t), i ∈ E, t≥ 0, a real valued measurable function, the Stieltjes convolution of φ by the semi-Markov kernel Q, is defined as

Q * φ(i, t) = k∈E t 0 Q ik (ds)φ(k, t -s). (6) 
Moreover, the quantity P i (J n = j, S n ≤ t), denoted by the n-fold convolution of Q ij by itself in the Stieltjes convolution sense,

Q (n) ij (t)
, is defined by the recursive formula

Q (n) ij (t) =    k t 0 Q ik (ds)Q (n-1) kj (t -s) if n ≥ 2 Q ij (t) if n = 1 δ ij 1 {t≥0} if n = 0
, where δ ij is the Kronecker's delta symbol and 1 {t≥0} the indicator function

1 {t≥0} = 1 if t ≥ 0 0 elsewhere .
For reader's convenience a list of symbols is given (p. [START_REF] Papadimitriou | Evolution of the stress field in the northern Aegean Sea (Greece)[END_REF][START_REF] Papazachos | Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications[END_REF].

Modelling Earthquakes in Northern Aegean Sea

In the present paper, we model the earthquake occurrence mechanism by a continuous-time, finite state space semi-Markov process; that is, the process Z t evolves by jumping between the states, where it obeys a certain probabilistic distribution of time. The semi-Markov model is fitted nonparametrically to earthquakes observed in Northern Aegean Sea of Greece.

Data Selection

The region of the Northern Aegean Sea (Greece) and its surrounding area has attracted the interest of many researchers because it accommodates high seismic activity, being a key structure from the seismotectonic point of view. The study area has experienced several destructive earthquakes (M ≥ 6.5) as is indicated by both instrumental data and historical information. The Northern Aegean Sea region is selected for this investigation because it has an adequate number of strong (M ≥ 6.4) earthquakes, along with an adequate number of moderate (M ≥ 5.5) events since 1953. In this study, we consider a wide region of the Northern Aegean Sea, limited by the rectangle of coordinates 23. 6). The catalogue is characterized by accuracy, homogeneity and completeness.

Classification of States

The data set comprises events of magnitude M ≥ 5.5 that have occurred during the period [1953,2010]. As the model refers to main events only, aftershocks were carefully identified and removed from the data before application begins, by means of [START_REF] Reasenberg | Second-order moment of Central California seismicity[END_REF] declustering algorithm. Concerning states classification, according to previous studies, the states of the SMP can be considered to be either the magnitudes or energy release levels of earthquakes. The continuous magnitude scale is divided into appropriate intervals to specify discrete states of the system. Initially, we define three states corresponding to magnitudes: State 1: [5.5, 5.6], State 2: [5.7, 6.0] and State 3: [6.1, 7.2], namely the state space is E = {1, 2, 3}. The model uses only earthquake data, with no explicit use of geologic, tectonic or geodetic information.

In the sequel, the semi-Markov model in continuous time is applied to the above mentioned earthquake catalogue and the number of observed transitions in the dataset as well as the the empirical estimators of transition probabilities from each state i to each state j (i, j ∈ E), are presented as elements of the matrices T and P = ( p ij ), respectively The empirical estimators of semi-Markov kernels for transitions from state i to state j (i, j ∈ E), Q ij (x, T ), are exhibited in Figure 1. 

T =   6 
1: Empirical Estimators of Semi-Markov Kernels, Q ij (x, T )(i, j ∈ E).
The estimated distribution functions associated with the sojourn time in each state i ∈ E before going to each state j ∈ E, F ij (x, T ), are presented in Figure 2. 

Stationary Distribution of the SMP

If the EMC (J n ) n≥0 is irreducible with invariant distribution ν i and the mean sojourn time in state i, m i , is finite for all i ∈ E, the empirical estimator of the stationary distribution of the SMP is expressed in terms of the stationary distribution of the EMC.

The following estimator for the stationary distribution of the SMP is determined by the formula [START_REF] Limnios | Empirical estimator of stationary distribution for semi-Markov processes[END_REF] 

π i (T ) := ν i (T ) m i (T ) s k=1 ν k (T ) m k (T ) , (7) 
where ν i (T ) = Ni(T ) N (T ) , for i ∈ E, is the empirical estimator of the stationary distribution of the EMC and m i (T ) = ∞ 0 1 -H i (t, T ) dt is the estimated mean sojourn time in state i. Let us now denote by (S i n ) n≥0 the renewal function of successive times of visits to state i and by µ ii the mean recurrence time of (S i n ), namely

µ ii = E[S i 2 -S i 1 ], i ∈ E.
The empirical estimator of the mean recurrence time is

µ ii = 1 ν i (T ) p∈E ν p (T ) m p (T ). ( 8 
)
In Table 1 the empirical estimators of the quantities given in equations ( 7), [START_REF] Lagakos | Semi-Markov models for partially censored data[END_REF] as well as the estimated mean recurrence times are exhibited. 

ψ ij (t) = E i [N j (t)] = ∞ n=0 P i (J n = j, S n ≤ t) = ∞ n=0 Q (n) ij (t), (i, j) ∈ E 2
, t ≥ 0 provides the relevant knowledge. The estimator of the (i, j)th element of the Markov renewal matrix, ψ ij (x, T ), has the following form

ψ ij (x, T ) = ∞ n=0 Q (n) ij (x, T ).
The previous results allow us to construct confidence intervals for the matrix-valued function ψ. At this point, the expected number of earthquake occurrences from each state i ∈ E to the third state that includes the stronger earthquakes in which we are more interested, as well as the corresponding 95% confidence interval is estimated (Fig. 3). The estimated quantities and their confidence intervals do not differ significantly. The width of the confidence intervals indicates that for every i ∈ E the quantity ψ i3 (x, T ) can be predicted accurately throughout the entire data range (with regard to the x-axes).

Figure 3: The 95% confidence interval of the expected number of earthquake occurrences into state 3, given that the initial state is state i ∈ E, ψ i3 (x, T ).

Here, it is acknowledged that the estimation of the transition functions is an outstanding issue for the determination of the semi-Markov model. We proceed to the calculation of the transition functions P ij (t) = P (Z t = j|Z 0 = i) through the empirical estimator (in matrix form) (Limnios, 1997):

P (x, T ) = I -Q(x, T ) (-1) * I -diag( Q(x, T ) • 1) , (9) 
where I stands for the identity matrix and I -Q(x, T ) (-1) stands for the inverse of a matrix I -Q(x, T ) in the Stieltjes convolution sense [START_REF] Limnios | Semi-Markov Processes and Reliability[END_REF].

For t ∈ R + , A(t) = 1 C(t) D(t) 1 we have A(t) (-1) = 1-C * D(t) (-1) * 1 -C(t) -D(t) 1 ,
where C(t), D(t) are sub-distribution functions and 1 -C * D(t)

(-1) = ∞ n=0 C * D (n) (t) is
a standard renewal function. Furthermore, diag(•) denotes a diagonal matrix with its ith entry equal to s j=1 Q ij (t), and 1 denotes the column-vector of ones. The transition function P ij (t) denotes the probability that the SMP will visit state j at time t given that the initial state of the SMP is state i. Both estimators of the transition functions and the expected number of earthquake occurrences are strongly consistent and asymptotically normal [START_REF] Ouhbi | Non-parametric Estimation for Semi-Markov Processes Based on its Hazard Rate Functions[END_REF].

The distribution of the hitting time for an earthquake occurrence of the third state is expressed by the formula

W (t) = 1 -i a(i) • W i (t), with W i (t) = 2 j=1 ψ ij * δ ij H i (t), ( 10 
)
where i ∈ {1, 2} and δ ij is the Kronecker's delta symbol.

The following matrix plug of the hitting time's estimator is proposed:

W (x, T ) = 1 -a 1 I -Q 11 (x, T ) (-1) * H 1 (x, T ), (11) 
where

H 1 (x, T ) = H i (x, T ); i ∈ {1, 2}
′ and H 2 (x, T ) = H 3 (x, T ) .

Furthermore, index 1 represents the restriction of the corresponding vector or matrix to the set of states {1, 2} and index 2 represents the restriction to the third state. Figure 4 shows the estimated transition functions P ij (x, T ). The estimated hitting time of an earthquake occurrence with magnitude M ≥ 6.1 is presented in Figure 5. 

Estimating Earthquake Occurrence Rates

In the last several decades the application of stochastic models theory to earthquake forecast has been the focus of considerable research activity. Forecasting results can be feasible to be obtained through the calculation of earthquake occurrence rates.

Given that the last earthquake occurrence was in state i and at least a time interval of length t has already elapsed, the probability of an earthquake occurrence of state j in the next time interval of length ∆ is denoted by λ ij (t)∆. The term Instantaneous Earthquake Occurrence Rate at state j in the next step conditional on the starting state i is used for the description of the probability λ ij (t)∆, which is expressed by means of the semi-Markov kernels via the formula

λ ij (t) = lim ∆↓0 1 ∆ • Q ij (t + ∆) -Q ij (t) H i (t) (12) 
and

λ ij (t) • ∆ = Q ij (t + ∆) -Q ij (t) H i (t) + o(∆). (13) 
Table 2 shows the estimated instantaneous earthquake occurrence rate for each type of transitions. It provides forecasting results for an earthquake occurrence in the next time interval of length ∆, knowing that the last earthquake occurred before at least one semester and assuming different values for ∆ (∆ = 1/2, 1, 2, 3, 4 years).

Under the condition that the last event was in state i = 1 and one, two or three years have elapsed with no earthquake occurrences, the probability that an earthquake will occur into Tables 3, 4 and 5 lead to the next prospective conclusion: assuming that the last event was in state i ∈ E and at least a constant time interval of length t has elapsed (t = 12, 24, 36 months), the probability of an earthquake occurrence of a given state j ∈ E increases as time elapses, namely as ∆ increases (∆ = 6, 12, 24, 36, 48 months).

Focused on the strongest earthquakes of the catalogue which are classified to the third state of the semi-Markov model, we proceed to the estimation of the Total Earthquake Occurrence Rate. The total earthquake occurrence rate is defined as

λ a (t) = lim h→0 1 h P a Z t+h = 3|Z u ∈ {1, 2}; ∀u ≤ t . ( 14 
)
The probability that in the next infinitesimal time interval of length h an earthquake with magnitude M ≥ 6.1 will occur, given that in the time interval (0, t) only earthquakes of states 1 and 2 have occurred, has the form

λ a (t) • h + o(h) = P a Z t+h = 3|Z u ∈ {1, 2}; ∀u ≤ t . ( 15 
)
The empirical estimator of the total earthquake occurrence rate is given by the formula (Limnios and Oprişan, 2001)

λ a (t, T ) = a 1 • ψ 11 * H ′ 1 (t, T ) • 1 a 1 • ψ 11 * H ′ 1 (t, T ) • 1 (16)
and is presented in Figure 6. It can be observed by Fig. 6 that the estimated total earthquake occurrence rate takes values smaller than 0.05 for each t ∈ [0, 100]; this conclusion holds even if t > 100. In the sequel we calculate the probability that an earthquake with magnitude M ≥ 6.1 (3rd state), which is not necessarily the first, will occur in the next time interval. The term Rate of Occurrence of Earthquakes with M ≥ 6.1 is used for the description of the probability, which is denoted by ro(t). In order to calculate the function ro(t) a few assumptions are to be made. If we assume that the semi-Markov kernel Q(t) is absolutely continuous with respect to Lebesgue measure on R + , with derivative q(t) = (q ij (t)) {i,j}∈E and

ψ ′ (t) = ∞ n=0 [Q (n) ] ′ (t) < ∞
for any fixed t ∈ R + , then the function ro(t) takes the form [START_REF] Ouhbi | The rate of occurrence of failures for semi-Markov processes and estimation[END_REF] 

ro(t) = i∈{1,2} s l=1 a l t 0 ψ li (du) • q i3 (t -u), (17) 
with corresponding empirical estimator

ro(t, T ) = i∈{1,2} s l=1 a l • ψ li * q i3 (t -u). ( 18 
)
Under the aforementioned assumptions the estimator ( 18) is uniformly strongly consistent and asymptotically normal for the function ro(t) [START_REF] Ouhbi | The rate of occurrence of failures for semi-Markov processes and estimation[END_REF]. Figure 7 exhibits the empirical estimator of the function ro(t) and its 95% confidence interval. 

New Classification of States

The aforementioned classification of states was uniquely determined by earthquake magnitudes. In order to achieve more reliable predictions we should also incorporate reliable seismotectonic information. For this reason a new classification of states is proposed combining both magnitude and fault orientation states. As the incorporation of the triggering feature into the model is desirable, we used all the data of magnitude M ≥ 5.2 since 1964 (Table 7). From this time, information for focal mechanisms significantly contributes to the seismic risk mitigation.

When searching for a potential correlation between static stress changes and seismicity changes, one approach is to calculate these changes for the nodal planes of the subset of shocks with known focal mechanisms [START_REF] Stein | The role of stress transfer in earthquake occurrence[END_REF]. Since the stress field depends on the fault orientation, it is necessary to calculate the stress field for a representative set of fault orientation classes, which cover all the earthquakes in the catalogue. Therefore, the study area was divided in smaller subareas on the basis of faulting similarity following Rhoades and his colleagues (2010). They considered the distribution of strike angles, dip angles and rake angles in the available focal mechanisms, and then divided the strike angles into 5 groups, the dip angles into 3 groups, and the rake angles into five groups. All the known focal mechanisms were found to be contained in only 15 of the 75 resulting possible classes for combinations of strike angle, dip angle and rake angle groups. For each fault orientation class, the faulting type is represented by average values of the strike, rake and dip angles. In an effort to balance between faulting details and adequate data sample in each subarea, we merged these 15 spatial clusters into four subareas, which are shown as polygons in Figure 8.

The states of the model are derived from a combination of their magnitude states (State 1: [5.2, 5.5], State 2: [5.6, 7.2]) with the corresponding subareas (Fig. 8). Through the incorporation of the seismotectonic criteria into the classification of states, the hitting time for an earthquake occurrence with M ≥ 5.6 into each one of the subareas is presented in Figure 9. We are concerned for the events with M ≥ 5.6 as these events cause disastrous damages and even human losses, and therefore assessment of their future occurrence significantly contributes to the seismic risk mitigation. Comparing the distributions of the hitting times for an earthquake occurrence with M ≥ 5.6 between the four subareas (Fig. 9), we conclude that all the subareas present a similar behavior with regard to the particular estimated quantity. 

Conclusions

It has been widely recognized that statistical methodologies can serve as a mathematical tool for the achievement of earthquake forecasting objectives. The seismic hazard modelling approach developed on the basis of statistical methodologies is expected to provide a useful contribution to real time earthquake hazard assessment responding on the social demand for adopting earthquake countermeasures.

It is of great importance to apply the semi-Markov models in order to achieve forecasting results in one of the most seismically active and deforming regions in the world, the area of Northern Aegean Sea. All the relevant quantities including the semi-Markov kernels, the transition functions and the conditional transition functions were estimated. The stationary distribution along with the mean recurrence times to each one of the states were calculated. Moreover, for the proposed semi-Markov model the earthquake occurrence rates including the instantaneous earthquake occurrence rate, the total earthquake occurrence rate and the rate of occurrence of earthquakes with M ≥ 6.1 were calculated. In addition, the transition probabilities and the distributions of the hitting times to the strongest earthquakes were calculated. Finally, in order to include the spatial component into our model, a new data set was used and the distribution of the hitting time of an earthquake in each one of the defined subareas was estimated.

Further research subjects could include the study of the sensitivity of the models in the determination of the regional division and in the slight perturbation of earthquake magnitudes. For providing more accurate forecasting results one more way is the inclusion of uniquely defined tectonic features. Thus, current work concerns the determination and application of a semi-Markov model based on both coseismic stress changes associated with the occurrence of large earthquakes and slow tectonic stress accumulation, following the procedure of Deng and Sykes (1997). 
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 8 Figure 8: Map of the Northern Aegean study region, showing locations of 67 earthquakes with M ≥ 5.2 since 1964 and focal mechanisms where available as well as the defined subareas.
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 9 Figure 9: Estimated Distributions of Hitting Times of Earthquakes with M ≥ 5.6.

  

Table 1 :

 1 Estimated Stationary Distribution of the SMP and Estimated Mean Recurrence Times. Hitting Times for Earthquake Occurrences, Expected Number of Earthquake Occurrences and Transition Functions Using the preceding notation from the theory of SMPs, we estimate indicators of great importance in terms of the empirical estimators of semi-Markov kernels. It is worth estimating the expected number of earthquake occurrences from one state to another up to any time. The Markov renewal matrix Ψ(t) = (ψ ij (t)), where

	State i	ν i (T )	m i (T )	π i (T )	µ ii (T )
	1	0.4848 18.7208 0.4620 40.5292
	2	0.2727 24.1481 0.3351 72.0519
	3	0.2425 16.4500 0.2029 81.0583

Table 2 :

 2 Estimated Instantaneous Earthquake Occurrence Rates. t = 1 semester ∆ λ 11 (t)∆ λ 12 ∆ λ 13 ∆ λ 21 ∆ λ 22 ∆ λ 23 ∆ λ 31 ∆ λ 32 ∆ λ 33 ∆

	1 semester 0.182	0.091 0.909 0.250 0	0	0	0.2	0.2
	1 year	0.273	0.273 0.182 0.250 0	0	0.2	0.2	0.2
	2 years	0.273	0.364 0.182 0.250 0	0	0.4	0.2	0.4
	3 years	0.273	0.456 0.182 0.375 0.125 0.125 0.4	0.2	0.4
	4 years	0.273	0.456 0.271 0.375 0.125 0.125 0.4	0.2	0.4
	the ensuing semester or years is exhibited in				

Table 3 .

 3 Conditioning on the events {J n = 2}, {J n = 3} the estimated instantaneous earthquake occurrence rates are reported in Tables4, 5, respectively.

Table 3 :

 3 Estimated Instantaneous Earthquake Occurrence Rates -Starting State 1. t = 12 months t = 24 months t = 36 months ∆ λ 11 (t)∆ λ 12 ∆ λ 13 ∆ λ 11 ∆ λ 12 ∆ λ 13 ∆ λ 11 ∆ λ 12 ∆ λ 13 ∆

	6 months	0.143	0.286 0.143 0	0.333 0	0	0	1
	12 months 0.143	0.286 0.143 0	0.667 0	0	0	1
	24 months 0.143	0.572 0.143 0	0.667 0.333 0	0	1
	36 months 0.143	0.572 0.285 0	0.667 0.333 0	0	1
	48 months 0.143	0.572 0.285 0	0.667 0.333 0	0	1

Table 4 :

 4 Estimated Instantaneous Earthquake Occurrence Rates -Starting State 2. 22 ∆ λ 23 ∆ λ 21 ∆ λ 22 ∆ λ 23 ∆ λ 21 ∆ λ 22 ∆ λ 23 ∆

	t = 12 months	t = 24 months		t = 36 months
	∆ λ 21 (t)∆ λ 6 months 0 0	0	0	0	0	0	0.250 0
	12 months 0	0	0	0.167 0	0.167 0	0.250 0
	24 months 0.167	0	0.167 0.167 0.167 0.167 0	0.250 0
	36 months 0.167	0.167 0.167 0.167 0.167 0.167 0	0.250 0
	48 months 0.167	0.167 0.167 0.167 0.167 0.167 0.250 0.500 0

Table 5 :

 5 Estimated Instantaneous Earthquake Occurrence Rates -Starting State 3. 32 ∆ λ 33 ∆ λ 31 ∆ λ 32 ∆ λ 33 ∆ λ 31 ∆ λ 32 ∆ λ 33 ∆

	t = 12 months	t = 24 months		t = 36 months
	∆ λ 31 (t)∆ λ 6 months 0.667 0	0	0	0	0	0	0	0
	12 months 0.667	0	0.333 0	0	0	0	0	0
	24 months 0.667	0	0.333 0	0	0	0	0	0
	36 months 0.667	0	0.333 0	0	0	0	0	0
	48 months 0.667	0	0.333 0	0	0	0	0	0

Table 7 :

 7 Earthquake Catalogue II

	Date	T ime Long.	Lat.	M Subarea	Date	T ime Long.	Lat.	M Subarea
	23-02-1964 22:41 39.200 23.700 5.4	3	06-05-1984 09:12 38.770 25.638 5.4	4
	11-04-1964 16:00 40.300 24.800 5.5	1	29-07-1974 01:58 40.370 25.970 5.2	1
	29-04-1964 04:21 39.200 23.700 5.6	3	05-10-1984 20:58 39.100 25.300 5.6	2
	29-04-1964 17:00 39.100 23.500 5.2	3	25-03-1986 01:41 38.340 25.190 5.5	3
	09-03-1965 17:57 39.160 23.890 6.1	3	29-03-1986 18:36 38.370 25.170 5.8	3
	09-03-1965 17:59 39.300 23.800 5.7	3	03-04-1986 23:32 38.350 25.100 5.2	3
	09-03-1965 18:37 39.300 23.900 5.2	3	03-06-1986 06:16 38.310 25.100 5.3	3
	09-03-1965 19:46 39.100 23.900 5.2	3	17-06-1986 17:54 38.320 25.110 5.4	3
	13-03-1965 04:08 39.100 24.000 5.3	3	06-08-1987 06:21 39.190 26.270 5.2	4
	13-03-1965 04:09 39.000 23.700 5.5	3	08-08-1987 22:15 40.090 24.890 5.3	1
	23-08-1965 14:08 40.500 26.200 5.6	1	27-08-1987 16:46 38.910 23.780 5.2	3
	20-12-1965 00:08 40.200 24.800 5.6	1	30-05-1988 16:47 40.250 25.850 5.2	1
	04-03-1967 17:58 39.200 24.600 6.6	2	19-03-1989 05:36 39.230 23.570 5.4	3
	19-02-1968 22:45 39.500 25.000 7.1	2	05-10-1989 06:52 40.150 25.090 5.4	1
	20-02-1968 02:21 39.600 25.400 5.2	2	23-07-1992 20:12 39.810 24.400 5.4	1
	10-03-1968 07:10 39.100 24.200 5.5	3	24-05-1994 02:05 38.820 26.492 5.5	4
	24-04-1968 08:18 39.300 24.900 5.5	2	16-07-1997 13:06 39.040 25.222 5.2	2
	06-04-1969 03:49 38.500 26.400 5.9	4	14-11-1997 21:38 38.720 25.913 5.8	4
	17-03-1975 05:11 40.360 26.020 5.3	1	11-04-1998 09:29 39.900 23.884 5.2	1
	17-03-1975 05:17 40.390 26.060 5.4	1	22-08-2000 03:35 39.590 23.850 5.2	3
	17-03-1975 05:35 40.380 26.100 5.8	1	10-06-2001 13:11 38.600 25.574 5.6	4
	27-03-1975 05:15 40.400 26.100 6.6	1	26-07-2001 00:21 39.060 24.248 6.4	3
	29-04-1975 02:06 40.420 26.030 5.7	1	26-07-2001 00:34 39.050 24.267 5.3	3
	14-06-1979 11:44 38.740 26.500 5.9	4	26-07-2001 02:06 38.960 24.342 5.2	3
	12-11-1980 16:04 39.100 24.300 5.3	3	26-07-2001 02:09 38.900 24.373 5.3	3
	19-12-1982 14:10 39.000 25.260 7.2	2	30-07-2001 15:24 39.140 24.130 5.4	3
	21-12-1981 14:13 39.170 25.431 5.2	2	29-10-2001 20:21 39.090 24.283 5.4	3
	27-12-1981 17:39 38.810 24.941 6.5	2	06-07-2003 19:10 40.370 26.254 5.5	1
	29-12-1981 08:00 38.700 24.836 5.4	2	06-07-2003 20:10 40.420 26.128 5.2	1
	18-01-1982 19:27 39.780 24.500 7.0	1	15-06-2004 12:02 40.370 25.813 5.2	1
	18-01-1982 19:31 39.440 24.610 5.6	1	22-11-2004 19:13 38.450 25.679 5.2	4
	10-04-1982 04:50 39.940 24.610 5.2	2	24-08-2005 03:06 39.680 25.560 5.2	2
	06-08-1983 15:43 40.000 24.700 6.8	1	21-12-2006 18:30 39.320 23.600 5.3	3
	10-10-1983 10:17 40.230 25.316 5.4	1			
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