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PERIODIC SOLUTIONS OF A MULTI-DOF BEAM
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5600 MB Eindhoven, The Netherlands



R. H. B. F

TNO Centre for Mechanical Engineering, P.O. Box 49, 2600 AA, Delft, The Netherlands

The steady state behaviour is analyzed of a periodically driven multi-DOF beam system
which has an elastic stop at its middle. The elastic stop is modelled in a continuous way
by using the contact law of Hertz. The beam is modelled by using finite elements and
subsequently reduced by using a component mode synthesis method. The steady state
behaviour of the system reduced to one, two and four DOF’s is investigated by calculating
periodic solutions at varying excitation frequency. Periodic solutions are calculated by
solving two-point boundary value problems by the multiple shooting method in
combination with a path-following technique. It is shown that models with more than one
DOF are required for a good assessment of the long-term behaviour of the system.

1. INTRODUCTION

In many practical engineering applications of mechanical systems, impacts at stops occur.
It is important to carry out a dynamical analysis of such systems, to identify and
subsequently reduce the noise and wear caused by repeated unacceptably large impacts.
Examples of systems with impacts are gear rattle, heat exchanger tube wear in nuclear
power stations and ships colliding against fenders. Systems with stops are typical examples
of systems with strong local non-linearities. Although the non-linearity is local, the overall
dynamic response of the system may change drastically. A system with stops cannot
be linearized, so it is very difficult to predict the system response without a non-linear
analysis.

In general, two different approaches are possible for analysis of the impact in the systems
outlined above. One approach is to assume that the impact occurs instantaneously. The
analysis is thus divided into two intervals: before and after the impact. The interconnection
between the two intervals is made by a momentum balance and a parameter representing
the amount of energy dissipation in the impact, called the coefficient of restitution. This
approach is used in many analyses of impact oscillators and has led to the identification
of bifurcational behaviour which is not found in smooth dynamical systems. Impact
rules for such assumed instantaneous reversal of velocity induce discontinuities in the
derivatives of maps defined by taking a section through the full phase space. In fact, these
discontinuities yield the ‘‘new’’ bifurcational behaviour, called grazing or border-collision
bifurcations [1–3].
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The other approach is to let the collision forces act in a continuous matter. The impact
analysis of a system of colliding bodies is hence performed simply by including the
collision of the contact forces in the system equations of motion during the contact period.
A suitable model for the contact forces during the contact period is the non-linear Hertzian
force–displacement law [4]. This model itself does not represent the energy dissipation
process. Although the theory of Hertz is based on elasticity, some studies have been
performed to extend the theory to include energy dissipation [5, 6]. In the paper by
Foale and Bishop [7] bifurcations occurring in single-DOF impact oscillators in which
the impact is modelled by using the Hertzian contact law are compared with ‘‘grazing’’
bifurcations which occur in impact oscillators where the impact is modelled in a
discontinuous way.

The main focus of research into impact oscillators in recent years has been into
single-degree-of-freedom systems. In this paper we will focus on the influence on the system
response of adding more degrees of freedom (DOF’s). A beam system is investigated which
has an elastic stop at its middle and is periodically excited in the middle. A less complicated
version of this beam system, supported in the middle by a massless one-sided linear spring,
was investigated earlier by Fey [8], Fey et al. [9] and Van de Vorst et al. [10]. This beam
system can be divided into a linear and a non-linear component. The linear component
(the beam) is modelled by means of the finite element method and consequently has many
more DOF’s than the non-linear one. Because the numerical analysis of the resulting
non-linear system is very expensive from a computational point of view, in particular for
increasing number of DOF’s, it is worthwhile to keep the number of DOF’s as low as
possible. This can be achieved by applying a reduction method to the finite element model
of the linear component (the beam). The particular reduction method applied is the
component mode synthesis method [11, 8] and offers the possibility for a considerable
reduction of the DOF’s and for a systematic investigation of the influence of adding or
deleting DOF’s. Moreover, the component mode synthesis method can easily be used for
more complex systems. The component mode synthesis method utilized in this paper uses
free interface eigenmodes up to a cut-off frequency and residual flexibility modes to
approximate the dynamic and static behaviour of the linear component. After reduction
of the linear component, the non-linearity is added, resulting in a reduced non-linear
system which will be valid for frequencies up to the cut-off frequency used in the reduction
procedure. Because generically non-linear systems generate higher frequencies than their
excitation frequency, the cut-off frequency has to be chosen much higher than the
maximum excitation frequency.

The elastic stop is modelled by using the contact law of Hertz without energy dissipation,
as mentioned earlier. Hence, the collision forces act in a continuous way. Periodic solutions
of the reduced system are calculated for varying excitation frequency by solving two-point
boundary value problems by the multiple shooting mehtod [12] in combination with a
path-following method [8]. The response of the system is investigated for models with one,
two and four DOF’s. Also, different modal damping levels are applied. All calculations
presented in this paper were carried out by using a development release of the finite element
package DIANA [13].

2. BEAM SYSTEM WITH AN ELASTIC STOP AT ITS MIDDLE

The beam system which is analyzed numerically is shown in Figure 1. The beam is
supported at both ends by leaf springs. If the displacement y of the middle of the beam
positive, the beam hits a spherical elastic contact with radius r=0·005 m, which is
connected rigidly to the outside world. In the middle of the beam also a rotating mass is
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Figure 1. The beam system. E=2·1×1011 N/m2, r=0·005 m, h=0·01 m, hb =0·001 m, b=0·09 m, bb=
0·075 m, r=7746 kg/m3, rb =7713 kg/m3.

present generating a periodic force. Energy dissipation is established by a linear damper
(not shown in Figure 1) at the middle of the beam (see also section 3).

The beam and leaf springs are modelled by using the finite element method and reduced
by using the component mode synthesis method mentioned in section 1. Because of
symmetry, only half the beam is modelled. (The elastic stop and the excitation force are
positioned exactly at the middle of the beam. Hence the asymmetric model is linear, which
means that symmetry breaking bifurcations cannot occur.) As mentioned in section 1, the
contact force Fs between the beam and the spherical elastic contact is modelled by using
Hertz’s law [4, 5]: that is,

Fs (y)=6ksy3/2,

0,

ye 0

yQ 07. (2.1)

In equation (2.1) the parameter ks is taken as 1·034×1010 Nm2/3 for a contact radius of
r=5 mm and E=2·1×1011 N/m2 for the spherical contact.

3. SINGLE-DOF MODEL

After reduction of the finite element model, the equation of motion for the single-DOF
model may be obtained as

mÿ+ bẏ+ ky+ kpy3/2 =merev
2 cos (vt). (3.1)

Here

kp =6ks ,

0,

ye 0

yQ 07
and ks =5·17×109 Nm2/3, v=2pfe , b=2jzmk, j=0·0142, m=(8T

1M81)/82
1y=

2·48 kg, k=(8T
1K81)/82

1y =16 877 N/m, me =1·0 g and re =4·92 mm. M and K are the
mass and the stiffness matrices of the linear part of the system, i.e., the beam without
the one-sided spring. 81 is the first eigenmode of the linear system with an eigenfrequency
of 13·1 Hz. 81y is the element of 81 corresponding to the displacement of the middle of
the beam y.

Branches of periodic solutions of this system have been calculated for varying excitation
frequency fe . The maximum absolute displacements =y =max occurring in these periodic
solutions are shown in Figure 2. Besides the harmonic resonance peak near 25·3 Hz,
the figure also shows subharmonic resonance peaks. In Figure 3 the periodic solution at
fe =25·3 Hz is shown.
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Figure 2. The maximum displacements of the periodic solutions of the 1-DOF model. · · · · , Unstable;
——, stable.

Notice that, compared to the linear system, the first harmonic resonance peak has
increased from 13·1 Hz to 25·3 Hz. Shaw and Holmes [14] have given the following
expression for the bilinear eigenfrequency fb of an undamped bilinear single-DOF
system:

fb = {2z1+ a>(1+z1+ a)}f1. (3.2)

Figure 3. The periodic solution of the 1-DOF model at fe =25·3 Hz.
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Here a= kb /k, with kb the stiffness of the bilinear spring. In our system the contact forces
are non-linear. If, however, a is calculated from equation (3.2), with fb =25·3 Hz and
f1 =13·1 Hz, this results in a1 790 and by using this a the contact forces resulting from
Hertz’s law and from the bilinear system can be compared. In the bilinear case the contact
force is Fsb (y)= aky=790×16 877y=1·33×107y N. In Hertz’s law the contact force is
FsH (y)= ksy3/2 =5·17×109y3/2 N. This means that Fsb qFsH for 0Q yQ 6·6×10−6 and
Fsb QFsH for yq 6·6×10−6. In our case (Figure 2) the penetration of the contact in the
beam is yQ 4·5×10−6.

In Figure 2 it is shown that the influence of the stiffening character of Hertz’s contact
law is small because the high resonance peaks do not bend off much. Only in the top of
the 1/3 subharmonic resonance peak near 76 Hz a small part of the 1/3 subharmonic
branch is unstable, caused by the stiffening effect. The influence of the stiffening character
of the contact law is low because the maximum penetration of the elastic contact in the
beam does not vary very much compared to the maximum amplitude of the system, and
the contact time of the beam and the elastic contact is low compared to the period of the
periodic solutions.

The highest 1/2 and 1/3 subharmonic resonance peaks in Figure 2 are related to the
harmonic resonance peak. The lower 1/3 (near 37·1 Hz) and 1/5 (near 62·2 Hz)
subharmonic solutions are related to the second superharmonic resonance peak near
12·4 Hz. The 1/2 (near 16·1 Hz), 1/4 (near 33 Hz), 1/7 (near 58 Hz) and 1/10 (near 83 Hz)
subharmonic solutions are related to the third superharmonic resonance peak near 8·1 Hz.
The 1/3 (near 18·4 Hz), 1/5 (near 31 Hz), 1/9 (near 56 Hz) and 1/13 (near 81 Hz)
subharmonic solutions are related to the fourth superharmonic resonance peak near 6·0
Hz (not visible in Figure 2).

On the harmonic branch and every subharmonic branch one or more periodic doubling
routes leading to chaos exist. (These are not shown in Figure 2; the periodic doubling
routes exist at the unstable parts of the branches marked by two flip bifurcations.) On
the 1/2 subharmonic branch the qualitative dynamics change very much for small
frequency variations near 40 Hz. This is caused by the fact that near 40 Hz grazing impact
occurs: the beam just touches the elastic contact. For frequencies lower than 40 Hz in the
1/2 subharmonic solutions the beam hits the contact twice per period, whereas for
frequencies larger than 40 Hz in the 1/2 subharmonic solutions the beam hits the contact
once per period. Because the contact law is continuous, the system response does not
change dramatically at grazing impact; no grazing bifurcations can be found in this
system. However, as for discontinuous impacts, one would expect that the system response
changes very much in the neighbourhood of grazing impact: i.e., if the penetration
increases. Because of the grazing impact near 40 Hz, the maximum displacements of the
system increase and two periodic doubling routes leading to chaos were found in that
frequency area. Only the 1/4 subharmonic solutions of these period doubling routes are
shown in Figure 2. Grazing impact also occurs at the 1/3 subharmonic resonance peak
near 66 Hz.

4. TWO-DOF MODEL

By using the component mode synthesis method, the system can be reduced to two
DOF’s. Then, in the model one residual flexibility mode and one free-interface eigenmode
( f1 =13·1 Hz) are included. The two-DOF model has two eigenfrequencies: f1 =13·1 Hz
and f2 =125·1 Hz. Notice that because only one free-interface eigenmode is included, the
second eigenfrequency is inaccurate. Because the second eigenfrequency of the beam,
f2 =117·2 Hz, lies close to the second eigenfrequency of the two-DOF model, still this

5



Figure 4. The maximum displacements of the periodic solutions of the 2-DOF model; jm =0·01. · · · ·,
Unstable; ——, stable.

model is suitable to show the effect of adding one DOF to the system on the system
response. In the two-DOF model, besides the linear damper in the middle, extra damping
is added by means of modal damping of the two eigenmodes with modal damping
coefficient jm =0·01. Extra modal damping is added because it is impossible to calculate
periodic solutions without modal damping due to the low damping level of the system
(without modal damping all periodic solutions are numerically unstable) and in practice
also modal damping is present.

In Figure 4 are shown the maximum absolute displacements =y =max of the middle of
the beam, occurring in the periodic solutions for varying excitation frequency of the
two-DOF model. The figure shows again the harmonic, 1/2 subharmonic and 1/3
subharmonic solutions, now with extra resonance peaks. The extra resonance peaks on the
harmonic branch are superharmonic resonance peaks of the second eigenfrequency of
the model: a fifth superharmonic resonance peak (near 26 Hz), a fourth superharmonic
resonance peak (near 32 Hz), a third superharmonic resonance peak (near 44 Hz) and a
second superharmonic resonance peak (near 64 Hz). These superharmonic resonance
peaks cause an additional resonance peak on the 1/2 subharmonic and 1/3 subharmonic
branches. These subharmonic branches have three peaks, where the third peak is related
to the fifth superharmonic resonance peak (near 26 Hz) of the second eigenfrequency of
the model.

The vertical dashed lines in Figure 4 show the frequency at which the superharmonic
resonance peaks of the second eigenmode are expected (for f2 =125·1 Hz). These dashed
lines show that the fifth, fourth, third and second superharmonic resonances occur at a
higher frequency than expected. The second harmonic resonance peak (not visible in
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Figure 4) occurs near 126·5 Hz, so the second ‘‘eigenfrequency’’† increases from 125·1 Hz
to 126.5 Hz. This does not explain the higher frequencies for which superharmonic
resonances occur; the fifth superharmonic resonance peak occurs near 26·5 Hz and
26·5×5=132·5 Hzq 126·5 Hz. In a bilinear system with a=790, which shows a similar
shift of the harmonic resonance peaks as in our system (see section 3), the superharmonic
resonances occur at the same higher frequencies. This means that the higher superharmonic
resonance frequencies are not caused by the stiffening character of the contact law of Hertz.
Investigation of the periodic solutions in the superharmonic resonance peaks shows that
the closer the superharmonic resonance peak lies to the first harmonic resonance peak, the
greater the penetration of the elastic contact in the beam and the lower the relative time
per period for which the elastic contact is ‘‘connected’’ to the beam. Furthermore, the
superharmonic resonance peaks which lie close to the first harmonic resonance peak are
not dominated only by the second ‘‘eigenfrequency’’ but also by the first ‘‘eigenfrequency’’.
This means that the closer a nth superharmonic resonance peak lies to the first harmonic
resonance peak, the more the nth superharmonic resonance frequency will be increased
from f2/n to ( f1 + f2)/n.

Near the first harmonic resonance peak (23 Hz) two separated harmonic branches
coexist ((a) and (b)). Both branches have a harmonic resonance peak. One branch (b) is
unstable at the top. The unstable part on this branch is marked by two cyclic fold
bifurcations and underneath the unstable part a stable branch (c) exists with a period
doubling route to chaos. Investigation of the periodic solutions shows that in the upper
(unstable) part of the branch (b) the beam hits the contact twice per period and in the lower
(stable) part of the branch (c) the beam hits the contact once per period (see also the later
Figure 6 in this section). Near the two cyclic fold bifurcations grazing impact occurs.
At the top of the other (stable) harmonic branch (a) the beam hits the contact twice
per period. Furthermore, the periodic solutions of the upper unstable part (b) are
dominated by only the first ‘‘eigenfrequency’’ of the system, where the periodic solutions
of the other branches (a) and (c) are dominated by both the first and the second
‘‘eigenfrequency’’. Apparently, because of the greater velocity of the beam at impact, the
higher modes of the system are excited. As mentioned before, the superharmonic
resonances near the first harmonic resonance peak occur at a higher frequency than
expected. Because of this, the sixth superharmonic resonance peak also occurs at a higher
frequency than expected. Since branch (b) is dominated by the first ‘‘eigenfrequency’’ only
and branch (a) is dominated by both the first and the second ‘‘eigenfrequency’’, it can be
concluded that the resonance peak on the stable branch (a) near 23 Hz is the sixth
superharmonic resonance peak (( f1 + f2)/n=(13·1+125·1)/6=23 Hz) and the resonance
peak on the unstable branch (b) is the first harmonic resonance peak.

In the 1/2 and 1/3 subharmonic resonance peaks the beam also hits the contact twice
per period, whereas in the single-DOF model the beam hits the contact once per period
near the harmonic, 1/2 subharmonic and 1/3 subharmonic resonance peaks. In Figure 4
it is shown that near the 1/2 subharmonic and 1/3 subharmonic resonance peaks no
separated branches coexist as they do near the harmonic resonance peak. However, near
these subharmonic peaks similar behaviour is found as that near the harmonic resonance
peak. With an increase of frequency from 45 Hz to 47 Hz on the 1/2 subharmonic branch
(a), the maximum displacement increases until the top whereafter it decreases until the
branch becomes unstable via a cyclic fold bifurcation. The branch (b) turns back and
simultaneously the maximum displacement increases again. Near the cyclic fold bifurcation

† Because the model is non-linear, one cannot speak of the eigenfrequencies of the model. Here,
‘‘eigenfrequency’’ is used for the frequency at which the model resonates.
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grazing impact occurs; however, in both the stable (a) and the unstable (b) branch the beam
again hits the contact twice per period. Further decreasing of the frequency results in a
decrease of amplitude of the unstable branch which then becomes stable via a cyclic fold
bifurcation at 44·5 Hz and turns back again with increasing frequency. In this
stable branch (c) the beam hits the contact once per period (near 44·5 Hz grazing impact
occurs). Further increasing the frequency leads to a resonance peak where the branch is
unstable marked by two flip bifurcations. Here a period doubling route leading to chaos
exists. Only the 1/4 subharmonic solutions of this period doubling route are shown in
Figure 4. At the top of the 1/2 harmonic branch (c) at 47 Hz again grazing impact occurs,
although for decreasing and increasing frequency in the 1/2 subharmonic solutions the
beam hits the contact once per period.

The 1/2 subharmonic resonance peak near 47 Hz on branch (c) cannot be related directly
to a superharmonic resonance peak. Investigation of the period solutions shows that again
the stable 1/2 subharmonic branches (a) and (c) are dominated by both the first and the
second ‘‘eigenfrequencies’’ while the unstable branch (b) (marked by two cyclic fold
bifurcations) is dominated by the first ‘‘eigenfrequency’’ only. Near the 1/3 subharmonic
resonance peak similar behaviour was found.

The subharmonic solutions related to the superharmonic resonance peaks of the first
resonance peak, which dominated the response of the single-DOF model between the
highest harmonic, 1/2 and 1/3 subharmonic peaks, could not be found in the two-DOF
model. Only the 1/3 subharmonic solution related to the second superharmonic resonance
peak of the first eigenmode could be found near 33 Hz and this branch is fully
unstable now. Furthermore, now more period doubling routes leading to chaos are found
on the harmonic and subharmonic branches, and in the frequency ranges 30–37 Hz and
59–66 Hz chaotic behaviour was found.

Notice that, in contrast to the frequency response of the single-DOF model, the 1/2
subharmonic and 1/3 subharmonic resonance peaks are now lower than the harmonic
resonance peak. This is caused by the anti-resonance near 85 Hz. Furthermore, the
frequencies at which the harmonic and subharmonic resonance peaks occur are decreased
by 2 Hz. The reason for this is that the beam now hits the contact twice per period in the
peaks, whereas the response at the peaks is dominated by the first two ‘‘eigenfrequencies’’.
In comparison with the linear system, the first eigenfrequency is moved from 13·1 Hz to
23·1 Hz. The second eigenfrequency has not changed very much (125·1 Hz:126·5 Hz).

In Figure 5 are shown the maximum displacements occurring in the periodic solutions
if the model damping coefficient is decreased to jm =0·001. The response of the system
is similar to the response for jm =0·01. However, now the resonance peaks are higher.
Nevertheless, in the highest resonance peaks the beam still hits the contact twice per period.
Furthermore, the unstable parts on the branches (most of them with period doubling
routes) have become larger. Again, the subharmonic solutions caused by superharmonic
resonance peaks of the first harmonic resonance peak could not be found. One additional
1/14 unstable subharmonic branch was found near 57 Hz.

The periodic solutions of the two-DOF model at fe =23·0 Hz are shown in Figure 6.
The figure shows that the periodic solutions of branches (a) and (b) hit the contact twice
and that, in comparison to the periodic solution of the single-DOF model (Figure 3),
in the periodic solutions of the two-DOF model higher frequencies are present.

5. FOUR-DOF MODEL

In this section the system is reduced to four DOF’s. Simulations with the system reduced
to five DOF’s showed no major differences, so it may be concluded that the four-DOF
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Figure 5. As Figure 4, but jm =0·001.

model is a good approximation for the unreduced system in the frequency range under
investigation. In the four-DOF model three free-interface eigenmodes are included
( f1 =13·1 Hz, f2 =117·5 Hz, f3 =326·5 Hz) and one residual flexibility mode. The model
is approximately valid up to 500 Hz. The eigenfrequencies of the four-DOF model are
f1 =13·1 Hz, f2 =117·5 Hz, f3 =326·5 Hz and f4 =749·5 Hz, where the last frequency is
caused by the residual flexibility mode and is not accurate. Again in the four-DOF model,

Figure 6. The periodic solutions of the 2-DOF model at fe =23·0 Hz; jm =0·001.
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Figure 7. The maximum displacements of the 4-DOF model; jm =0·01. · · · ·, unstable; ——, stable.

besides the linear damper in the middle, extra damping is added by means of modal
damping of the four eigenmodes with modal damping coefficient jm .

In Figure 7 are shown the maximum absolute displacements =y =max of the middle of the
beam occurring in the periodic solutions for varying excitation frequency of the four-DOF
model with jm =0·01. Again, the response is dominated by the harmonic resonance peak
and 1/2 and 1/3 subharmonic resonance peaks which are related to the first harmonic
resonance peak. Also again, superharmonic resonances exist at the harmonic branch
which are related to the second and third ‘‘eigenfrequencies’’ of the system and again
these superharmonic resonance peaks occur at a higher frequency than expected just
as in the two-DOF model. These superharmonic resonance peaks result in additional
resonance peaks on the 1/2 and 1/3 subharmonic solutions. The first (highest) peak on the
branches with subharmonics is related to the first harmonic resonance peak. The other two
peaks on the 1/2 and 1/3 subharmonic branches are dominated by both the second and
third ‘‘eigenfrequencies’’. In the previous section we saw that every resonance peak near
the first harmonic resonance peak is projected on the 1/2 and 1/3 subharmonic branches.
If the extra two peaks on the 1/2 and 1/3 subharmonic branches are projected back
on the first harmonic resonance peak, these two peaks have to be caused by the fifth
superharmonic resonance peak near 27 Hz of the second ‘‘eigenfrequency’’ (see the inset
of Figure 7). Because of superharmonic resonance of the third ‘‘eigenfrequency’’, the
fifth superharmonic resonance peak is divided into two peaks: one peak is high and one
peak is much lower (with two peaks on it). Because the fifth superharmonic resonance peak
is divided into two peaks, also two extra peaks occur on the 1/2 and 1/3 subharmonic
branches.

In contrast to the two-DOF model, in the four-DOF model no second harmonic branch
was found near the first harmonic resonance peak. Still, there might be a second harmonic
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branch but the 1/2 and 1/3 subharmonic resonance peaks do not indicate that one
exists. Also, because in the four-DOF model the second eigenfrequency is moved from
125·1 Hz to 117·5 Hz, in comparison with the two-DOF model, now the frequency
for which the sixth superharmonic resonance peak occurs has also decreased. In the
two-DOF model the sixth superharmonic resonance peak was responsible for the
existence of the second harmonic branch. The harmonic, 1/2 and 1/3 subharmonic
resonance peaks are stable and the beam hits the contact twice per period. In the two
extra peaks on the 1/2 and 1/3 subharmonic solutions the beam hits the contact once
per period.

In Figure 7 it is shown that fewer period doubling routes on the harmonic, 1/2 and 1/3
subharmonic branches exist than in the two-DOF model with jm =0·01. This is caused
by the fact that because now four eigenmodes are damped with modal damping coefficient
jm =0·01, and hence the amount of damping in the system is increased which results in
less non-linear phenomena. Nevertheless, in the frequency areas 30–38 Hz and 58–63 Hz
chaotic behaviour was found.

The response of the system if the modal damping coefficient is decreased to jm =0·001
is shown in Figure 8. Compared to Figure 7, now all sub- and superharmonic resonance
peaks increase and in the frequency domain in which the harmonic resonance peak exists
many superharmonic resonance peaks can be seen. These superharmonic resonance peaks
are not related to one ‘‘eigenfrequency’’ of the model. The superharmonic resonance
peaks in the frequency domain 24–26 Hz are again dominated by the second and third
‘‘eigenfrequency’’ of the model, and they are responsible for the two extra resonance peaks
on the 1/2 and 1/3 subharmonic branches. Again in these peaks the beam hits the contact
once per period. The higher peaks in the frequency domain 22–23 Hz are dominated by
the first and second ‘‘eigenfrequencies’’ of the model. Some peaks are unstable and here

Figure 8. As Figure 7, but jm =0·001.
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Figure 9. The periodic solution of the 4-DOF model at fe =22·5 Hz; jm =0·001.

period doubling routes leading to chaos exist. In the stable peaks the beam hits the contact
once per period, in the unstable peaks the beam hits the contact three times per period
(see Figure 9). Also on other parts of the branches additional period doubling routes
leading to chaos exist than for jm =0·01.

6. CONCLUSIONS

Periodic solutions have been calculated for a multi-DOF beam system with an elastic
stop at its middle for varying excitation frequency. The linear beam was modelled by using
finite elements and reduced by using component mode synthesis. The elastic contact as
modelled by using the contact law of Hertz and the periodic solutions were calculated by
solving two-point boundary value problems by the multiple shooting method. By using
this method it is possible to calculate stable and (very) unstable periodic solutions and in
combination with a path-following method very complex branches of periodic solutions
can be calculated.

The results show that the behaviour of the single-DOF system can be globally predicted
in advance if the frequency for which the harmonic resonance peak occurs is known.
All the superharmonic and subharmonic resonance peaks can be predicted by using the
harmonic resonance frequency. However, because on every harmonic and subharmonic
branch period doubling routes leading to chaos exist, the behaviour of the single-DOF
system is dominated by chaotic behaviour between the highest harmonic, 1/2 and 1/3
subharmonic resonance peaks.

The two-DOF model shows globally the same maximum amplitudes as the single-DOF
system. However, because of the second eigenmode an additional peak is found on the
1/2 and 1/3 subharmonic branches. In contrast to the single-DOF model, where the beam
hits the elastic contact once per period in the highest resonance peaks, now the beam
hits the elastic contact twice per period in these peaks. This means that the periodic
solutions near the resonance peaks are very different from those of the single-DOF model.
Between the highest harmonic, 1/2 and 1/3 subharmonic resonance peaks the behaviour
is again dominated by chaotic behaviour, which is now caused by additional period
doubling routes on the harmonic, 1/2 and 1/3 subharmonic resonance branches. The
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subharmonics caused by superharmonic resonances of the first ‘‘eigenfrequency’’, which
dominated the response of the single-DOF system, have disappeared.

The response of the four-DOF model shows that although the third linear
eigenfrequency of the beam is four times the highest excitation frequency under
investigation, this ‘‘eigenfrequency’’ still has a large influence on the system behaviour.
The results show that the amount of damping in the model has a large influence on
the frequency responses. Increasing the modal damping leads to fewer period doubling
routes and smaller frequency intervals with chaotic behaviour. However, also at higher
damping levels 1/2 and 1/3 subharmonics dominate the frequency response and the
influence of the third linear eigenfrequency is still large.

Because the impact contact has been modelled using a continuous contact law, no
grazing bifurcations were found. In the neighbourhood of grazing impact, i.e., the beam
just touches the elastic contact, in many cases period doubling routes occur. However, this
is not always the case, and not every period doubling route is in the neighbourhood of
a frequency for which grazing impact occurs.
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