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Chaotic dynamics of an impact oscillator

An impact oscillator is shown to exhibit complex dynamics. Its resonance response contains regions where, after an infinite cascade of period-doubling bifurcations, chaotic motion typical of a strange attractor is observed. The regions are bounded on both sides by subharmonic resonances. Quantitative agreements are obtained with the Feigenbaum scenario of chaos. This novel feature of a substantial marine technology program may be of general cross-disciplinary interest to mathematicians and physicists.

There is much current interest in physics in chaotic motions governed by strange attractors. We present a new example of a system exhibiting such phenom- ena, and make quantitative comparisons with a scenario of period doubling as a route to chaos. 'T here is good agreement, supporting the hope that the behavior of many nonlinear dynamical systems can be understood by means of a universal model.

The present work arose in marine engineering, where the slackening of a mooring can introduce a discontinuity in stiffness of, for example, an articulat- ed oil-loading tower. ' Such systems can sometimes be modeled as an impact oscillator, that rebounds elastically whenever the displacement Xdrops to zero, subjected to sinusoidal forcing. This simple system is of wide interest beyond marine technology.

The nondimensionalized equation of motion of our impact oscillator can be written as' X+ -X+ 2 X= -2sinr, X &0 4q where a dot denotes differentiation with respect to time r, i; is the damping ratio defined with respect to the effective natural frequency of the unforced and undamped rebounding system, and q is the ratio of the forcing frequency to this effective frequency.

Defining y as half the maximum value of X, the reso- nance response curve has been determined as y(7i)

in Fig. 1 for the fixed damping ratio shown. Well- defined resonant peaks are seen, corresponding to a fundamental response ( n = 1) at q = l and subhar- monic resonances of order n =2, 3, 4, . . . at q = n.

The areas shown in Fig. 1 correspond to solutions with one impact per response cycle, but between the peaks more than one impact is observed. A precise digital computer program' has been used to explore carefully the region between two adjacent peaks, us- ing the Poincare mapping points (X,X) at r equal to multiples of 2n. A cascade of period-doubling bifur- cations is observed (Fig. 2) leading to a chaotic solu- tion at q =4.5. Notice that the chaos is located between an n =4 cascade deriving from the n = 4 resonance, and an n = 5 cascade originating from the n =5 resonance.

This approach to chaos via period doubling is in line with the Feigenbaum scenario which draws on the behavior of a universal quadratic map. The bi- furcations of this map have the property that the con- secutive control parameter intervals tend to a fixed ratio of 5 =4.6692. . . as an accummulation point is approached.

In our problem, we define q"asthe range of q over which the subharmonic of order n is observed. We then find from a refined version of Fig. 2 that qs/gi6=4 56, g&6/q32 469 and 7i32/q64=4. 64.

These agree very well with Feigenbaum's number, which relates strictly to the limit as n tends to infinity, A standard test for the chaotic motions of a strange attractor is that solutions from adjacent starts should diverge exponentially until they become completely uncorrelated. This behavior for the impact oscillator riou ing i urcations leading to chaos at g=4.5.

is shown in Fig. 3 for three starting separations on a plot of -log1o 8 against steps of Ar =2m. . The noisy straight lines confirm that 8 varies as AoN', where i is the number of steps and N is the Liapunov number.

From a set of graphs similar to Fig. 3, we estimate the value of N =1.17 for our impact oscillator. This compares with N =1.26 for regions of the quadratic map, and N =1.52 for the Henon strange attrac- tor 7 11

We note, finally, that we have observed the coexistence of an n =10 subharmonic with a presumed strange attractor at a value of q =4.55 as shown in Fig. 4. The solution obtained here depends only on the starting conditions of the time integration. This discovery of period-doubling bifurcations, chaos, and strange attractors in the resonance of a simple impact oscillator may be of interest to en- gineers, physicists, and mathematicians alike. Full details of the marine study are planned to be published elsewhere. ' -tog R- 

  FIG. 1. Resonance response curve for the impact oscilla- tor.

  FIG. 2. Sequence of steady-state Poincare maps showing period-d bl' b'f

  . Divergence study showing a noisy exponential growth of the separation between close starts.

FIG. 4 .

 4 FIG. 4. Attractors of two coexisting multiple solutions for a fixed system. The attractor observed depends on the starting conditions.