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TREES OF SELF-AVOIDING WALKS

VINCENT BEFFARA AND CONG BANG HUYNH

Abstract. We consider the biased random walk on a tree constructed
from the set of finite self-avoiding walks on a lattice, and use it to construct
probability measures on infinite self-avoiding walks. The limit measure (if it
exists) obtained when the bias converges to its critical value is conjectured
to coincide with the weak limit of the uniform SAW. Along the way, we
obtain a criterion for the continuity of the escape probability of a biased
random walk on a tree as a function of the bias, and show that the collection
of escape probability functions for spherically symmetric trees of bounded
degree is stable under uniform convergence.

A realization of the limit walk in the upper-half plane, with bias λ = 1.

Key words and phrases. Self-avoiding walk, effective conductance, random walk on tree.
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1. Introduction

An n-step self-avoiding walk (SAW) (or a self-avoiding walk of length n) in a
regular lattice L (such as the integer lattice Z2, triangular lattice T, hexagonal
lattice, etc) is a nearest neighbor path γ = (γ0, γ1, . . . , γn) that visits no vertex
more than once. Self-avoiding walks were first introduced as a lattice model for
polymer chains (see [5]); while they are very easy to define, they are extremely
difficult to analyze rigorously and there are still many basic open questions
about them (see [16], Chapter 1).

Let cn be the number of SAWs of length n starting at the origin. The
connective constant of L, which we will denote by µ, is defined by

cn = µn+o(n) when n→∞.
The existence of the connective constant is easy to establish from the sub-
multiplicativity relation cn+m ≤ cncm, from which one can also deduce that
cn ≥ µn for all n; the existence of µ was first observed by Hammersley and
Morton [7]. Nienhuis [18] gave a prediction that for all regular planar lattices,
cn = µnnα+o(1) where α = 11

32
, and this prediction is known to hold under

the assumption of the existence of a conformally invariant scaling limit, see
e.g. [13].

We are interested in defining a natural probability measure on the set SAW∞
of infinite self-avoiding walks (i.e., nearest-neighbors paths (γk)k≥0 visiting
no vertex more than once, see the sections 5.2 and 6). Such a measure was
constructed before in the half-plane case as the weak limit of the uniform
measures on finite self-avoiding walks, relying on results by Kesten (see [16,
10]), and it is part of our goal to investigate whether that measure and our
construction are related.

1.1. The model. In this paper, we consider a one-parameter family of proba-
bility measures on SAW∞, denoted by (Pλ)λ>λc , defined informally as follows
(see Notation 44 for a formal definition). Let TZ2 be the tree whose vertices
are the finite self-avoiding walks in the plane starting at the origin, where two
such vertices are adjacent when one walk is a one-step extension of the other.
We will call this tree the self-avoiding tree on Z2. Denoting by H the upper-
half plane in Z2 and by Q the first quadrant, one can define the self-avoiding
trees TH and TQ accordingly, and all the constructions below can be extended
to these cases in a natural fashion which we will not make explicit in this
introduction.

Then, consider the continuous-time biased random walk of parameter λ > 0
on TZ2 , which from a given location jumps towards the root with rate 1 and
towards each of its children vertices with rate λ. If λ is such that the walk is
transient, its path determines an infinite branch in TZ2 which can be seen as a
random infinite self-avoiding walk ω∞λ ; we will denote by PZ2

λ the law of ω∞λ ,
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omitting the mention of Z2 in the notation when it is clear from the context,
and call it the limit walk with parameter λ.

The idea of seeing the self-avoiding walk as a dynamical object is very natu-
ral, and not new; it seems that the biased walk on the “self-avoiding tree” was
first considered, mostly for λ < λc, by Berretti and Sokal ([2], see also [20, 19])
as a Monte-Carlo method to estimate connective constants and sample finite-
size self-avoiding paths uniformly. The model was discussed informally by one
of the authors of the present paper (VB) with S. Sidoravicius and W. Werner
a number of years ago, as a failed attempt to understand conformal invariance
of the SAW model in the scaling limit, and in particular a proof of Theorem 1
was obtained at that time but never written down; one of our informal goals
here is to revive this line of thought: even though the question of SAW proper
still seems out of reach, the link with critical percolation (cf. Section 6.2) could
be a promising direction for further research.

1.2. Main results. It is well-known that there exists a critical value λc =
λc(TZ2) such that if λ > λc the biased random walk is transient and if λ < λc
it is recurrent (see Lyons [14]). In the general case of biased random walk on
a tree, the recurrence or transience of the random walk at the critical point
depends in subtle ways on the structure of the tree. The value of λc on the other
hand is easier to determine: indeed, Lyons [14] proved that it coincides with the
reciprocal of the branching number of the tree (for background on branching
numbers and trees in general, see e.g. [15]). The following proposition gives
the critical value for self-avoiding trees.

Theorem 1. Let TZ2 , TH, TQ be the self-avoiding trees defined as above, respec-
tively in the plan, half-plane and first quadrant. Then,

λc(TZ2) = λc(TH) = λc(TQ) =
1

µ
,

where µ is the connective constant of lattice Z2 as defined above.

This is a direct consequence of Proposition 47 below. Notice that it is clear
from the definition that µ is the growth rate of TZ2 ; there are rather large
classes of trees, including TZ2 , for which the branching and growth coincide (for
instance, this holds for sub- or super-periodic trees, cf. below, or for typical
supercritical Galton-Watson trees), but none of the classical results seem to
apply to TH or TQ.

The geometry of the limit walk is our main object of interest. As a first
property of it, we obtain the following (see section 6.3):

Theorem 2. For all λ > λc, under the measures PZ2

λ and PH
λ , the limit walk

almost surely visits the line Z× {0} infinitely many times.
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A useful tool in our proofs is the effective conductance of the biased random
walk on a tree T , defined as the probability of never returning to the root o
of T and denoted by C(λ, T ) — see [15]. Along the way, we will be interested
in several properties of it as a function of λ. Most important for us will be
the question of continuity: in a general tree, the effective conductance is not
necessarily a continuous function of λ. We will derive criteria for continuity,
which are forms of uniform transience of the random walk, and apply them
to prove that the effective conductance of self-avoiding trees is a continuous
function (see Section 5.4):

Theorem 3. The effective conductances C(λ, TQ), C(λ, TH) and C(λ, TZ2) are
continuous functions of λ on the interval (λc,+∞).

A related question is that of the convergence of effective conductance along a
sequence of trees. More precisely, let (Cn)n denote the effective conductances for
a sequence (Tn) of infinite trees, again seen as functions of the bias parameter
λ, and assume that (Cn)n converges uniformly towards a function C that is not
identically 0. The question is: is C the effective conductance of a certain tree?
We study this question on the class of spherically symmetric trees (a tree T
is said to be spherically symmetric if for every vertex ν, deg ν depends only
on |ν|, where |ν| denote its distance from the root and deg ν is its number of
neighbors). If S denotes the set of spherically symmetric trees and m ∈ N∗ is
fixed, define

Am := {T ∈ S;∀ν ∈ T , deg ν ≤ m} and

Fm :=
{
f ∈ C0([0, 1]) : ∃T ∈ Am,∀λ > 0, C(λ, T ) = f(λ)

}
.

Then (see Section 4.2):

Theorem 4. Let (fn)n be a sequence of functions in Fm. Assume that fn
converges uniformly towards f 6= 0. Then f ∈ Fm.

1.3. Open questions. One natural probability measure on the set of infinite
self-avoiding walks is the limit of PH

λ as λ → λc, assuming that this limit
exists. We were not able to show convergence, but obtained partial results in
this direction by restricting the set of allowed paths. Our conjecture is that
the limit exists and has to do with Kesten’s measure, i.e. the weak limit of
uniform finite self-avoiding walks in the half-plane, in a way similar to the fact
that the two definitions of the incipient infinite cluster for percolation (seen
as a limit as p→ pc or as a limit of conditioned critical percolation) coincide,
see [12].

This is motivated by a few observations. First, the model for λ < λc gives
rise to a recurrent random walk on TH for which the invariant measure µλ is
rather explicit (by reversibility, the mass of a vertex ν is proportional to λ|ν|),
in particular it depends only on the distance to the root, and on the other
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hand it tends to be concentrated on longer and longer walks as λ ↑ λc. This
means that the initial segment of a walk distributed as the stationary measure
can be seen as the initial segment of a uniform self-avoiding walk with random
total length, and we get convergence to Kesten’s measure as soon as we can
show that for all ν, µλ({ν}) → 0 as λ ↑ λc. On the other hand, the behavior
of the biased walk in a fixed neighborhood of the origin changes very little
when λ is close to λc, so for λ slightly larger than λc it seems reasonable to
predict that the walk will spend a long time close to the origin, following an
occupation measure close to µλ−c , before escaping to infinity. Unfortunately we
were unable to formalize this intuition.

Another observation is that convergence of the law of the limit walk holds
within the class of paths for which the bridge decomposition involves only
bridges of height less than some fixed bound m > 0. More precisely: for
fixed m, the critical parameter is λc,m ≥ λc, and the limit λ ↓ λc,m followed
by m → ∞ leads to Kesten’s measure, while the limit m → ∞ for fixed λ
coincides with the limit walk on TH with parameter λ — see Theorem 66 for
more detail. Exchanging the limits would lead to the claim. Unfortunately, it
is not true that this can be done in the general setting of biased walks on trees,
due to phenomena similar to those described in section 3, so it seems that a
deeper understanding of the structure of TH would be necessary to conclude.

1.4. Organization of the paper. The paper is structured as follows. In
Section 2, we review some basic definitions on graphs, trees, branching num-
ber and growth rate of a tree, as well as a few classical results about random
walks on trees. Section 3 gathers some relevant examples and counter-examples
exhibiting some similarities to the self-avoiding trees while being treatable ex-
plicitly. The criterion for the continuity of the effective conductance is given
in Section 4. Then Section 5 provides some background on self-avoiding walks
and the self-avoiding trees, and some properties of the limit walks are obtained
in Section 6. Finally, we state a few conjectures and conditional results in
Section 7.

2. Notation and basic definitions

2.1. Graphs and trees. In this section, we review some basic definitions; we
refer the reader to the book [15] for a more developed treatment. A graph is
a pair G = (V,E) where V is a set of vertices and E is a symmetric subset
of V × V (i.e if (ν, µ) ∈ E then (µ, ν) ∈ E), called the edge set, containing
no element of the form (ν, ν). If (ν, µ) ∈ E, then we call ν and µ adjacent
or neighbors and we write ν ∼ µ. For any vertex ν ∈ V , denote by deg ν
its number of neighbors. A path in a graph is a sequence of vertices, any two
consecutive of which are adjacent. A self-avoiding path is a path which does not
pass through any vertex more than once. For any (ν, µ) ∈ V × V , the distance
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between ν and µ is the minimum number of edges among all paths joining ν
and µ, denoted d(ν, µ). A graph is connected if, for each pair (ν, µ) ∈ V × V ,
there exist a path starting at ν and ending at µ. A connected graph with no
cycles is called a tree. A morphism from a graph G1 to a graph G2 is a mapping
φ from V (G1) to V (G2) such that the image of any edge of G1 is an edge of G2

We will always consider trees to be rooted by the choice of a vertex o, called
the root.

Let T = (V,E) be an infinite, locally finite, rooted tree with set of vertices V
and set of edges E. Let o be the root of T . For any vertex ν ∈ V \ {o}, denote
by ν−1 its parent (we also say that ν is a child of ν−1), i.e. the neighbour of ν
with shortest distance from o. For any ν ∈ V , let |ν| be the number of edges
in the unique self-avoiding path connecting ν to o and call |ν| the generation
of ν. In particular, we have |o| = 0.
If a vertex has no child, it is called a leaf. For any edge e ∈ E denote by
e− and e+ its endpoints with |e+| = |e−| + 1, and define the generation of an
edge as |e| = |e+|. We define an order on V (T ) as follows: if ν, µ ∈ V (T ), we
say that ν ≤ µ if the simple path joining o to µ passes through ν. For each
ν ∈ V (T ), we define the sub-tree of T rooted at ν, denoted by T ν , where
V (T ν) := {µ ∈ V (T ) : ν ≤ µ} and E(T ν) = E(T )|V (T ν)×V (T ν).

An infinite simple path starting at o is called a ray. The set of all rays,
denoted by ∂T , is called the boundary of T . The set T ∪ ∂T can be equipped
with a metric that makes it a compact space, see [15].

The remaining part of this paper, we consider only infinite, locally finite and
rooted trees with the root o.

2.2. Branching and growth.

Definition 5. Let T be an infinite, locally finite and rooted tree. A E-cutset
(resp. V-cutset) in T is a set π of edges (resp. vertices) such that, for any
infinite self-avoiding path (νi)i≥0 started at the root, there exists a i ≥ 0 such
that [νi−1, νi] ∈ π (resp. νi ∈ π). In other words, a E-cutset (resp. V-cutset)
is a set of edges (resp. vertices) separating the root from infinity. We use Π to
denote the set of E-cutsets.

Definition 6. Let T be an infinite, locally finite and rooted tree.
• The branching number of T is defined by:

br(T ) = sup

{
λ ≥ 1 : inf

π∈Π

∑
e∈π

λ−|e| > 0

}
• We define also

gr(T ) = lim sup |Tn|1/n and gr(T ) = lim inf |Tn|1/n .
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In the case gr(T ) = gr(T ), the growth rate of T is defined by their
common value and denoted by gr(T ).

Remark 7. It follows immediately from the definition of branching number
that if T ′ is a sub-tree of T , then br(T ′) ≤ br(T ).

Proposition 8 ([15]). Let T be a tree, then br(T ) ≤ gr(T ).

In general, the inequality in Proposition 8 may be strict: The 1–3 tree
(see [15], page 4) is an example for which the branching number is 1 and
the growth rate is 2. There are classes of trees however where branching and
growth match.

Definition 9. The tree T is said to be spherically symmetric if deg ν depends
only on |ν|.
Theorem 10 ([15] page 83). For every spherically symmetric tree T , br(T ) =
gr(T ).

Definition 11. Let N ≥ 0: an infinite, locally finite and rooted tree T with
the root o, is said to be

• N -sub-periodic if for every ν ∈ V (T ), there exists an injective mor-
phism f : T ν → T f(ν) with |f(ν)| ≤ N .
• N -super-periodic if for every ν ∈ V (T ), there exists an injective mor-
phism f : T → T f(o) with f(o) ∈ T ν and |f(o)| − |ν| ≤ N .

Theorem 12 (see [6, 15]). Let T be an infinite, locally finite and rooted tree
that is either N-sub-periodic, or N-super-periodic with gr(T ) < ∞. Then the
growth rate of T exists and gr(T ) = br(T ).

2.3. Random walks on trees. Let T be a tree, we now define the discrete-
time biased random walk on T . Working in discrete time will make some of the
arguments below a little simpler, at the cost of a slightly heavier definition here
— notice though that the definition of the measure Pλ and the main results of
the paper are not at all affected by this choice.

Let λ > 0: the biased walk RWλ with bias λ on T is the discrete-time
Markov chain on the vertex set of T with transition probabilities given, at a
vertex x 6= o with k children, by

pλ(x, y) :=


1

1+kλ
if y is the father of x,

λ
1+kλ

if y is a child of x,
0 otherwise.

If the root has k > 0 children, then pλ(o, x) is 1/k if x is a child of o and 0
otherwise. The degenerate case T = {o} where the root has no child will not
occur in our context, so we will silently ignore it. We also allow ourselves to
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consider the cases λ ∈ {0,∞}, with the natural convention that RW0 remains
stuck at the root and that RW∞ always moves away from the root, getting
stuck whenever it reaches a leaf.

Definition 13. Let G = (V,E) be a graph, and c : E → R∗+ be labels on the
edges, referred to as conductances. Equivalently, one can fix resistances by
letting r(e) := 1/c(e). The pair (G, c) is called a network. Given a subset K
of V , the restriction of c to the edges joining vertices in K defines the induced
sub-network G|K. The random walk on the network (G, c) is the discrete-time
Markov chain on V with transition probabilities proportional to the conduc-
tances.

Given a network (T , c) on a tree, let π(o) be the sum of the conductances
of the edges incident to the root, and denote by T (o) the first return time to
the origin by the walk. Following [15] (page 25), we can define the effective
conductance of the network by

(2.1) Cc(T ) := π(o)C̃c(T ),

where C̃c(T ) := P[T (o) = +∞]. The reciprocal Rc(T ) of the effective conduc-
tance is called the effective resistance.

The particular case where, on a tree T , for an edge e = (x, y) between a
vertex x and any of its children y, c(e) is chosen to be λ|x| will play a special
role, because in that case the random walk on the network is exactly the
same process as the random walk RWλ defined earlier. Is this setup, we will
denote the effective conductance (resp. effective resistance) by C(λ, T ) (resp.
R(λ, T )) to emphasize its dependency on the parameter λ. Let ν be a child
of o, we write C̃(λ, T , ν) for the probability of the event that the random walk
RWλ on T , started at the root (i.e X0 = o), never returns to it and reached ν
at the first step (i.e X1 = ν).

Theorem 14 (Rayleigh’s monotonicity principle [15]). Let T be an infinite tree
with two assignments, c and c′, of conductances on T with c ≤ c′ (everywhere).
Then the effective conductances are ordered in the same way: Cc(T ) ≤ Cc̃(T ).

Corollary 15. Let T , T ′ be two infinite trees; we say that T ⊂ T ′ if there
exists an injective morphism f : T → T ′. If this holds, then for every λ > 0,
C(λ, T ′) ≤ C(λ, T ).

In the case of spherically symmetric trees, the equivalent resistance is ex-
plicit:

Proposition 16 (see [15]). Let T be spherically symmetric and (c(e)) be con-
ductances that are themselves constant on the levels of T . Then Rc(T ) =∑

n≥1
1

cn|Tn| , where cn is the conductance of the edges going from level n− 1 to
level n.
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The following corollaries are the consequences of Proposition 16:

Corollary 17. Let T be a spherically symmetric tree. The effective conduc-
tance C(λ, T ) is a continuous function on (λc,+∞).

Corollary 18. Let T be a spherically symmetric tree. Then RWλ is transient
if and only if

∑
n

1
λn|Tn| <∞.

Theorem 19 (Nash-Williams criterion, see [17]). If (πn, n ≥ 0) is a sequence
of pairwise disjoint finite E-cutsets in a locally finite network G, then

Rc(T ) ≥
∑
n

(∑
e∈πn

c(e)

)−1

.

In particular, if
∑
n

(∑
e∈Πn

c(e)
)−1

= +∞, then the random walk associated to

this family of conductances (c(e), e ∈ E(T )) is recurrent.

We end this subsection by stating a classical theorem relating the recurrence
or transience of RWλ to the branching of the underlying tree:

Theorem 20 (see [14]). Let T be an infinite, locally finite and rooted tree. If
λ < 1

br(T )
then RWλ is recurrent, whereas if λ > 1

br(T )
, then RWλ is transient.

The critical value of biased random walk on T is therefore λc(T ) := 1
br(T )

.

2.4. The law of the first k steps of the limit walk. Let T be a tree and
(c(e)) be conductances on the edges of T such that the associated random walk
(Xn) is transient. For every k ≥ 0, the walk visits Tk finitely many times: we
can define an infinite path ω∞ on T by letting ω∞(k) be the last vertex of Tk
visited by the walk. Equivalently:

(2.2) ω∞(k) = ν ⇐⇒ ν ∈ Tk and ∃n0,∀n > n0 : Xn ∈ T ν .
Let k ∈ N∗ and ν0 = o, ν1, ν2, . . . , νk be k elements of V (T ) such that (ν0, ν1, ν2, . . . , νk)
is a simple path: we can then define

(2.3) ϕc(ν0, ν1, ν2, . . . , νk) := P(ω∞(0) = ν0, ω
∞(1) = ν1, . . . , ω

∞(k) = νk).

We will refer to this function as the law of first k steps of limit walk. In the
case of the biased walk RWλ, we will denote the function by ϕλ,k; this will not
lead to ambiguities. We finish this section with the following lemma.

Lemma 21. The value of ϕc(ν0, . . . , νk) depends continuously on any finite
collection of the conductances in the network. More precisely, given a fi-
nite set U = {e1, . . . , e`} of edges and a collection (c(e)) of conductances, let
c̃(u1, . . . , u`) be the family of conductances that coincides with c outside U and
takes value ui at ei: then the map

ψU,c : (u1, . . . , u`) 7→ ϕc̃(u1,...,u`)(ν0, . . . , νk)
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is continuous on (R∗+)`.

Proof. The proof is simple, therefore it is omitted. �

3. A few examples

The self-avoiding tree in the plane, which we alluded to in the introduction
and will formally introduce in the next section, is sub-periodic but quite in-
homogeneous, and the self-avoiding tree in the half-plane sits in none of the
classes of trees defined above. To get an intuition of the kind of behavior we
should expect or rule out, we gather here a few examples of trees with some
atypical features.

3.1. Trees with discontinuous conductance. Let 0 < λ0 ≤ 1. In the first
part of this section, we construct two trees T , T with λc(T ) = λc(T ) = λ0,
such that the effective conductances C(λ, T ) and C(λ, T ) of the biased random
walk RWλ on T and T satisfy C(λc(T ), T ) = 0 but C(λc(T ), T ) > 0. In the
second part, we construct a tree T such that C(λ, T ) is not continuous on
(λc, 1).

Proposition 22. For every x > 1, there exist two trees T and T such that:
• br(T ) = br(T ) = x;
• RW1/x is recurrent on T and transient on T .

Proof. We will construct spherically symmetric trees satisfying both conditions.
Denoting by byc be the integer part of y. We construct the sequence (`i)i∈N∗
inductively as follows:

`1 = bxc , `2 =

⌊
x2

`1

⌋
, `3 =

⌊
x3

`1`2

⌋
, . . . , `n =

⌊
xn∏n−1
i=1 `i

⌋
, . . .

and let T be the tree where vertices at distance i from o have `i children, so
that the sizes of the levels of T are given by |Tn| =

∏n
i=1 `i. We construct the

tree T from the degree sequence (`′i)i∈N by posing `′i = 2li if i can be written
under the form i = k2, and `′i = `i otherwise. Notice that |T n| = 2[

√
n]|Tn|.

We first show that both trees have branching number x. Since they are
spherically symmetric, it is enough to check that their growth rate is x; the
case x = 1 is trivial, so assume x > 1. From the definition,

xn −
n−1∏
i=1

`i ≤
n∏
i=1

`i ≤ xn hence xn − xn−1 ≤ |Tn| ≤ xn

so gr(T ) = x; the case of T follows directly.
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The recurrence or transience of the critical random walks can be determined
using lemma 18: ∑ 1

λnc |Tn|
≥
∑ 1

λncx
n

= +∞

so the critical walk on T (x) is recurrent, while for x > 1,∑ 1

λnc |T n|
≤
∑ 1

λnc (xn − xn−1)2b
√
nc =

x

x− 1

∑ 1

2b
√
nc <∞

so the critical walk on T (x) is transient. In the case x = 1 one gets
∑

2−b
√
nc <

∞ instead, and the conclusion is the same. �

Proposition 23. For every k ∈ N∗ and λc ∈ (0, 1), there exists a tree T with
critical drift λc(T ) = λc such that the ratio C(λ)/(λ − λc)k remains bounded
away from 0 as λ→ λ+

c .

Proof. We construct a spherically symmetric tree T which satisfies the condi-
tions of this proposition in a similar way as before. Letting x = 1/λc > 1,
define inductively:

`1 = bxc , `2 =

⌊
x2

2k`1

⌋
, . . . , `n =

⌊
xn

nk
∏n−1

i=1 `i

⌋
, . . . .

Let T be the spherically symmetric tree with degree sequence (`i). It is easy
to check that br(T ) = x like in the previous proposition; in a similar way,

xn − nk
n−1∏
i=1

`i ≤ nk
n∏
i=1

`i ≤ xn hence
xn

nk
− xn−1

(n− 1)k
≤ |Tn| ≤

xn

nk
.

Recall that x = 1/λc and by using Proposition 16, the effective resistance at
parameter λ > λc is given by

R(λ, T ) =
∑ 1

λn|Tn|
≥
∑ nk

(λx)n
∼ Ck

(λ− λc)k+1

with a lower bound of the same order but with a different constant, leading to
the conclusion. �

We end this subsection with the following proposition, showing that discon-
tinuities can occur elsewhere than at λc:

Proposition 24. There exists a tree T such that the function C(λ, T ) is not
continuous on (λc, 1), i.e it will discontinuous at a certain λ′ ∈ (λc, 1).

Proof. Let 0 < λ1 < λ2 < 1. By proposition 22, there exist two trees H and G
such that λc(H) = λ1, λc(G) = λ2 and

(3.1) C(λ1,H) = 0, C(λ2,G) > 0.
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We construct a tree T rooted at o as follows:

T1 = {ν1, ν2} , T ν1 = H and T ν2 = G.
Hence,

λc(T ) = λ1.

Denote deg ν1 (resp. deg ν2) the degree of ν1 (resp. ν2) in the tree T . By an
easy computation, for any λ ∈ (λ1, 1), we obtain:

(3.2) C(λ, T ) =
1

2
× λC(λ,H) deg ν1

1 + λC(λ,H) deg ν1

+
1

2
× λC(λ,G) deg ν2

1 + λC(λ,G) deg ν2

.

By corollary 17, the function C(λ,H) is continuous on (λ1, 1) and since
C(λ,G) = 0 for any λ ∈ (λ1, λ2), therefore:

(3.3) lim
λ→λ−2

C(λ, T ) =
1

2
× λ2C(λ2,H) deg ν1

1 + λ2C(λ2,H) deg ν1

.

By Equations 3.1, 3.2 and 3.3, we obtain:

lim
λ→λ−2

C(λ, T ) < C(λ2, T ).

The latter inequality implies that the function C(λ, T ) is discontinuous at λ2.
�

Note that continuity properties at λ ≥ 1 are actually easier to obtain, and
we will investigate them further below.

3.2. The convergence of the law of the first k steps.
If limλ→λc,λ>λc C(λ, T ) > 0, by Lemma 62 the limit of ϕλ,k(y1, . . . , yk) when

λ decreases to λc exists. If one has limλ↓λc C(λ, T ) = 0, the situation is more
delicate and we cannot yet conclude on the limit of the function ϕλ,k(ν0, . . . , νk)
when λ decreases to λc. Indeed, convergence does not always hold, as we will
see in a counterexample. The idea of what follows is easy to describe: we are
going to construct a very inhomogeneous tree with various subtrees of higher
and higher branching numbers, at locations alternating between two halves of
the whole tree; a biased random walk will wander until it finds the first such
sub-tree inside which it is transient, and escape to infinity within this subtree
with high probability.

Proposition 25. There exists a tree T such that the function ϕλ,1(y0, y1) does
not converge as λ→ λc.

Notation 26. Let T , T ′ be two trees and A ⊂ V (T ). We can construct a new
tree by grafting a copy of T ′ at all the vertices of A; we will denote this new

tree by T
A⊕T ′. Note that for all x ∈ A, (T

A⊕T ′)x ' T ′. In the case A = {x},

we will use the simpler notation T
x⊕T ′ for T {x}⊕T ′.
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Proof. Fix ε > 0 small enough. By Proposition 22, for all 0 < a ≤ 1, there
exists a tree, denoted by T (a), such that its branching number is 1

a
and

C(a, T (a)) = 0. Let H = Z, seen as a tree rooted at 0, so that the inte-
gers is the vertices of H (see the Figure 1). We are going to construct a tree
inductively.

Let (ai)i≥1 be a decreasing sequence such that a1 < 1. Denote ac := lim ai
and assume that ac > 0. Choose a sequence (bi)i≥1 such that bi ∈ (ai+1, ai) for

all i. First, set H0 := (H
−2⊕T (a1))

2⊕
T (a2). We consider the biased random

walk RWb1 , then it is recurrent on T (a1) and transient on T (a2). On H0, the
biased random walk RWb1 is transient, and in addition we know that it stays
eventually within the copy of T (a2). There exists then N1 > 2 such that the
probability that the limit walk remains in that copy after time N1−1 is greater
than 1− ε.

Then we set H1 = (H0
−N1⊕ T (a3)). On H1, the walk of bias b1 is still transient

and still has probability at least 1 − ε to escape through the copy of T (a2),
because T (a3) is grafted too far to be relevant. On the other hand, consider
the biased random walk RWb2 : it is still transient on H1 but only through the
new copy of T (a3). There exists then N2 > 2 such that the probability that
the limit walk remains in that copy after time N2 − 1 is greater than 1− ε.

We can set H2 := (H1
N2⊕T (a4)) and continue this procedure to graft all the

trees T (ai), further and further from the origin and alternatively on the left
and on the right; we denote by H∞ the union of all the Hk.

0−2 2

T (a1)
T (a2)

Figure 1. Tree H0

It remains to show that the function ϕλ,1(0, 1) for the biased random walk
on the tree H∞ does not converge. We have br(H∞) = maxi br(T (ai)) = 1

ac

and ϕbi,1(0, 1) ≥ 1− ε if i is odd while ϕbi,1(0,−1) ≥ 1− ε if i is even. Then,

∀k ≥ 0,

{
ϕbi,1(0, 1) ≥ 1− ε if i = 2k + 1

ϕbi,1(0, 1) ≤ ε if i = 2k + 2

This implies that the function ϕλ,1(0, 1) does not converge when λ go to ac. �
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The tree we just constructed is tailored to be extremely inhomogeneous. At
the other end of the spectrum, some trees have enough structure for all the
functions we are considering to be essentially explicit:

Definition 27. A tree T is called periodic (or finite type) if, for all v ∈
V (T ) \ {o}, there is a bijective morphism f : T v → T f(v) with f(v) in a fixed,
finite neighborhood of the root of T .
Definition 28. Let T be a finite tree and L(T ) be the set of leafs of T . We

set T 1 = T
L(T )⊕ T , T 2 = T 1

L(T 1)⊕ T , . . . , T n = T n−1
L(T n−1)⊕ T for every n ≥ 2.

We continue this procedure an infinite number of times to obtain an infinite
tree T ∞,T . Note that T ∞,T is also a periodic tree.

Fact 29 (see Lyons [14], theorem 5.1). Let T be a periodic tree and (ν0 =
o, ν1, ν2, . . . , νk) be a simple path on T . Then ϕλ,k(ν0, ν1, . . . , νk) converges
when λ decreases to λc(T ).

In the rest of this section we provide a new proof of a particular case (the
case of T ∞,T ) of fact 29:
Proposition 30. Let T be a finite tree and (ν0 = o, ν1, ν2, . . . , νk) be a simple
path on T ∞,T . Then the function ϕλ,k(ν0, ν1, . . . , νk) of T ∞,T converges when
λ decreases to λc(T ∞,T ).

Before showing the proposition 30, we need to show the following lemma:

Lemma 31. Let T be a tree rooted at o such that deg o = d0 and{
T1 = {ν1, ν2, . . . , νd0}

∀i ∈ {1, 2, . . . , d0} , λc(T ) = λc(T νi) = λc and C(λc, T ) = C(λc, T νi) = 0

Then for all i, we have C̃(λ, T , νi) =
(dνi−1)λC̃(λ,T νi )

d0(1+(dνi−1)λC̃(λ,T νi ))
, where dνi = deg νi.

Proof. Recall that C̃(λ, T , νi) = P(A), where A is the event that the random
walk RWλ on T , started at the root (i.e X0 = o), never returns to it and
reached νi at the first step (i.e X1 = νi). We can write

A =
⋃
k≥0

Ak

where

Ak := {#{j > 0 : Xj = o} = 0} ∩ {X1 = ν} ∩ {#{j > 1 : Xj = νi} = k} .

Let m =
(dνi−1)λ

1+(dνi−1)λ
and c = C̃(λ, T νi). Note that the sequence (Ak, k ≥ 0) are

pairwise disjoint and P(Ak) = mc(m(1−c))k
d0

, therefore we obtain:
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C̃(λ, T , νi) =
mc

d0

∞∑
k=0

(m(1− c))k =
(dνi − 1)λC̃(λ, T νi)

d0(1 + (dνi − 1)λC̃(λ, T νi))
. �

Proof of proposition 30. First, since T ∞,T is a periodic tree, therefore the
biased random walk RWλc on T ∞,T is recurrent (see [14]). Recall that L(T ) is
the set of all leafs of finite tree T and Si be the set of all finite paths starting at
origin, ending at one element of L(T ) and pass through νi. For all ν ∈ L(T ),
we have (T ∞,T )ν = T ∞,T and we apply several times successive Lemma 31 to
obtain:

C̃(λ, T ∞,T , νi) =
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ)C̃(λ, (T ∞,T )γ|γ|),

where fγj (λ) =
mγjλ

mγj−1 (1+mγjλC(λ,T
γj ))

and mγj = dγj − 1 if j > 1 and mγ0 = d0.
Moreover, we have

C̃(λ, (T ∞,T )γ|γ|) = C̃(λ, T ∞,T )

then
C̃(λ, T ∞,T , νi) =

∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ)C̃(λ, T ∞,T ).

By Lemma 62, we obtain

ϕλ,1(o, νi) =
C̃(λ, T ∞,T , νi)
C̃(λ, T ∞,T )

=
∑
γ∈Si

fγ1 (λ)fγ2 (λ) · · · fγ|γ|(λ).

Note that for all γ ∈ Si we have mγ0 = m(γ|γ|), this implies that ϕλ,1(o, νi)
converges when λ decreases towards λc(T ∞,T ) and

�(3.4) lim
λ→λc(T∞,T )

ϕλ,1(νi) =
∑
γ∈Si

λ|γ|c .

Remark 32. The equation (3.4) gives us a way to calculate the critical value
of RWλ on T ∞,T , as the solution of the following equation:

mo∑
i=1

∑
γ∈Si

x|γ| = 1.

4. The continuity of effective conductance

We end the first half of the paper with a few results on the conductance
functions of trees, namely we prove a criterion for the continuity of C(λ, T ) in
λ (see Theorems 35 and 36 below) and study the set of conductance functions
of spherically symmetric trees of bounded degree (see Theorem 4).
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4.1. Left- and right-continuity of C(T , λ).

Lemma 33. Let T be an infinite, locally finite and rooted tree. Then C(λ, T )
is right continuous on (0,+∞).

Proof. Let (Xn, n ≥ 0) be the biased random walk with parameter λ on T . We
define S0 := inf {k > 0 : Xk = o} and for any n > 0,

Sn := inf {k > 0 : d(o,Xk) = n} .
Recall that the random walk on a network (T , c), where c(e) = λ|e| is ex-

actly the same process as the biased random walk with parameter λ. We use
Equation 2.1 to obtain

C(λ, T ) = π(o) lim
n→+∞

P(Sn < S0).

We set C(λ, T , n) := π(o)P(Sn < S0). It is easy to see that C(λ, T , n) ≥
C(λ, T , n + 1). On the other hand, by Lemma 21, we obtain C(λ, T , n) is a
continuous function. Hence, C(λ, T , n) is a continuous increasing function for
each n. It implies that C(λ, T ) is the decreasing limit of increasing functions.
Therefore C(λ, T ) is right continuous. �

Definition 34. Let T be tree. For each ν ∈ T , we let Xν
n denote the biased

random walk on T ν (i.e Xν
0 = ν and ∀n > 0 : Xν

n ∈ T ν). We say that T is
uniformly transient if

∀λ > λc,∃αλ > 0,∀ν ∈ T ,P(∀n > 0, Xν
n 6= ν) ≥ αλ.

It is called weakly uniformly transient if there exists a sequence of finite
pairwise disjoint V-cutsets (πn, n ≥ 1), such that

∀λ > λc,∃αλ > 0,∀ν ∈
+∞⋃
k=1

πk,P(∀n > 0, Xν
n 6= ν) ≥ αλ.

It is easy to see that if λc(T ) = 1, then T is uniformly transient.

Theorem 35. Let T be a uniformly transient tree. Then C(λ, T ) is left con-
tinuous on (λc,+∞).

Proof. Fix λ1 > λc, we will prove that C(λ, T ) is left continuous at λ1. Choose
λ0 ∈ (λc, λ1). By Theorem 14, we can find a constant α > 0 (does not depend
on λ ∈ [λ0, λ1]) such that

∀λ ∈ [λ0, λ1],∀ν ∈ V (T ),P(∀n > 0, Xν
n 6= ν) ≥ α.

Given a family of conductances c = c(e)e∈E(T ) ∈ (0,+∞)E, let Yn be the
associated random walk. Let A ⊂ (0,+∞)E be the subset of elements of
(0,+∞)E such that Yn is transient for those choices of conductances. Then we
define the function ψ : A→ R∗+ as

ψ(c) := Cc(T ).



TREES OF SELF-AVOIDING WALKS 17

Recall that Tk is the collection of all the vertices at distance k from the root:
then we have

C(λ, T ) = ψ(λ, λ, . . . λ︸ ︷︷ ︸
|T1|

, λ2, λ2, . . . λ2︸ ︷︷ ︸
|T2|

, . . . .).

We will abuse notation until the end of the argument, writing

ψ(λ1, λ
2
2, λ

3
3, . . .) for ψ(λ1, λ1, . . . λ1︸ ︷︷ ︸

|T1|

, λ2
2, λ

2
2, . . . λ

2
2︸ ︷︷ ︸

|T2|

, . . .)

so that in particular C(λ, T ) = ψ(λ, λ2, λ3, . . .).
Let ε > 0, we choose L ∈ N such that (1 − α)L < ε. For λ ∈ (λ0, λ1)

we have |C(λ1, T )− C(λ, T )| = |ψ(λ1, λ
2
1, λ

3
1, . . .)− ψ(λ, λ2, λ3, . . .)| and by the

triangular inequality, we get

|C(λ1, T )− C(λ, T )| ≤
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣
+
∣∣ψ(λ, . . . , λL, b1)− ψ(λ, . . . , λL, b)

∣∣(4.1)

where b := (λL+k)k≥1 and b1 := (λL+k
1 )k≥1.

Let λ′ ∈ [λ0, λ1] we denote Sλ′n the first hitting point of Tn by the random
walk with conductances

(λ, . . . , λ︸ ︷︷ ︸
|T1|

, λ2, . . . , λ2︸ ︷︷ ︸
|T2|

, . . . , λL, . . . , λL︸ ︷︷ ︸
|TL|

, (λ′)L+1, . . . , (λ′)L+1︸ ︷︷ ︸
|TL+1|

, . . .

We can see that the law of Sλ1L and the law of SλL are identical. Since T is
uniformly transient, then when the random walk reaches TL, it returns to o
with a probability strictly smaller than (1− α)L. It implies that

(4.2)
∣∣ψ(λ, . . . , λL, b1)− ψ(λ, . . . , λL, b)

∣∣) ≤ 2(1− α)L ≤ 2ε.

It remains to estimate
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣. By Theorem 14,
we have

ψ(λ1, . . . , λ
L
1 , b1) ≥ C(λ0, T ) > 0 and ψ(λ, . . . , λL, b) ≥ C(λ0, T ) > 0.

We apply the Lemma 21 to obtain

(4.3) ∃δ > 0,∀λ ∈ [λ1 − δ, λ1] ,
∣∣ψ(λ1, . . . , λ

L
1 , b1)− ψ(λ, . . . , λL, b1)

∣∣ < ε.

We combine (4.1), (4.2) and (4.3) to get

∃δ > 0,∀λ ∈ [λ0, λ1] such that λ1 − λ < δ : |C(λ1, T )− C(λ, T )| ≤ 3ε.

This implies that C(λ, T ) is left continuous at λ1. �

In the same method as in the proof of Theorem 35, we can prove the slightly
stronger result (the proof of which we omit):

Theorem 36. Let T be a weakly uniformly transient tree: then the effective
conductance C(λ, T ) is left continuous on (λc, 1].
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4.2. Proof of Theorem 4.

Definition 37. Let (T n, n ≥ 1) be a sequence of infinite, locally finite and
rooted trees. We say that T n converges locally towards T ∞ if ∀k, ∃n0,∀n ≥
n0, T n≤k = T ∞≤k, where T≤k is a finite tree defined by:{

V (T≤k) := {ν ∈ V (T ), d(o, ν) ≤ k}
E(T≤k) = E|V (T≤k)×V (T≤k)

Recall from the introduction that Fm denotes the collection of all effective
conductance functions for spherically symmetric trees with degree uniformly
bounded by m.

Lemma 38. Let (fn, n ≥ 1) be a sequence of functions in Fm. Assume that
fn converges uniformly towards f . Then, there exists a function g ∈ Fm such
that, for any λ > 0,

f(λ) ≤ g(λ).

Proof. Let (T n, n ≥ 1) be a sequence of elements of Am such that, for any
n > 0,

fn(λ) = C(λ, T n).

Since the degree of vertices of T n are bounded by m, we can apply the diagonal
extraction argument. After renumbering indices, there exists a subsequence of
(T n, n ≥ 1), denoted also by (T n, n ≥ 1), converges locally towards some tree,
denote by T ∞. Moreover, we can assume that for any n > 0,

(4.4) T n≤n = T ∞≤n
Since for any n > 0, we have T n ∈ Am, then

(4.5) T ∞ ∈ Am
We set g(λ) = C(λ, T ∞), it remains to show that for any λ > 0,

f(λ) ≤ g(λ).

Assume that there exists λ0 such that f(λ0) > g(λ0) and we set c = f(λ0)−
g(λ0) > 0. Since the sequence (fn(λ0), n ≥ 1) converges towards f(λ0), hence

(4.6) ∃`1 > 0,∀n ≥ `1, fn(λ0) > f(λ0)− c

4
.

Recall the definition of the function C(λ0, T , n) in the proof of Lemma 33, the
sequence (C(λ0, T

∞, n), n ≥ 1) decreases towards g(λ0), it implies that

(4.7) ∃`2 > 0,∀n ≥ `2, C(λ0, T ∞, n) < g(λ0) +
c

4
.

Let ` := `1 ∨ `2, we use 4.6 and 4.7 to obtain:

(4.8) f`(λ0) > f(λ0)− c

4
and C(λ0, T ∞, `) < g(λ0) +

c

4
.
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On the other hand C(λ0, T `, `) = C(λ0, T ∞, `) and by 4.9 we obtain:

(4.9) f`(λ0) > f(λ0)− c

4
and C(λ0, T `, `) < g(λ0) +

c

4
.

The sequence
(
C(λ0, T `, k), k ≥ 1

)
decreases towards f`(λ0) when k goes to

+∞. Hence,

(4.10) f`(λ0) ≤ C(λ0, T `, `) < g(λ0) +
c

4
.

We combine 4.9 and 4.10 to get:

f(λ0)− c

4
< f`(λ0) < g(λ0) +

c

4
.

Hence,
c = f(λ0)− g(λ0) <

c

4
,

this is a contradiction. �

Proof of theorem 4. Let (T n, n ≥ 1) be a sequence of elements of Am such that,
for any n > 0,

fn(λ) = C(λ, T n).

Fix a sub-sequence of (T n, n ≥ 1) which converges locally towards T ∞ and
such that 4.4 holds as in the proof of the Lemma 38. We set g(λ) = C(λ, T ∞)
and we need to prove that f = g.

By Lemma 38, we have f(λ) ≤ g(λ). Assume that there exists λ0 such that
0 < f(λ0) < g(λ0). We prove that for any λ < λ0, we have f(λ) = 0.

We set β0 = 1
λ0

and we use Proposition 16 to obtain

(4.11)

∀n > 0, R(λ0, T n) =
∑+∞

k=1
βk0

|T nk |
R(λ0, T ∞) =

∑∞
k=1

βk0

|T∞k |
We write

R(λ0, T n) =
+∞∑
k=1

βk0
|T nk |

=
∑
k≤n

βk0
|T nk |

+
∑
k>n

βk0
|T nk |

.

On the other hand, for any k ≤ n we have |T nk | = |T ∞k |, hence

(4.12) R(λ0, T n) =
∑
k≤n

βk0
|T ∞k |

+
∑
k>n

βk0
|T nk |

.

Since fn converges to f , then

(4.13)

{
lim
n→∞
R(λ0, T n) = 1

f(λ0)
<∞

lim
n→∞
R(λ0, T ∞) = 1

g(λ0)
< 1

f(λ0)



20 V. BEFFARA AND C.-B. HUYNH

By using 4.12 and 4.13, we obtain

(4.14) lim
n→+∞

∑
k>n

βk0
|T nk |

=
1

f(λ0)
− 1

g(λ0)
> 0.

Now we take β > β0 and we apply the Proposition 16 in order to get

(4.15) R
(

1

β
, T n

)
=

+∞∑
k=0

βk

|T nk |
>
∑
k>n

βk

|T nk |
≥
(
β

β0

)n∑
k>n

βk0
|T nk |

.

We combine 4.14 and 4.15 to obtain:

(4.16) lim
n→∞
R
(

1

β
, T n

)
=∞

It implies that f (1/β) = lim
n→∞

fn

(
1
β

)
= lim

n→∞
1

R( 1
β
,T n)

= 0. Therefore, we

proved that:
∀λ < λ0, f(λ) = 0.

As f 6= 0, we define λc := inf {0 ≤ λ ≤ 1 : f(λ) > 0}. We proved that

(4.17) ∀λ > λc, f(λ) = g(λ).

As the sequence (fn)n converges uniformly to f , then f is continuous, and then
f(λc) = 0. By Lemma 33, g is right continuous. Then we obtain:

(4.18) f(λc) = lim
λ→λ+c

f(λ) = lim
λ→λ+c

g(λ) = g(λc) = 0.

On the other hand, by Lemma 14 we obtain g is an increasing function, then:

(4.19) ∀λ < λc, g(λ) = 0 = f(λ)

We combine 4.17, 4.18 and 4.19 to obtain f = g. �

5. Self-avoiding walks

The main goal of this section is to prove Proposition 1 (Section 5.3) and
Theorem 3 (Section 5.4).

5.1. Walks and bridges. In this section, we review some definitions on the
self-avoiding walk, bridges and connective constant (see [16]). Denote by cn the
number of self-avoiding walks of length n, starting at origin on the considered
graph. If G is transitive, the sequence c1/n

n converges to a constant when n goes
to infinity. This constant is called the connective constant of G.
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Definition 39. An n-step bridge in the plane Z2 (or half-plane H) is an n-step
self-avoiding walk (SAW ) γ such that

∀i = 1, 2, . . . , n, γ1(0) < γ1(i) ≤ γ1(n)

where γ1(i) is the first coordinate of γ(i). Let bn denote the number of all n-step
bridges with γ(0) = 0. By convention, set b0 = 1.

We have bm+n ≥ bm · bn, hence we can define

µb = lim
n→+∞

bn
1
n = sup

n
b

1
n
n .

Moreover, bn ≤ µnb ≤ µn.

Definition 40. Given a bridge γ of length n, γ is called an irreducible bridge
if it can not be decomposed into two bridges of length strictly smaller than n.
It means, we can not find i ∈ [1, n− 1] such that γ|[0,i], γ|[i,n] are two bridges.
The set of all irreducible-bridges is denoted by iSAW .

5.2. Kesten’s measure. For this section, we refer the reader to ([10],[4]) for
a more precise description. Denote by SAW∞ the set of all self-avoiding walks
on the plane Z2 or half-plane H. In this section, we review the Kesten measure.
He defined a probability measure on the SAW∞ of half-plane from the finite
bridges. We use B (resp. I) to denote the set of bridges (resp. irreducible
bridges) starting at origin. Let pn denote the number of irreducible bridges
starting at origin, of length n.

We define a notion of concatenation of paths. If γ1 = [γ1(0), γ1(1), . . . , γ1(m)]
and γ2 = [γ2(0), γ2(1), . . . , γ2(n)] are two SAWs, we define γ1 ⊕ γ2 to be the
(m+ n)-step walk (not necessarily self-avoiding walk)

γ1⊕γ2 :=
[
0, γ1(1), . . . , γ1(m), γ1(m) + γ2(1)− γ2(0), . . . , γ1(m) + γ2(n)− γ2(0)

]
.

Similarly, we can define γ1⊕γ2⊕· · ·⊕γk. We begin with the following equality

Fact 41 (Kesten [10], Theorem 5). We have
+∞∑
n=1

pn
µn

= 1.

Remark 42. We have also
∑

ω∈I β
|ω| < ∞ if β < 1

µ
and if β > 1

µ
then∑

ω∈I β
|ω| =∞.

Let us now define the Kesten measure on the SAW∞ in the half-plane. We
fix β ≤ 1

µ
and let Qβ denote the probability measure on I defined by

Qβ(ω) =
β|ω|

Zβ
, ω ∈ I
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where Zβ =
∑

ω∈I β
|ω|. By Fact 41 and Remark 42, Zβ is finite and thus Qβ is

a probability measure on I.
Let k ≥ 1, we consider the product space Ik and define the product prob-

ability measure Qβ
k . We write Qβ

k for an extension to SAW in H as follows,
Qβ(ω) = 0 if ω is not of form ω1 ⊕ ω2 ⊕ · · · ⊕ ωk and

Qβ
k(H \ Ik) = 0;Qβ

k(ω1 ⊕ ω2 ⊕ · · · ⊕ ωk) = Qβ(ω1)×Qβ(ω2)× · · · ×Qβ(ωk).

We define Qβ
∞ on I∞, it is called the β-Kesten measure on SAW∞ in the

half-plane.

Fact 43. Under the β-Kesten measure, the infinite self-avoiding walk, denoted
by ω∞,βK , almost surely does not reach the line Z× {0}.
Proof. It follows immediately from the definition of β-Kesten measure. �

5.3. Proof of Proposition 1.

Notation 44. Consider the self-avoiding walks in the lattice Z2 starting at the
origin. We construct a tree TZ2, which is called self-avoiding tree, from these
self-avoiding walks: The vertices of TZ2 are the finite self-avoiding walks and
two such vertices joined when one path is an extension by one step of the other.
Formally, denote by Ωn the set of self-avoiding walks of length n starting at the
origin and V :=

⋃+∞
n=0 Ωn. Two elements x, y ∈ V are adjacent if one path is an

extension by one step of the other. We then define TZ2 = (V,E). In the same
way, we can define other self-avoiding trees TH, TQ, where H is a half-plane and
Q is a quarter-plane.

Remark 45. Note that each vertex (resp. a ray) of TZ2 (or TH, TQ) is a finite
self-avoiding walk (rest. an infinite self-avoiding walk). Moreover, it is easy to
see that the number of vertices at generation n of TZ2 (or TH, TQ) is the number
of self-avoiding walks of length n in Z2 (resp. H, Q).

Notation 46. In [10], Kesten proved that all bridges in a half-plane can be
decomposed into a sequence of irreducible bridges in a unique way. For every
m ∈ N∗, we set:

Am := {ω ∈ iSAB, |ω| ≤ m} .
An infinite self-avoiding walk starting at origin, is called "m-good" if it pos-
sesses a decomposition into irreducible bridges in Am. Denote by Gm the
set of infinite self-avoiding walk which are "m-good". Let T m be the sub-
tree of TZ2, which we will refer to as the m-good tree, defined by E(T m) :=
E(TZ2)|V (T m)×V (T m) where,

V (T m) := {ω ∈ V (TZ2) : there exists γ ∈ Gm such that γ|[0,|ω|]= ω}.
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Proposition 47. Let TH, TQ be defined as above. Then,

gr(TZ2) = br(TZ2) = gr(TH) = br(TH) = gr(TQ) = br(TQ) = µ,

where µ is the connective constant of the lattice Z2.

Proof. As explained in the introduction, there are rather large classes of trees,
including TZ2 , for which the branching and growth coincide (for instance, this
holds for sub- or super-periodic trees, cf. below, or for typical supercritical
Galton-Watson trees), but none of the classical results seem to apply to TH or
TQ.

Note that TZ2 is a sub-periodic tree, by Theorem 12 and the definition of
connective constant, we have

(5.1) gr(TZ2) = br(TZ2) = µ.

We know that (see [1], [8]) there exists a constant B and n0 ∈ N such that
for any n > n0, we have:

(5.2) cn ≤ bn e
B
√
n

We use 5.2 to obtain:

(5.3) µ ≤ lim
n→∞

(bn)
1
n ≤ gr(TH) ≤ gr(TZ2) = µ.

Hence,

(5.4) gr(TH) = µ.

By Proposition 8, we have:

(5.5) br(TH) ≤ µ.

Let b(m)
n be the number of bridges of length n which possess a decomposition

into irreducible bridges in Am. Recall that (T m)n is the number of vertices of
T m at generation n. Then for any n > 0, we have

(5.6) |(T m)n| ≥ b(m)
n .

Note that T m is also a sub-tree of TH, then by Remark 7 we have :

(5.7) br(T m) ≤ br(TH).

On the other hand, T m is m-super-periodic, so we can apply Theorem 12 to
get gr(T m) exists and,

(5.8) br(T m) = gr(T m).

We use 5.7 and 5.8 to obtain, for any m > 0,

(5.9) br(TH) ≥ gr(T m).
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It remains to prove that lim
n→∞

gr(T m) = µ. By using 5.3 and noting that the
concatenation of two bridges is an another bridge, we see that for any m,n:

(5.10) bm+n ≥ bm bn and b
(m)
n1+n2

≥ b(m)
n1

b(m)
n2

and lim
n→∞

(bn)
1
n = µ.

By 5.10 and super-additivity lemma, we can define:

(5.11) µm := lim
n→∞

(
b(m)
n

) 1
n and b(m)

n ≤ (µm)n for all n > 0.

Fix ε > 0, by 5.10 there exists m0 such that for all m ≥ m0,

(5.12)
∣∣∣µ− (bm)

1
m

∣∣∣ ≤ ε.

As we know (see paragraph 46) all bridges in a half-plane can be decomposed
into a sequence of irreducible bridges in a unique way. Therefore each bridge
in a half-plane of length m possesses a decomposition into irreducible bridges
in Am. Hence, for any m > m0,

(5.13) bm = b(m)
m .

We use 5.10, 5.11, 5.12 and 5.13 to obtain, for any m > m0,

(5.14) µm ≥ (b
(m)
km )

1
km ≥

(
(b(m)
m )k

) 1
km = (b(m)

m )
1
m = (bm)

1
m ≥ µ− ε.

By 5.11, the sequence (b
(m)
` )

1
` increases toward µm when ` goes to infinity,

then (b
(m)
km )

1
km →

k→∞
µm. By using 5.6 and 5.14, for any m > m0, we have

µ ≥ gr(T m) ≥ µm ≥ µ− ε and then,

(5.15) lim
n→∞

gr(T m) = µ.

We combine 5.5, 5.9 and 5.15 to obtain br(TH) = µ. By following a strategy
similar to the proof of the case TH, we obtain gr(TQ) = br(TQ) = µ. �

Proposition 1 is a consequence of Theorem 20 and Proposition 47.

5.4. Proof of Theorem 3. Now, we apply the results in Section 4.1 for the
self-avoiding trees TQ, TH and TZ2 .

Notation. For any n ∈ N, let Λn := [[−n, n]]2 be a subdomain of Z2. Denote
by ∂Λn the boundary of Λn, i.e,

∂Λn := {(a, b) ∈ Λn : |a| = n or |b| = n} .

We write
◦
Λn := Λn \ ∂Λn for the interior of Λn.

Let γ be a finite self-avoiding walk. We say that γ is a self-avoiding walk of
domain Λn if for any 0 ≤ k ≤ |γ|, we have γ(k) ∈ Λn. Denote by Ω(Λn) the
set of self-avoiding walks starting at origin of domain Λn.
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Lemma 48. The functions C(λ, TQ), C(λ, TH) and C(λ, TZ2) are right continu-
ous on (λc,+∞).

Proof. It follows immediately from Lemma 33. �

Lemma 49. The functions C(λ, TQ), C(λ, TH) and C(λ, TZ2) are left continuous
on (λc,+∞).

O O

∂Hn ∂Hn

γ
γ

γ|γ|

γ|γ|

Figure 2. The boundary of Hn is green and the self-avoiding
walk γ is red. Recall that γ is a vertex of the tree TH. On the
left (resp. right), we can add a new quadrant Q (resp. new half-
plane H) rooted at γ|γ|. Hence, on the left (resp. on the right)
the sub-tree (TH)γ contains the tree TQ (resp. TH).

Proof. We prove this Lemma for the case TH and we use the same argument for
other cases (TQ and TZ2). Note that TH is not uniformly transient, therefore we
can not use Theorem 35. Fortunately, we can prove that TH is weakly uniformly
transient. For this purpose, we define a sequence of cutsets (πn, n ≥ 1) as
follows. Set Hn := Λn

⋂
H and ∂Hn := (∂Λn)

⋂
H (see Figure 2). Recall that

Ω (Hn) is the set of self-avoiding walks of domain Hn. For any n ≥ 1,

πn :=

{
γ ∈ Ω (Hn) : for any 0 ≤ k < |γ| , γ(k) ∈

◦
Hn and γ|γ| ∈ ∂(Hn)

}
Since Hn is a finite domain of H, therefore any infinite self-avoiding walk start-
ing at origin of H, must touch the boundary of Hn. Hence, for any n ≥ 1, we
have πn is a V-cutset of TH. We set Γ :=

⋃
n≥1

πn, it remains to verify that:

(5.16) ∀λ > λc(=
1

µ
),∃αλ > 0,∀ν ∈ Γ,P(∀n > 0, Xν

n 6= ν) ≥ αλ.

Note that for any γ ∈ Γ, the sub-tree (TH)γ contains the tree TH or TQ (see
Figure 2). Hence, 5.16 is a consequence of Proposition 1 and Theorem 14. We
use Theorem 36 to complete the proof of Lemma. �

Theorem 4 is a consequence of Lemmas 48 and 49.
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6. The biased walk on the self-avoiding tree

We now begin the study of our main object of interest, which is the biased
random walk on the self-avoiding tree. We will use the results that were ob-
tained in the previous section to prove the properties of the limit walk. In the
next section, we will gather a few natural conjectures.

6.1. The limit walk. Let λ ∈ [0,+∞] and consider the biased random walk
RWλ on T where T = TH or T = TZ2 . For λ > λc, the biased random walk is
transient so almost surely, the random walk does not visit Tk anymore after a
sufficiently large time. We can then define the limit walk, as denoted by ω∞λ
in the following way:

ω∞λ (i) = xi ⇐⇒
{

xi ∈ Ti
∃n0,∀n > n0 : Xn ∈ T xi

}
.

ω∞λ is a random ray. Let PH
λ denote the law of ω∞λ in the half-plane H and

PZ2

λ , the law of ω∞λ in the plane Z2. We can see PH
λ (respectively PZ2

λ ) as a
probability measure on SAW∞ in the half-plane (respectively the plane).

For what follows, it will be useful to have the following definition: removing
all the finite branches of TR (where R is a regular lattice), leads to a new tree
without leaf, which we will denote by T̃R.

6.2. The case λ = +∞ and percolation. First, we review some definitions of
percolation theory. Percolation was introduced by Broadbent and Hammersley
in 1957 (see [3]). For p ∈ [0, 1], we consider the triangular lattice T, a site of
T is open with probability p or closed with probability 1− p, independently of
the others. This can also be seen as a random colouring (in black or white) of
the faces of hexagonal lattice T∗ dual of T.

We define the exploration curve as follows (see [21], section 6.1.2 for more
detail). Let Ω be a simply connected subgraph of the triangular lattice and A,
B be two points on its boundary. We can then divide the hexagonal cells of
∂Ω into two arcs, going from A to B in two directions (clockwise and counter-
clockwise). These arcs will be denoted by B and W such that A,B, B,W is in
the clockwise direction. Assume that all of the hexagons in B are colored in
black and that all of the hexagons in W are colored in white. The color of the
hexagonal faces in Ω is chosen at random (black with probability p and white
with probability 1− p), independently of the others. We define the exploration
curve γ starting at A and ending at B which separates the black component
containing B from the white component containing W.

Then the exploration curve γ is a self-avoiding walk using the vertices and
edges of hexagonal lattice T∗. We can define this interface γ in an equivalent,
dynamical way, informally described as follows. At each step, γ looks at its



TREES OF SELF-AVOIDING WALKS 27

three neighbors on the hexagonal lattice, one of which is occupied by the pre-
vious step of γ. For the next step, γ randomly chooses one of these neighbors
that has not yet occupied by γ. If there is just one neighbor that has not yet
been occupied, then we choose this neighbor and if there are two neighbors,
then we choose the right neighbor with probability p and the left neighbor with
probability 1− p.

We know that there exists pc ∈ [0, 1] such that for p < pc there is almost
surely no infinite cluster, while for p > pc there is almost surely an infinite
cluster. This parameter is called critical point. It is known that the critical
point of site-percolation on the triangular lattice equals 1

2
. The lower bound

of critical point was proven by Harris in [9]. A similar theorem in the case of
bond percolation on square lattice was given by Kesten in [11], and the result
on the triangular lattice is obtained in a similar fashion.

Now, take Ω = T∗+, the half-plane of hexagonal lattice. The hexagons on the
boundary of Ω (∂Ω) and on the right of origin (denoted by ∂+Ω) are colored
in black and the hexagons on ∂Ω and on the left of origin (∂−Ω) are colored in
white. In this case, the exploration curve is an (random) infinite self-avoiding
walk. Denote by TT∗+ the self-avoiding tree constructed from the self-avoiding
walks in T∗+.

In the case λ = +∞, one can reinterpret the second construction of the
exploration curve as the limit walk ω∞ on T̃T∗+ . This is very useful because
every feature of the curve γ is also one for ω∞ and can therefore be restated
in terms of the biased walk on the self-avoiding tree. One of these properties
is that γ almost surely reaches the boundary of Ω an infinite times, which
follows from Russo-Seymour-Welsh type arguments. As we will see below, this
property is still valid in the case RWλ, for all λ > λc (see Theorem 2).

6.3. Proof of Theorem 2. In this section, for any z ∈ Z2, we write <z (resp.
=z) for the real part (resp. imaginary part) of z. To prove the theorem 2, we
need the following function (the “head of the snake”):

p : x ∈ V (T ) 7→ x|x| ∈ Z2 where T = TH or T = TZ2 .

The proof of theorem 2 has several steps. In the first step, we study the
trajectory of the biased random walk Xn. We prove that, under the measures
PH
λ and PZ2

λ , p(Xn) almost surely reaches the line Z× {0}. In the second step,
we prove that it almost surely reaches the line Z × {0} an infinite number of
times. In the third step, we prove that under PZ2

λ , the limit walk almost surely
reaches the line Z×{0} an infinite number of times. In the last step, we prove
that under PH

λ , the limit walk almost surely reaches the line Z×{0} an infinite
number of times. For simplicity, we will write Yn for p(Xn).

6.3.1. The first step. In this step, we study the trajectory of RWλ. We begin
with the following simple lemma:
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Lemma 50. Let λ > λc and consider the biased random walk RWλ on TZ2 or
TH. Then almost surely lim sup |<(Yn)| = +∞.

n0 n0

i

XTi
p(XTi

)

`

n0 + 1

XTi+`

p(XTi+`)

XTi+2`

p(XTi+2`)

i

`

`

n0 + 1

Figure 3. Illustration of the proof of Lemma 50

Proof. We prove the lemma in the case TH; the result for TZ2 can be obtained
in a similar way. The idea of the argument is straightforward: if the real part
of p(Xn) is constrained, then its imaginary part has to take large values and
every time it visits a new height, the real part has a chance of becoming large:
what follows is a formalization of this. Assume that α := P(lim sup |<(Yn)| <
+∞) > 0, then there exists a constant n0 > 0 such that,

(6.1) β := P { for all n > 0 : −n0 ≤ <(Yn) ≤ n0} > 0.

For any i ≥ 0, define

(6.2) T (i) := inf {n ≥ 0 : =(Yn) = i} .
Note that T (i) < +∞ on the event {for all n > 0 : −n0 ≤ <(Yn) ≤ n0}. We
remark that, at time T (i), X can always go towards the left or the right. For
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any i ≥ 0, define

Si := {∃!k : |<(Yk)| = n0 + 1,=(Xk) = i and ∀n 6= k : −n0 ≤ <(Yn) ≤ n0}.
If the walk is at time T (i), then we go towards the left or the right to reach
the domain

{<z = n0 + 1}
⋃
{<z = −n0 − 1} ,

and after, we go back to XT (i) (see Figure 3). We need at most 2n0 steps to
do this. Then, there exist a constant c > 0 such that for any i > 0,

(6.3) P(Si) ≥ c β.

On the other hand, we have

(6.4)
+∞⋃
i=0

Si ⊂ { for all n ≥ 0 : −n0 − 1 ≤ <(Yn) ≤ n0 + 1} .

Since these Si are pairwise disjoint, by using 6.3 and 6.4 we obtain:

P ( for all n ≥ 0 : −n0 − 1 ≤ <(Yn) ≤ n0 + 1) ≥
∞∑
i=0

P(Si) ≥
∞∑
i=0

c β = +∞.

This is a contradiction and therefore almost surely lim sup |<(Yn)| = +∞. �

Lemma 51. Let λ > λc and consider the biased random walk RWλ on TZ2 or
TH. Then # {n > 0 : =(Yn) = 0} ≥ 1 almost surely.

Proof. We again deal separately with two cases.
Case I: The tree TZ2. Assume that α := P(∀n > 0,=(Yn) > 0) > 0, hence

(6.5) 0 < P(∃n > 0,=(Yn) = 0) = 1− α < 1.

Given that the sequence ({∃k ∈ (0, n] : =(Yk) = 0})n≥1 is an increasing se-
quence,

(6.6) 1− α = P(∃n > 0 : =(Yn) = 0) = lim
n

P(∃k ∈ (0, n] : =(Yk) = 0).

Let ε > 0, by using 6.5, then there exist n0 such that for all n ≥ n0,

(6.7) P(∃k ∈ (0, n] : =(Yk) = 0) ≥ 1− α− ε.
We know that the biased random walk does not reach the line Z× {0} with a
probability p > 0. By Lemma 50, the random walk Xn must reach the domain
H := {<(z) = n0}

⋃ {<(z) = −n0} with a probability 1. We consider the first
time S, that the random walk Xn reaches H and we assume that it reaches the
line {<(z) = n0}. We continue one step on the random walk to reach the line
{<(z) = n0 + 1}.

The key observation, which we will use several times in similar forms in
what follows, is that the behavior of the walk after time S, and until its first
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YS

YS+1

(d)

O

n0 n0

n0 + 1

Figure 4. Illustration of the proof of Lemma 51

visit to the parent X−1
S , matches the similar process defined in the domain

Z2 \ {XS(k) : 0 ≤ k < |XS|}. Here, this domain contains the half-plane

YS := {(x, y) ∈ Z2 : x ≥ <(YS)}
and our running hypothesis implies that the random walk after the time S will
stay in this half-plane with probability α (see Figure 4). As a shortcut, we
will later refer to this kind of construction as considering a new half-plane with
origin YS.

From the previous discussion,

(6.8) P(∀k ≤ n0 : =(Yk) > 0 and ∃k > n0 : =(Yk) = 0) =
λα2

1 + 3λ
.

Because the two events {∀k ≤ n0 : =(Yk) > 0 and ∃k > n0 : =(Yk) = 0)} and
{∃k ∈ (0, n0] : =(Yk) = 0} are disjoint and included in the event {∃n > 0 : =(Yn) = 0},
we use 6.7 and 6.8 to get

1− α = P({∃n > 0 : =(Yn) = 0}) ≥ 1− α− ε+
λα2

1 + 3λ
.

If we take small enough ε , then we obtain a contradiction.

Case II: The tree TH. Now, we prove that |{n : =(Yn) = 0}| ≥ 1 a.s for
the tree TH. We set α = P(∀n > 0 : =(Yn) > 0). Assume that p > 0, because
the random walk in the domain {=(z) > 0} of the half-plane has the same law
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as the random walk in this domain of the plan. This implies that the random
walk Xn on the plan does not reach the line Z×{0} with a positive probability.
This is a contradiction with step 1 and then p = 0. �

6.3.2. The second step. The goal of this step is to prove the following lemma:

Lemma 52. Let λ > λc and consider the biased random walk RWλ on TZ2 or
TH. Then almost surely # {n > 0 : =(Yn) = 0} = +∞.

O′

Yn0

ω0 ∈ Ωn0

Yn0

ω0 ∈ Ωn0

O
O

Figure 5. Illustration of the proof of Lemma 52, case TH
Proof. We again need to deal separately with two cases.
Case I: the tree TH. We denote by A the following event:

A := {# {n > 0 : =Yn = 0} =∞} .
Or equivalently, A = {∀k,∃n > k : =Yn = 0}. Assume that P(A) < 1, we have
then P(Ac) > 0. Hence, there exists n0 > 0 such that,
(6.9) P(∀n > n0 : =Yn > 0) > 0.

Now, consider the random walk until time n0. Denote by Ωn0 the set of all
configurations (Y0, Y1, . . . , Yn0). For each ω ∈ Ωn0 , we define the event Aω as
follows:
(6.10) Aω := {for all n > n0, we have =(Yn) > 0 and (Y0, Y1, . . . , Yn0) = ω}.
Hence,

(6.11) P(∀n > n0 : =Yn > 0) =
∑
ω∈Ωn0

P(Aω) > 0.

Since the cardinal of Ωn0 is finite, there exists ω0 ∈ Ωn0 such that P(Aω0) > 0.
We add a new line under the line Z × {0} and consider a new half-plane H′
with origin O′ (see the Figure 5 and the discussion in the proof of Lemma 51).

Observe the biased random walk X ′n with parameter λ on TH′ and denote
Y ′n = p(X ′n). Conditioned on the events {Y0 = O′, Y ′1 = ω0(1), · · · , Y ′(n0) =
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ω0(n0)} and Aω0 , X and X ′ have the same law. This implies that the random
walk X ′ on TH′ does not reach the line Z× {0} of H′ with a positive probabil-
ity. This is a contradiction and then P(A) = 1, which concludes the proof of
Lemma 52 in the case TH.

Case II: the tree TZ2.

A1

A2

B2

A3

B3

O

(a, 0)

B1 ≡ A

B = (x, 1)

Yn0

C2

D2

O

C1

B

D1

(a, 0)

γ′1
γ′2

Figure 6. Illustration of the proof of Lemma 52, case TZ2

C2

D2 C1

O

B

(a, 0)

D1 ≡ A

ω2

ω3

ω := ω1 ⊕ ω2 ⊕ ω3 ω1 = Ø

Figure 7. Illustration of the proof of Lemma 52, case TZ2

Assume that the random walk reaches the line Z×{0} an infinite number of
times with a probability strictly less than 1. By using the same argument as
in the case TH, there exists a configuration ω0 and a positive number n0 such
that P(Aω0) > 0 where Aω0 is defined as in 6.10.

Let A1 = (a1, 0), B1 = (b1, 0) . . . , Ak = (ak, 0), Bk = (bk, 0) be 2k points of
intersections of the line Z × {0} with ω along the curve ω such that for any
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1 ≤ i ≤ k, there exists a self-avoiding walk γi in ω starting at (ai, 0) and ending
at (bi, 0) which is below the line Z × {0}. Denote by (a, 0) the last point of
intersection of the line Z × {0} with ω before that the random walk does not
reach the line Z× {0}. Let A := (x, 0) to be (ai, 0) or (bi, 0) which maximises
the first coordinate and we set B = (x, 1) (see Figure 6, on the left).

Consider a new plane Z2 with an origin at B and consider the random walk
RWλ on the tree TH starting at B. Let Γ = (γ1, γ2, . . . , γk) be a set of k
self-avoiding walks in ω which connect (ai, 0) to (bi, 0). If there exist i, j such
that [aj ∧ bj, aj ∨ bj] ⊂ [ai ∧ bi, ai ∨ bi], then we remove the self-avoiding walk
γj from Γ. Finally, we obtain a subset Γ′ = (γ′1, γ

′
2, . . . , γ

′
m) of Γ in which there

are no i, j such that [aj ∧ bj, aj ∨ bj] ⊂ [ai ∧ bi, ai ∨ bi]. We can assume that
γ′i connect Ci = (ci, 0) to Di = (di, 0) and for all i ∈ {1, · · · ,m}, we have
c1 > c2 > · · · > cm and ci < di (see Figure 6, on the right).

Define a self-avoiding walk ω starting at B as follows (see the Figure 7):
Set u = sup {1 ≤ i ≤ m : ci > a} and define the three following self-avoiding

walks: ω1 := [BA]⊕ γ1 ⊕ [(d2, 0), (c1, 0)]⊕ γ2 ⊕ [(d3, 0), (c2, 0)]⊕ . . . , γu ⊕ [(cu, 0)(cu, 1)]
ω2 := [(cu, 1), (cm, 1)]⊕ [(cm, 1), (cm, 0)]⊕ γm ⊕ [(dm, 0), (cm−1, 0)] . . .⊕ γu+1, [(du+1, 0), (a, 0)]

ω3 := ω|[t,n0] where ω(t) = (a, 0),

and we define ω := ω1 ⊕ ω2 ⊕ ω3.
Consider the biased random walk Xn with parameter λ on TH, where H is the

half-plane with the origin B. Recall that Yn = p(Xn). Note that, conditioned
to the event {(Y0, ..., Y|ω|) = ω}, with a positive probability, the random walk
reach a finite number of times the half-plane H. This is a contradiction with
the case TH above. �

Remark 53. All of results that we proved in the first step and second step for
TZ2 and TH, are still valid for T̃H and T̃Z2. Note that it is sufficient to prove the
theorem 2 in the case T̃H and T̃Z2, which means the biased random walk on T̃H
and T̃Z2 almost surely reaches the line Z× {0} an infinite number of times).

6.3.3. The third step. In this step, we give a proof of Theorem 2 in the case
PZ2

λ . We start with the following definition

Definition 54. Let C be a closed, simple curve of Z2. The interior of C,
denoted by I(C) is a sub-domain of R2 which is surrounded by C (see Figure 8).
Where S(C) denotes the area of this domain. The exterior of C is defined by

E(C) := R2 \ I(C).

Lemma 55. Let ((a1, 0), (a2, 0), . . . , (a2n,0)) be a sequence of points on the line
Z × {0} such that a1 < a2 < · · · < a2n. For each i, we denote γi as the self-
avoiding walk starting at (a2i−1, 0) and ending at (a2i, 0) which is below the line
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Figure 8. A closed, simple curve C of Z2 with its interior in red

Z× {0}. Suppose that for any i, we have

γi ∩ γj = ∅.

We set A :=
⋃
γi and B = ∂A

⋃
((∪ni=1 [a2i−1, a2i])× {0}) where,

∂A :=
{
z ∈ Z2 : ∃x ∈ A, 0 < d(x, z) ≤

√
2
}

and d is euclidean distance.

Then there exists a self-avoiding walk in B starting at (a1 − 1, 0) and ending
at (a2n + 1, 0).

Proof. The statement is intuitively clear. The proof is a simple but tedious
issue of book-keeping, and is omitted here. �

%

v

p

TQ

Figure 9. The tree T

Proof of Theorem 2 in the case of PZ2

λ . We denote byA the following event:

A := {# {n > 0 : =ω∞λ (n) = 0} =∞} .
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ωn0

O

(α) (β)

ω

V

Figure 10. The self-avoiding walk ω is colored by red; the do-
main D is the union of two quadrants α and β and the set V is
colored by green.

Assume that P(A) < 1, by using the same argument as in the second step, there
exist n0 > 0 and a self-avoiding walk ω := [ω(0), ω(1), . . . , ω(n0)] starting at 0
such that the following event has a strictly positive probability (see Figure 10):

B :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) < 0

Define

D :=
{

(x, y) ∈ Z2 : y ≥ 0 and x /∈ {<ω∞λ (i) : 0 ≤ i ≤ n0}
}
.

and let V be a subset of Z \D such that for all x ∈ V , there exists an infinite
self-avoiding walk in half-plane {=z ≤ 0}, starting at x and it does not reach
the self-avoiding walk ω (see Figure 10).

For each x ∈ V , we denote by Γx the set of self-avoiding walks starting at
x, which does not reach the path (ω(0), . . . , ω(n0)), and reaches the domain D
at only one point and such that, for each z ∈ γx, z belongs to the line Z×{0}
or z belongs to the boundary of self-avoiding walk (ω(0), ω(1), . . . , ω(n0)). By
Lemma 55, Γx is not empty. We then set p := supx∈V supγ∈Γx |γ|.

Let T be an infinite, locally finite and rooted tree defined by (see Figure 9):|Ti| = 1 for all i ≤ p
Tp = {v}
T v = TQ
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We apply Lemma 52. Almost surely, the random walk reaches the line Z×{0}
an infinite number of times and, thus, it almost surely reaches the line Z×{0}
at least k times. Every time it reaches the line Z × {0} at a point x, we can
go on the random walk at most p steps to reach the domain D (we can do
this because TSLZ2 have no leaf and then x belongs to V ). Then, the limit
walk stays within the half-plane {=z < 0} after the step n0 with a probability
smaller than (1 − C(λ, T )), where C(λ, T ) is the effective conductance for the
network (T , c) with c(e) = λ|e|. Hence, for any k > 0, we have

P(B) ≤ (1− C(λ, T ))k

Because we have C(λ, T ) > 0 (and because it contains the tree TQ), then
P(B) = 0. This is a contradiction and implies Theorem 2 in the case Qλ-
measure. �

6.3.4. The last step. In this section, we give a proof of Theorem 2 in the case
PH
λ .

O

`

Figure 11. A bridge of a strip B`

Notation 56. A strip B` of size ` is a sub-domain of Z2, which is limited by
two lines {=z = a} and {=z = b} (or {<z = a} and {<z = b}) such that
|a− b| = `. Fix an origin O ∈ {=z = a}⋃{=z = b} (or {<z = a}⋃{<z = b})
of B`. Let γ be a finite self-avoiding walk starting at O. We say that γ is a
self-avoiding walk of the strip B` if for any 0 ≤ k ≤ |γ|, we have γ(k) ∈ B`.
We define the self-avoiding tree TB` from the self-avoiding walks starting at O
as in Notation 44.
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Consider a strip B`. We define the bridge (resp. irreductible bridge) of B` in
the same way as the definition of bridge (resp. irreductible bridge) in half-plane.
(see Figure 11).

Lemma 57 (The subadditivity property). Let `, n be two positive natural num-
bers, denote by p(`)

n the number of bridges of length n starting at origin of the
strip B`. For any `, n,m, k ∈ N∗,

p
(2`)
n+m ≥ p(`)

m p(`)
n and p

(2`)
kn ≥ (p(`)

n )k.

Proof. Divide the strip B2` into two small strip B1
2`, B

2
2` of size ` (see Figure 12).

For any z ∈ Z2, denote by L(z) the line goes through z and orthogonal to
Z× {0}. Denote by Sz the orthogonal symmetry with respect to L(z).

B1
2` B2

2`

γ1

γ2 γ3

γ12(|γ12|)

S(γ3)

L(γ12(|γ12|)

Figure 12. A concatenation of 3 bridges in B1
2L.

Consider γ1, γ2 two bridges of the strip B1
2` of lengthm and n, we concatenate

γ1 and γ2 to obtain a new bridge γ12 := γ1 ⊕ γ2 of length m + n of the strip
B2` (see Figure 12). Hence, for any `, n,m ∈ N∗,

p
(2`)
n+m ≥ p(`)

m p(`)
n .

If one takes the third bridge γ3 of B1
2` of length t, we concatenate γ12 and γ3

as follows (see Figure 12):{
γ123 = γ12 ⊕ γ3 if γ12(|γ12|) ∈ B1

2`

γ123 = γ12 ⊕ Sγ12(|γ12|)(γ3) if γ12(|γ12|) ∈ B2
2`
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Note that γ123 is a bridge of length m + n + p of the strip B2` . Hence, for
any `, n,m, t ∈ N∗,

p
(2`)
n+m+t ≥ p(`)

m p(`)
n p

(`)
t .

By repeating the same strategy, we obtain the result of Lemma 57. �

Lemma 58. Denote by µ(`) the connective constant of the strip B`. Then we
have,

lim
`→∞

µ(`) = µ,

where µ is the connective constant of Z2.

Proof. Denote by bQn the number of bridges of length n of Q, starting at origin.
Note that for any `, we have:

(6.12) lim
n→∞

(p(`)
n )

1
n = µ(`) and p(`)

` = bQ` .

Moreover, we also have:

(6.13) lim
n→∞

(
bQn
) 1
n = µ.

By using Lemma 57, for any `, n, k:

(6.14) p
(2`)
kn ≥ (p(`)

n )k.

Fix ε > 0 and by 6.13, there exists n0 such that for any n > n0, we have

(6.15)
∣∣∣(bQn) 1

n − µ
∣∣∣ ≤ ε.

Let ` > n0 and k > 0. By 6.12, 6.14 and 6.15, we have:

(6.16)
(
p

(2`)
k`

) 1
k` ≥

(
p

(`)
`

) 1
`

=
(
bQ`
) 1
` ≥ µ− ε.

Since the sequence (p
(2`)
k` )

1
k` converges towards µ(2`) when k goes to infinity,

we use 6.16 to obtain:

(6.17) µ ≥ µ2` ≥ µ− ε,
where inequality µ ≥ µ2` is obvious. Hence, the sequence (µ(`), ` ≥ 1) con-
verges towards µ when ` goes to +∞. �

Proposition 59. Denote by br(TB`) the branching number of TB`. Then we
have,

lim
`→∞

br(TB`) = µ,

where µ is the connective constant of Z2.
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Proof. Recall the definition of Am in the proof of Proposition 47:

Am := {ω ∈ iSAB, |ω| ≤ m} ,
where iSAB is the set of irreducible-bridges in half-plane H. Let γ be an
infinite self-avoiding walk starting at origin of B`, it is called "m-nice walk" if
it possesses a decomposition into irreducible bridges in Am. Denote by Gm(B`)

the set of infinite self-avoiding walk of B` which are "m-nice". Let T (m)
B`

be a
sub-tree of TB` , which we will refer to as them-nice tree, defined by E(T (m)

B`
) :=

E(TB`)|V (T (m)
B`

)×V (T (m)
B`

)
where,

V (T (m)
B`

) := {ω ∈ V (TB`) : there exists γ ∈ Gm(B`) such that γ|[0,|ω|]= ω}.

Denote by p(`,m)
n be the number of bridges starting at origin of B`, of length n

which possess a decomposition in Am. Recall that p
(`)
n is the number of bridges

of length n starting at origin of the strip B` and (T (m)
B`

)n is the number of
vertices of T (m)

B`
at generation n. Then for any n > 0, we have

(6.18)
∣∣∣(T (m)

B`

)
n

∣∣∣ ≥ p(m)
n .

By using Lemma 57, for any `,m, n, k we have:

(6.19) p
(2`)
nk ≥ (p(`)

n )k and p
(2`,m)
nk ≥ (p(`,m)

n )k.

As we know (see paragraph 46) all bridges in a half-plane can be decomposed
into a sequence of irreducible bridges in a unique. Therefore each bridge in B`

of length m possesses a decomposition into irreducible bridges in Am. Hence,
for any m, ` > 0,

(6.20) p(`)
m = p(`,m)

m .

Fix ε > 0, by Lemma 58, there exists `0 such that for any ` > `0,

(6.21) µ ≥ µ(2`) > µ− ε.
Moreover, since µ(2`) = lim

n→∞
(p

(2`)
n )

1
n , then there exists n0 such that for any

n > n0:

(6.22) (p(2`)
n )

1
n > µ(2`)− ε.

Hence by 6.20, 6.19, 6.21 and 6.22,

(6.23) (p
(4`,n)
kn )

1
kn ≥ (p(2`,n)

n )
1
n = (p(2`)

n )
1
n ≥ µ(2`)− ε ≥ µ− 2ε.

Therefore for ` > `0 and n > n0(`) (i.e n0 depends on `), we have

(6.24) gr(T nB4`
) ≥ µ− 2ε.
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On the other hand, note that T nB4`
is (n+ 4`)-super-periodic and gr(T nB4`

) <
+∞, we use Theorem 12 to get:

(6.25) gr(T nB4`
) exists and gr(T nB4`

) = br(T nB4`
).

Since T nB4`
⊂ TB4`

, by using 6.24, 6.25 and Proposition 8 we obtain for any
` > `0:

(6.26) µ ≥ br(TB4`
) ≥ µ− 2ε,

where we used TB4`
⊂ TH for the first inequality. Therefore, the sequence

(br(TB`))`≥1 converges towards µ when ` goes to infinity. �

Proposition 60. We consider the biased random walk RWλ on T̃H. Let (B`)`≥1

be the sequence of strips of H where B` is the strip between two lines =z = 0
and =z = n. Suppose that λ > 1

µ
, where µ is the connective constant of H.

Then, there exists ` > 0 such that the limit walk ω∞λ almost surely touches the
strip B` an infinite number of times.

Proof. We fix λ > 1
µ
. Assume that, for all ` > 0, the limit walk reaches

the strip B` a finite number of times with a strictly positive probability. By
Proposition 59, there exists `0 such that λ > 1

br(TB`0 )
. We use again the same

argument as in the second step, there then exists n0 > 0 and a self-avoiding
walk ω = [ω(0), ω(1), . . . , ω(n0)] such that the following event has a strictly
positive probability:

B :=

{
ω∞λ (0) = ω(0), ω∞λ (1) = ω(1), . . . , ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) > `0

By Lemma 52, we know that the random walk almost surely reaches the line
Z×{0} an infinite number of times and then it must reach the line {=z = `0}
an infinite number of times almost surely. By using the same argument as in
the third step, for any k > 0, we have:

P(B) ≤ (1− C(λ, TB`0 ))k.

Because we have C(λ, TBL0
) > 0 (and because we have taken λ > λc(TBL0

),
then P(B) = 0. This is a contradiction. We conclude that there exists ` > 0

such that the limit walk on the tree T̃H almost surely reaches the strip B`. �

Proof of Theorem 2 in the case of PH
λ . By Proposition 60, we can fix a

number ` such that the limit walk almost surely reaches the domain B` an
infinite number of times. Now, we prove that the limit walk almost surely
reaches an infinite number of times the line Z× {0}.

Assume that P(#{n : =ω∞(n) = 0} < +∞) > 0, then there exist n0 and
a self-avoiding walk ω of length n0 starting at origin such that the following
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event occurs with a strictly positive probability:

C :=

{
ω∞λ (0) = ω(0);ω∞λ (1) = ω(1); . . . ;ω∞λ (n0) = ω(n0)

∀n > n0 : =ω∞λ (n) > 0

Let T ∗ be a tree defined by|T
∗
i | = 1 for all t ≤ `
T ∗` = {v}

(T ∗)v = TB`
Recall that Yn := p(Xn). Let U be a set of naturals n such that: <Yn =

sup0≤i≤n;Yi∈B` <Yi or <Yn = inf0≤i≤n;Yi∈B` <Yi. For each n ∈ U , we go on the
walk in the vertical direction until it reaches the line Z×{0}. When it reaches
the line Z×{0}, it remains in reach of the line Z×{0} with a probability that
is greater than c× C(λ, T ∗) where c is a constant that does not depend on n.

Because the walk almost surely touches the line Z× {0} an infinite number
of times, we then have |U | = +∞, p.s. This implies that P(C) = 0. This is a
contradiction. �

6.4. The law of first k-steps of limit walk. We consider the biased random
walk RWλ on TH. Recall that ω∞λ is the associated limit walk and PH

λ denotes
its law.

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (TH) such that (o, y1, y2, . . . , yk)
is a simple path starting at o of TH. For each λ > λc, recall that the law of
first k-steps is defined by:

(6.27) ϕλ,k(y1, y2, . . . , yk) = PH
λ (ω∞λ (1) = y1, ω

∞
λ (2) = y2, . . . , ω

∞
λ (k) = yk).

We prove the continuity of this function.

Theorem 61. For every k ∈ N∗ and (y1, y2, . . . , yk) ∈ V k, the function ϕλ,k is
a continuous function of λ on (λc,+∞).

Let T be an infinite, locally finite and rooted tree and ν is a child of the
root. Recall the definition of C̃(λ, T ) and C̃(λ, T , ν) in Section 2.3. To prove
the theorem 61, we need the following lemma:

Lemma 62. We have

ϕλ,k(y1, y2, . . . , yk) =
C̃(λ, T , y1)

C̃(λ, T )
× C̃(λ, T

y1 , y2)

C̃(λ, T y1)
× · · · × C̃(λ, T

yk−1 , yk)

C̃(λ, T yk−1)
.

Proof. We prove this lemma in the case k = 1, and leave the (slightly more
complicated, but following the same lines) cases k ≥ 2 to the reader.

The case k = 1 We let C̃i(λ, T ) denote the probability return to origin k
times before going to infinite for the biased random walk on the tree T . We
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define the events A := {ω∞λ (1) = y1} and Ai denote the random walk return to
origin k times before it goes to infinity by passing through y1. In other words,

Ai := {ω∞λ (1) = y1 and #{n > 0 : Xn = o} = k} .
The events Ai are disjoints, we can then see that

(6.28) A =
+∞⋃
i=0

Ai.

On the other hand, by the Markov property, for any i ≥ 0, we have

(6.29) P(Ai) = C̃(λ, T , y1)
(

1− C̃(λ, T )
)i
.

By 6.28 and 6.29, we obtain:

P(A) =
+∞∑
i=0

P(Ai) =
C̃(λ, T , y1)

C̃(λ, T )
.

Therefore, ϕλ,1(y1) = P(A) = C̃(λ,T ,y1)

C̃(λ,T )
. �

Proof of Theorem 61. By Lemma 62, we have

ϕλ,k(y1, y2, . . . , yk) =
C̃(λ, T , y1)

C̃(λ, T )
× C̃(λ, T

y1 , y2)

C̃(λ, T y1)
× · · · × C̃(λ, T

yk−1 , yk)

C̃(λ, T yk−1)
.

It is enough to prove that C̃(λ, T yi , yi+1) and C̃(λ, T yi) are continuous. For
the continuity of C̃(λ, T yi), we use the same method as in the proof of theorem 3
(see Section 5.4). For the continuity of C̃(λ, T yi , yi+1), this function can be
written in terms of λ and C̃(λ, T yi). �

Remark 63. Theorem 61 is still valid in the case TZ2.

7. The critical probability measure through biased random
walk

7.1. The critical probability measure. In this section, H is the upper-half
plane (i.eH = {=z > 0}⋃{(0, 0)}) and consider the self-avoiding tree TH which
is defined from finite self-avoiding walks on upper-half plane H (see Figure 13).
Note that the root o of TH has only one child, denoted by y.

We aim to construct a critical probability measure through the biased ran-
dom walk on self-avoiding tree. First, we review the construction of Madras
and Slade (see [16] for detail). Recall that bn is the number of all n-step bridges
that begin at O and Bn denote the set of all n-step bridges that begin at O.
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O

o

x1 x2 x3

y

H

Figure 13. The upper-half plane on the left and the tree TH on
the right.

Given n ≥ m and an m-step self-avoiding walk γ in H. Let PBm,n(γ) denote the
fraction of n-step bridges that extend γ, it means

(7.1) PBm,n(γ) =
|Fn(γ) ∩ Bn|

bn
=
|Fn(γ)|
bn

,

where Fn(γ) is the set of all n-step bridges which extend γ. The equality (7.1)
is the probability that a long bridge (uniformly chosen from among all n-step
bridges) is an extension of γ. Define

(7.2) PBm(ω) := lim
n→∞

PBm,n(γ).

Fact 64 ([16], Theorem 8.3.1). Let γ be an m-step self-avoiding walk in H.
Then the limit (7.2) exists.

The existence of the measures PBm allows us to define a measure PB∞ on the
set SAW∞ of H. For each γ∞ ∈ SAW∞, γ∞ [0,m] denote the initial segment
(γ∞(0), γ∞(1), . . . , γ∞(m)), then

PB∞(γ∞ [0,m] = γ) = PBm(γ), for every γ.

Fact 65 ([16], Theorem 8.3.2). PB∞ is the 1
µ
-Kesten measure, where µ is the

connective constant of the square lattice.

Recall that for all m ≥ 1, T m is the m-good tree (see Notation 46). Fix
k ≥ 1 and y0 = o, y1 = y, y2, . . . , yk ∈ V (TH), the function ϕm,λ,k(y0, y1, . . . , yk)
(respectively ϕH,λ,k(y0, y1, . . . , yk)) denotes the law of first k-steps of RWλ on
T m (respectively TH) (see 6.27). We write λc(= 1

µ
) for the critical parameter

of RWλ on TH.
Theorem 66. We have

(1) The function ϕm,λ,k(y0, y1, . . . , yk) converges towards a limit, denoted by
ϕm,λm,k(y0, y1, . . . , yk) when λ decreases towards λm = λc(T

m).
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(2) The function ϕm,λm,k(y0, y1, . . . , yk) converges towards a limit, denoted
by ϕλc,k(y0, y1, . . . , yk).

(3) Moreover, we have the following diagram:

ϕm,λ,k(y0, y1, . . . , yk)
m→+∞

λ>λc(TH)
//

λ→λc(Tm)
��

ϕH,λ,k(y0, y1, . . . , yk)

?
��

ϕm,λm,k(y0, y1, . . . , yk)m→+∞
// ϕλc,k(y0, y1, . . . , yk)

Proof of points 1 and 2 of Theorem 66. It is suffices to prove the theo-
rem in the case k = 2 and we use the same method for all k ≥ 3.
Proof of item 1: By using the same method as the proof of Proposition 30,

for all i ∈ {1, 2, 3}, we have:

(7.3) lim
λ→λc(T m)

ϕm,λ,2(o, y, xi) =
∑
γ∈Si

λ|γ|m ,

where x1, x2, x3 are three children of y and Si is a set of all irreducible bridges
which pass through xi and λc(T m) = λm. Let pi,n be the number of irreducible
bridges of length n which are pass through xi. We use 7.3 to obtain:

(7.4) lim
λ→λc(T m)

ϕm,λ,2(o, y, xi) =
m∑
n=1

pi,nλ
n
m.

Hence,

(7.5) ϕm,λm,2(o, y, xi) =
m∑
n=1

pi,nλ
n
m.

Moreover, for all m we have λm ≥ λc(= λc(TH)) because T m ⊂ TH. Therefore,

(7.6) ϕm,λm,2(o, y, xi) ≥
m∑
n=1

pi,nλ
n
c .

Proof of item 2: We need to prove that ϕm,λm,2(o, y, xi) converges to
ϕλc,2(o, y, xi) when m goes to infinity. Assume that there exists a subsequence
(mk)k such that for any i ∈ {1, 2, 3}, we have:

(7.7) lim
k→+∞

ϕmk,λmk ,2(o, y, xi) = αi.

Moreover, we assume that there exists i ∈ {1, 2, 3} such that

(7.8) αi >
+∞∑
n=1

pi,nλ
n
c .

For any m > 0, we have
∑3

i=1 ϕ
m,λm,2(o, y, xi), therefore,

(7.9) α1 + α2 + α3 = 1.
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By 7.6, for any i ∈ {1, 2, 3}, we have:

(7.10) αi ≥
+∞∑
n=1

p1,nλ
n
c .

We use Fact 41 to obtain

(7.11)
3∑
i=1

+∞∑
n=1

pi,nλ
n
c = 1.

By 7.8, 7.9, 7.10 and 7.11, we obtain the following contradiction:

1 = α1 + α2 + α3 >

3∑
i=1

+∞∑
n=1

pi,nλ
n
c = 1

We conclude that ϕm,λm,2(o, y, xi) converges towards
∑+∞

n=1 pi,nλ
n
c when m →

+∞. �

Proof of point 3 of Theorem 66. It remains to prove that

lim
m→+∞,λ>λc(TH)

ϕm,λ,k(y1, . . . , yk) = ϕH,λ,k(y1, . . . , yk).

It is enough to prove the theorem in the case k = 2, we use the same method
for k ≥ 3. Fix λ > λc(TH) and ε > 0. By Proposition 59, we have

(7.12) lim
m→+∞

λc(T m) = λc(TH).

Therefore, there exists m0 > 0 such that for any m ≥ m0,

(7.13) λ > λc(T m) and (1− C(λ, T m))m < ε.

Let T be the tree defined by:|Ti| = 1 for all i ≤ m
Tp = {v}
T v = T m

We choose n0 (depends on m) such that for all n > n0, we have

(1− C(λ, T n))n < ε

By considering the self-avoiding walks in the rectangle whose vertices are
(−n0, 1); (−n0,m0); (n0,m0); (n0, 1) and by a simple argument, we can see that
for all n > m0n0, ∣∣ϕn,λ,k(y1, . . . , yk)− ϕH,λ,k(y1, . . . , yk)

∣∣ < 2ε.

Since ε is arbitrary, this complete the proof of theorem. �

Remark 67. Theorem 66 allows us to define a critical probability measure Pλc
on TH. Note that this critical probability measure is exactly Kesten’s measure
as in Section 5.2.
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7.2. Conjectures. If we take a sequence of cutsets πn := Tn and we set c(e) =(
1
µ

)|e|
, then ∑

n

(∑
e∈πn

c(e)

)−1

=
+∞∑
n=1

µn

cn
.

If the prediction of Nienhuis [18] holds, we obtain
+∞∑
n=1

µn

cn
≥ c

+∞∑
n=1

1

n
11
32

= +∞

By Theorem 19, we can establish the following conjecture.

Conjecture 68. The biased random walk RWλc on TH (or TZ2) is recurrent.

Finally, we believe that for every k ≥ 1 and y1, y2, . . . , yk ∈ V (TH),

lim
λ→λc(TH)

ϕH,λ,k(y1, . . . , yk) = ϕλc,k(y1, . . . , yk).

Conjecture 69. The following convergence diagram holds

ϕm,λ,k(y0, y1, . . . , yk)
m→+∞

λ>λc(TH)
//

λ→λc(Tm)
��

ϕH,λ,k(y0, y1, . . . , yk)

λ→λc
��

ϕm,λm,k(y0, y1, . . . , yk)m→+∞
// ϕλc,k(y0, y1, . . . , yk)
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