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Abstract. We introduce a system of monadic affine sized types, which
substantially generalise usual sized types, and allows this way to capture
probabilistic higher-order programs which terminate almost surely. Go-
ing beyond plain, strong normalisation without losing soundness turns
out to be a hard task, which cannot be accomplished without a richer,
quantitative notion of types, but also without imposing some affinity
constraints. The proposed type system is powerful enough to type clas-
sic examples of probabilistically terminating programs such as random
walks. The way typable programs are proved to be almost surely termi-
nating is based on reducibility, but requires a substantial adaptation of
the technique.

1 Introduction

Probabilistic models are more and more pervasive in computer science [1–3].
Moreover, the concept of algorithm, originally assuming determinism, has been
relaxed so as to allow probabilistic evolution since the very early days of theo-
retical computer science [4]. All this has given impetus to research on probabilis-
tic programming languages, which however have been studied at a large scale
only in the last twenty years, following advances in randomized computation [5],
cryptographic protocol verification [6, 7], and machine learning [8]. Probabilistic
programs can be seen as ordinary programs in which specific instructions are
provided to make the program evolve probabilistically rather than deterministi-
cally. The typical example are instructions for sampling from a given distribution
toolset, or for performing probabilistic choice.

One of the most crucial properties a program should satisfy is termination:
the execution process should be guaranteed to end. In (non)deterministic com-
putation, this is easy to formalize, since any possible computation path is only
considered qualitatively, and termination is a boolean predicate on programs:
any non-deterministic program either terminates – in must or may sense – or it
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does not. In probabilistic programs, on the other hand, any terminating compu-
tation path is attributed a probability, and thus termination becomes a quanti-
tative property. It is therefore natural to consider a program terminating when
its terminating paths form a set of measure one or, equivalently, when it ter-
minates with maximal probability. This is dubbed “almost sure termination”
(AST for short) in the literature [9], and many techniques for automatically
and semi-automatically checking programs for AST have been introduced in the
last years [10–13]. All of them, however, focus on imperative programs; while
probabilistic functional programming languages are nowadays among the most
successful ones in the realm of probabilistic programming [8]. It is not clear at all
whether the existing techniques for imperative languages could be easily applied
to functional ones, especially when higher-order functions are involved.

In this paper, we introduce a system of monadic affine sized types for a
simple probabilistic λ-calculus with recursion and show that it guarantees the
AST property for all typable programs. The type system, described in Section 4,
can be seen as a non-trivial variation on Hughes et al.’s sized types [14], whose
main novelties are the following:

• Types are generalised so as to be monadic, this way encapsulating the kind
of information we need to type non-trivial examples. This information, in
particular, is taken advantage of when typing recursive programs.

• Typing rules are affine: higher-order variables cannot be freely duplicated.
This is quite similar to what happens when characterising polynomial time
functions by restricting higher-order languages akin to the λ-calculus [15].
Without affinity, the type system is bound to be unsound for AST.

The necessity of both these variations is discussed in Section 2 below. The main
result of this paper is that typability in monadic affine sized types entails AST,
a property which is proved using an adaptation of the Girard-Tait reducibility
technique [16]. This adaptation is technically involved, as it needs substantial
modifications allowing to deal with possibly infinite and probabilistic computa-
tions. In particular, every reducibility set must be parametrized by a quantitative
parameter p guaranteeing that terms belonging to this set terminate with prob-
ability at least p. The idea of parametrizing such sets already appears in work by
the first author and Hofmann [17], in which a notion of realizability parametrized
by resource monoids is considered. These realizability models are however stud-
ied in relation to linear logic and to the complexity of normalisation, and do not
fit as such to our setting, even if they provided some crucial inspiration. In our
approach, the fact that recursively-defined terms are AST comes from a conti-
nuity argument on this parameter: we can prove, by unfolding such terms, that
they terminate with probability p for every p < 1, and continuity then allows to
take the limit and deduce that they are AST. This soundness result is technically
speaking the main contribution of this paper, and is described in Section 5.

An extended version with more details and proofs is available [18].



1.1 Related Works

Sized types have been originally introduced by Hughes, Pareto, and Sabry [14]
in the context of reactive programming. A series of papers by Barthe and col-
leagues [19–21] presents sized types in a way similar to the one we will adopt
here, although still for a deterministic functional language. Contrary to the other
works on sized types, their type system is proved to admit a decidable type infer-
ence, see the unpublished tutorial [20]. Abel developed independently of Barthe
and colleagues a similar type system featuring size informations [22]. These three
lines of work allow polymorphism, arbitrary inductive data constructors, and or-
dinal sizes, so that data such as infinite trees can be manipulated. These three
features will be absent of our system, in order to focus the challenge on the
treatment of probabilistic recursive programs. Another interesting approach is
the one of Xi’s Dependent ML [23], in which a system of lightweight dependent
types allows a more liberal treatment of the notion of size, over which arithmetic
or conditional operations may in particular be applied. Termination is ensured
by checking during typing that a given metrics decreases during recursive calls.
This system is well-adapted for practical termination checking and can be ex-
tended with mutual recursion, inductive types and polymorphism, but does not
feature ordinal sizes. See [22] for a detailed comparison of the previously cited
systems. Some works along these lines are able to deal with coinductive data,
as well as inductive ones [14, 19, 22]. They are related to Amadio and Coupet-
Grimal’s work on guarded types ensuring productivity of infinite structures such
as streams [24]. None of these works deal with probabilistic computation, and in
particular with almost sure termination.

There has been a lot of interest, recently, about probabilistic termination
as a verification problem in the context of imperative programming [10–13].
All of them deal, invariably, with some form of while-style language without
higher-order functions. A possible approach is to reduce AST for probabilistic
programs to termination of non-deterministic programs [10]. Another one is to
extend the concept of ranking function to the probabilistic case. Bournez and
Garnier obtained in this way the notion of Lyapunov ranking function [25],
but such functions capture a notion more restrictive than AST: positive almost
sure termination, meaning that the program is AST and terminates in expected
finite time. To capture AST, the notion of ranking supermartingale [26] has been
used. Note that the use of ranking supermartingales allows to deal with programs
which are both probabilistic and non-deterministic [11, 13] and even to reason
about programs with real-valued variables [12].

Some recent work by Cappai, the first author, and Parisen Toldin [27, 28]
introduce type systems ensuring that all typable programs can be evaluated in
probabilistic polynomial time. This is too restrictive for our purposes. On the
one hand, we aim at termination, and restricting to polynomial time algorithms
would be an overkill. On the other hand, the above-mentioned type systems
guarantee that the length of all probabilistic branches are uniformly bounded
(by the same polynomial). In our setting, this would restrict the focus to terms
in which infinite computations are forbidden, while we simply want the set of



such computations to have probability 0. In fact, the results we present in this
paper can be seen as a first step towards a type system characterizing average
polynomial time, in the style of implicit computational complexity [29].

2 Why is Monadic Affine Typing Necessary?

In this section, we justify the design choices that guided us in the development
of our type system. As we will see, the nature of AST requires a significant and
non-trivial extension of the system of sized types originally introduced to ensure
termination in the deterministic case [14].

Sized Types for Deterministic Programs. The simply-typed λ-calculus endowed
with a typed recursion operator letrec and appropriate constructs for the natural
numbers, sometimes called PCF, is already Turing-complete, so that there is no
hope to prove it strongly normalizing. Sized types [14] refine the simple type
system by enriching base types with annotations, so as to ensure the termination
of any recursive definition. Let us explain the idea of sizes in the simple, yet
informative case in which the base type is Nat. Sizes are defined by the grammar

s ::= i
∣∣ ∞ ∣∣ ŝ

where i is a size variable and ŝ is the successor of the size s — with ∞̂ = ∞.
These sizes permit to consider decorations Nats of the base type Nat, whose
elements are natural numbers of size at most s. The type system ensures that

the only constant value of type Nat̂i is 0, that the only constant values of type

Nat̂̂i are 0 or 1
¯

= S 0, and so on. The type Nat∞ is the one of all natural

numbers, and is therefore often denoted as Nat.
The crucial rule of the sized type system, which we present here following

Barthe et al. [19], allows one to type recursive definitions as follows:

Γ, f : Nati → σ `M : Nat̂i → σ[̂i/i] i pos σ

Γ ` letrec f = M : Nats → σ[s/i]
(1)

This typing rule ensures that, to recursively define the function f = M , the
term M taking an input of size î calls f on inputs of strictly lesser size i. This
is for instance the case when typing the program

MDBL = letrec f = λx.case x of
{
S→ λy.S S (f y)

∣∣ 0→ 0
}

computing recursively the double of an input integer, as the hypothesis of the
fixpoint rule in a typing derivation of MDBL is

f : Nati → Nat ` λx.case x of
{
S→ λy.S S (f y)

∣∣ 0→ 0
}

: Nat̂i → Nat

The fact that f is called on an input y of strictly lesser size i is ensured by the
rule typing the case construction:

Γ ` x : Nat̂i Γ ` λy.S S (f y) : Nati → Nat Γ ` 0 : Nat

Γ ` case x of
{
S→ λy.S S (f y)

∣∣ 0→ 0
}

: Nat



where Γ = f : Nati → Nat, x : Nat̂i. The soundness of sized types for strong
normalization allows to conclude that MDBL is indeed SN.

A Näıve Generalization to Probabilistic Terms. The aim of this paper is to
obtain a probabilistic, quantitative counterpart to this soundness result for sized
types. Note that unlike the result for sized types, which was focusing on all
reduction strategies of terms, we only consider a call-by-value calculus3. Terms
can now contain a probabilistic choice operator ⊕p, such that M ⊕p N reduces
to the term M with probability p ∈ R[0,1], and to N with probability 1 − p.
The language and its operational semantics will be defined more extensively in
Section 3. Suppose for the moment that we type the choice operator in a näıve
way:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

On the one hand, the original system of sized types features subtyping, which
allows some flexibility to “unify” the types of M and N to σ. On the other hand,
it is easy to realise that all probabilistic branches would have to be terminating,
without any hope of capturing interesting AST programs: nothing has been done
to capture the quantitative nature of probabilistic termination. An instance of a
term which is not strongly normalizing but which is almost-surely terminating
— meaning that it normalizes with probability 1 — is

MBIAS =
(
letrec f = λx.case x of

{
S→ λy.f(y)⊕ 2

3
(f(S S y)))

∣∣ 0→ 0
})

n
¯

(2)

simulating a biased random walk which, on x = m+1, goes to m with probability
2
3 and to m + 2 with probability 1

3 . The näıve generalization of the sized type
system only allows us to type the body of the recursive definition as follows:

f : Nat̂̂i → Nat∞ ` λy.f(y)⊕ 2
3

(f(S S y))) : Nat̂i → Nat∞ (3)

and thus does not allow us to deduce any relevant information on the quantita-
tive termination of this term: nothing tells us that the recursive call f(S S y) is
performed with a relatively low probability.

A Monadic Type System. Along the evaluation of MBIAS , there is indeed a
quantity which decreases during each recursive call to the function f : the average
size of the input on which the call is performed. Indeed, on an input of size î,
f calls itself on an input of smaller size i with probability 2

3 , and on an input

of greater size
̂̂
i with probability only 1

3 . To capture such a relevant quantitative
information on the recursive calls of f , and with the aim to capture almost sure
termination, we introduce a monadic type system, in which distributions of types
can be used to type in a finer way the functions to be used recursively. Contexts
Γ |Θ will be generated by a context Γ attributing sized types to any number

3 Please notice that choosing a reduction strategy is crucial in a probabilistic setting,
otherwise one risks getting nasty forms of non-confluence [30].



of variables, while Θ will attribute a distribution of sized types to at most one
variable — typically the one we want to use to recursively define a function. In
such a context, terms will be typed by a distribution type, formed by combining
the Dirac distributions of types introduced in the Axiom rules using the following
rule for probabilistic choice:

Γ |Θ ` M : µ Γ |Ψ ` N : ν 〈µ〉 = 〈ν〉
Choice

Γ |Θ ⊕p Ψ ` M ⊕p N : µ⊕p ν

The guard condition 〈µ〉 = 〈ν〉 ensures that µ and ν are distributions of types
decorating of the same simple type. Without this condition, there is no hope to
aim for a decidable type inference algorithm.

The Fixpoint Rule. Using these monadic types, instead of the insufficiently in-
formative typing (3), we can derive the sequent

f :

{(
Nati → Nat∞

) 2
3

,

(
Nat̂̂i → Nat∞

) 1
3

}
` λy.f(y)⊕ 2

3
(f(S S y))) : Nat̂i → Nat∞ (4)

in which the type of f contains finer information on the sizes of arguments
over which it is called recursively, and with which probability. This information
enables us to perform a first switch from a qualitative to a quantitative notion
of termination: we will adapt the hypothesis

Γ, f : Nati → σ `M : Nat̂i → σ[̂i/i] (5)

of the original fix rule (1) of sized types, expressing that f is called on an
argument of size one less than the one on which M is called, to a condition
meaning that there is probability 1 to call f on arguments of a lesser size after
enough iterations of recursive calls. We therefore define a random walk associated
to the distribution type µ of f , the sized walk associated to µ, and which is as
follows for the typing (4):

• the random walk starts on 1, corresponding to the size î,
• on an integer n+ 1, the random walk jumps to n with probability 2

3 and to
n+ 2 with probability 1

3 ,
• 0 is stationary: on it, the random walk loops.

This random walk – as all sized walks will be – is an instance of one-counter
Markov decision problem [31], so that it is decidable in polynomial time whether
the walk reaches 0 with probability 1. We will therefore replace the hypothesis
(5) of the letrec rule by the quantitative counterpart we just sketched, obtaining{

(Natsj → ν[sj/i])
pj

∣∣ j ∈ J } induces an AST sized walk

Γ | f :
{

(Natsj → ν[sj/i])
pj

∣∣ j ∈ J } ` V : Nat̂i → ν [̂i/i]
letrec

Γ, ∆ |Θ ` letrec f = V : Natr → ν[r/i]

where we omit two additional technical conditions to be found in Section 4 and
which justify the weakening on contexts incorporated to this rule. The resulting



type system allows to type a varieties of examples, among which the following
program computing the geometric distribution over the natural numbers:

MEXP =
(
letrec f = λx.x⊕ 1

2
S (f x)

)
0 (6)

and for which the decreasing quantity is the size of the set of probabilistic
branches of the term making recursive calls to f . Another example is the unbi-
ased random walk

MUNB =
(
letrec f = λx.case x of

{
S→ λy.f(y)⊕ 1

2
(f(S S y)))

∣∣ 0→ 0
})

n
¯

(7)

for which there is no clear notion of decreasing measure during recursive calls,
but which yet terminates almost surely, as witnessed by the sized walk associated
to an appropriate derivation in the sized type system. We therefore claim that
the use of this external guard condition on associated sized walks, allowing us
to give a general condition of termination, is satisfying as it both captures an
interesting class of examples, and is computable in polynomial time.

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Fig. 1. A Tree of Recursive Calls.

In Section 5, we prove that this
shift from a qualitative to a quantita-
tive hypothesis in the type system re-
sults in a shift from the soundness for
strong normalization of the original
sized type system to a soundness for
its quantitative counterpart: almost-
sure termination.

Why Affinity? To ensure the sound-
ness of the letrec rule, we need one
more structural restriction on the
type system. For the sized walk argu-
ment to be adequate, we must ensure
that the recursive calls of f are indeed
precisely modelled by the sized walk,
and this is not the case when consid-
ering for instance the following term:

MNAFF =
(
letrec f = λx.case x of

{
S→ λy.f(y)⊕ 2

3
(f(S S y) ; f(S S y))

∣∣ 0→ 0
})

n
¯

(8)

where the sequential composition ; is defined in this call-by-value calculus as
M ; N = (λx.λy.0) M N . Note that MNAFF calls recursively f twice in the
right branch of its probabilistic choice, and is not therefore modelled appropri-
ately by the sized walk associated to its type. In fact, we would need a generalized
notion of random walk to model the recursive calls of this process; it would be
a random walk on stacks of integers. In the case where n = 1, the recursive calls
to f can indeed be represented by a tree of stacks as depicted in Figure 1, where
leftmost edges have probability 2

3 and rightmost ones 1
3 . The root indicates that



the first call on f was on the integer 1. From it, there is either a call of f on 0
which terminates, or two calls on 2 which are put into a stack of calls, and so
on. We could prove that, without the affine restriction we are about to formu-
late, the term MNAFF is typable with monadic sized types and the fixpoint rule
we just designed. However, this term is not almost-surely terminating. Notice,
indeed, that the sum of the integers appearing in a stack labelling a node of the
tree in Figure 1 decreases by 1 when the left edge of probability 2

3 is taken, and
increases by at least 3 when the right edge of probability 1

3 is taken. It follows
that the expected increase of the sum of the elements of the stack during one
step is at least −1× 2

3 + 3× 1
3 = 1

3 > 0. This implies that the probability that
f is called on an input of size 0 after enough iterations is strictly less than 1, so
that the term MNAFF cannot be almost surely terminating.

Such general random processes have stacks as states and are rather complex
to analyse. To the best of the authors’ knowledge, they do not seem to have been
considered in the literature. We also believe that the complexity of determining
whether 0 can be reached almost surely in such a process, if decidable, would
be very high. This leads us to the design of an affine type system, in which the
management of contexts ensures that a given probabilistic branch of a term may
only use at most once a given higher-order symbol. We do not however formulate
restrictions on variables of simple type Nat, as affinity is only used on the letrec
rule and thus on higher-order symbols. Remark that this is in the spirit of certain
systems from implicit computational complexity [15, 32].

Another restriction imposed by this reduction of almost-sure termination
checking for higher-order programs to almost-sure termination checking for one-
counter Markov decision processes is the fact that we do not allow a general
form of nested recursion. This restriction is encoded in the system by allowing
at most one variable to have a distribution of types in the context. It follows
that programs making use of mutual recursion can not be typed in this system.

3 A Simple Probabilistic Functional Programming
Language

We consider the language λ⊕, which is an extension of the λ-calculus with re-
cursion, constructors for the natural numbers, and a choice operator. In this
section, we introduce this language and its operational semantics, and use them
to define the crucial notion of almost-sure termination.

Terms and Values. Given a set of variables X , terms and values of the language
λ⊕ are defined by mutual induction as follows:

Terms: M, N, . . . ::= V
∣∣ V W

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of {S→W | 0→ Z }

Values: V, W, Z, . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx.M ∣∣ letrec f = V

where x, f ∈ X , p ∈]0, 1[. When p = 1
2 , we often write ⊕ as a shorthand

for ⊕ 1
2
. The set of terms is denoted Λ⊕ and the set of values is denoted ΛV⊕.



Terms of the calculus are assumed to be in A-normal form [33]. This allows
to formulate crucial definitions in a simpler way, concentrating in the Let con-
struct the study of the probabilistic behaviour of terms. We claim that all tra-
ditional constructions can be encoded in this formalism. For instance, the usual
application M N of two terms can be harmlessly recovered via the encoding

let x = M in (let y = N in x y). In the sequel, we write c
−→
V when a value

may be either 0 or of the shape S V .

Term Distributions. The introduction of a probabilistic choice operator in the
syntax leads to a probabilistic reduction relation. It is therefore meaningful to
consider the (operational) semantics of a term as a distribution of values mod-
elling the outcome of all the finite probabilistic reduction paths of the term.
For instance, the term MEXP defined in (6) evaluates to the term distribution
assigning probability 1

2n+1 to the value n
¯
. Let us define this notion more formally:

Definition 1 (Distribution). A distribution on X is a function D : X →
[0, 1] satisfying the constraint

∑
D =

∑
x∈X D(x) ≤ 1, where

∑
D is called

the sum of the distribution D . We say that D is proper precisely when
∑

D = 1.
We denote by P the set of all distributions, would they be proper or not. We
define the support S(D) of a distribution D as: S(D) =

{
x ∈ X

∣∣ D(x) > 0
}

.
When S(D) consists only of closed terms, we say that D is a closed distribution.
When it is finite, we say that D is a finite distribution. We call Dirac a proper
distribution D such that S(D) is a singleton. We denote by 0 the null distribution,
mapping every term to the probability 0.

When X = Λ⊕, we say that D is a term distribution. In the sequel, we will
use a more practical notion of representation of distributions, which enumer-
ates the terms with their probabilities as a family of assignments. For technical
reasons, notably related to the subject reduction property, we will also need
pseudo-representations, which are essentially multiset-like decompositions of the
representation of a distribution.

Definition 2 (Representations and Pseudo-Representations). Let D ∈
P be of support

{
xi

∣∣ i ∈ I
}

, where xi = xj implies i = j for every i, j ∈ I.

The representation of D is the set D =
{
x

D(xi)
i

∣∣ i ∈ I
}

where x
D(xi)
i is just

an intuitive way to write the pair (xi,D(xi)). A pseudo-representation of D is
any multiset

[
y
pj
j

∣∣ j ∈ J
]

such that

∀j ∈ J , yj ∈ S(D) ∀i ∈ I, D(xi) =
∑
yj=xi

pj .

By abuse of notation, we will simply write D =
[
y
pj
j

∣∣ j ∈ J
]

to mean that D

admits
[
y
pj
j

∣∣ j ∈ J
]

as pseudo-representation. Any distribution has a canoni-
cal pseudo-representation obtained by simply replacing the set-theoretic notation
with the multiset-theoretic one.



Distributions support operations like affine combinations and sums – the
latter being only a partial operation. We extend these operations to (pseudo)-
representations, in a natural way. Distributions, endowed with the pointwise
partial-order 4, form an ω-CPO, but not a lattice, since the join of two distri-
butions is not guaranteed to exist.

Definition 3 (Value Decomposition of a Term Distribution). Let D be

a term distribution. We write its value decomposition as D
VD
= D|V + D|T ,

where D|V is the maximal subdistribution of D whose support consists of values,
and D|T = D −D|V is the subdistribution of “non-values” contained in D .

Operational Semantics. The semantics of a term will be the value distribution to
which it reduces via the probabilistic reduction relation, iterated up to the limit.
As a first step, we define the call-by-value reduction relation →v⊆ P × P on
Figure 2. Note that we write Dirac distributions simply as terms on the left side
of→v, to improve readability. As usual, we denote by→n

v the n-th iterate of the
relation →v, with →0

v being the identity relation. We then define the relation

Vn
v as follows. Let D →n

v E
VD
= E|V + E|T . Then D Vn

v E|V . Note that, for
every n ∈ N and D ∈ P, there is a unique distribution E such that D →n

v E .
Moreover, E|V is the only distribution such that D Vn

v E|V .

Lemma 1. Let n,m ∈ N with n < m. Let Dn (resp Dm) be the distribution
such that M Vn

v Dn (resp M Vm
v Dm). Then Dn 4 Dm.

Definition 4 (Semantics of a Term, of a Distribution). The semantics
of a distribution D is the distribution [[ D ]] = supn∈N

({
Dn

∣∣ D Vn
v Dn

})
.

This supremum exists thanks to Lemma 1, combined with the fact that (P, 4) is
an ω-CPO. We define the semantics of a term M as [[M ]] = [[

{
M1

}
]].

We now have all the ingredients required to define the central concept of this
paper, the one of almost-surely terminating term:

Definition 5 (Almost-Sure Termination). We say that a term M is almost-
surely terminating precisely when

∑
[[M ]] = 1.

4 Monadic Affine Sized Typing

Following the discussion from Section 2, we introduce in this section a non-trivial
lifting of sized types to our probabilistic setting. As a first step, we design an
affine simple type system for λ⊕. This means that no higher-order variable may
be used more than once in the same probabilistic branch. However, variables
of base type Nat may be used freely. In spite of this restriction, the resulting
system allows to type terms corresponding to any probabilistic Turing machine.
In Section 4.2, we introduce a more sophisticated type system, which will be
monadic and affine, and which will be sound for almost-sure termination as we
prove in Section 5.



let x = V in M →v

{
(M [V/x])1

}
(λx.M) V →v

{
(M [V/x])1

}
M ⊕p N →v

{
Mp, N1−p

}
M →v

{
Lpi

i

∣∣ i ∈ I }
let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I }
case S V of { S→W | 0→ Z } →v

{
(W V )1

}
case 0 of {S→W | 0→ Z } →v

{
(Z)1

}

(letrec f = V )
(
c
−→
W
)
→v

{(
V [(letrec f = V ) /f ]

(
c
−→
W
))1}

D
VD
=

{
M

pj
j

∣∣ j ∈ J }+ D|V ∀j ∈ J , Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ D|V

Fig. 2. Call-by-value reduction relation →v on distributions.

4.1 Affine Simple Types for λ⊕

The terms of the language λ⊕ can be typed using a variant of the simple types
of the λ-calculus, extended to type letrec and ⊕p, but also restricted to an affine
management of contexts. Recall that the constraint of affinity ensures that a
given higher-order symbol is used at most once in a probabilistic branch. We
define simple types over the base type Nat in the usual way: κ, κ′, . . . ::=
Nat

∣∣ κ→ κ′ where, by convention, the arrow associates to the right. Contexts
Γ, ∆, . . . are sequences of simply-typed variables x :: κ. We write sequents as
Γ `M :: κ to distinguish these sequents from the ones using distribution types
appearing later in this section. Before giving the rules of the type system, we
need to define two policies for contracting contexts: an affine and a general one.

Context Contraction. Contexts can be combined in two different ways. On the
one hand, one can form the non-affine contraction Γ ∪ ∆ of two contexts, for
which Γ and ∆ are allowed to share some variables, but these variables must be
attributed the same type in both contexts. On the other hand, one can form the
affine contraction Γ ]∆, in which variables in common between Γ and ∆ must
be attributed the type Nat.



Var
Γ, x :: κ ` x :: κ

Γ ` V :: Nat
Γ ` S V :: Nat Γ ` 0 :: Nat

Γ, x :: κ ` M :: κ′
λ

Γ ` λx.M :: κ→ κ′
Γ ` V :: κ→ κ′ ∆ ` W :: κ App

Γ ]∆ ` V W :: κ′

Γ ` M :: κ ∆ ` N :: κ
Choice

Γ ∪∆ ` M ⊕p N :: κ

Γ `M :: κ ∆, x :: κ ` N :: κ′
Let

Γ ]∆ ` let x = M in N :: κ′

Γ ` V :: Nat ∆ `W :: Nat→ κ ∆ ` Z :: κ
Case

Γ ]∆ ` case V of { S→W | 0→ Z } :: κ

Γ, f :: Nat→ κ ` V :: Nat→ κ ∀x ∈ Γ, x :: Nat
letrec

Γ ` letrec f = V :: Nat→ κ

Fig. 3. Affine simple types for λ⊕.

The Affine Type System. The affine simple type system is then defined in Fig-
ure 3. All the rules are quite standard. Higher-order variables can occur at most
once in any probabilistic branch because all binary typing rules – except prob-
abilistic choice – treat contexts affinely. We set ΛV⊕ (Γ, κ) =

{
V ∈ ΛV⊕

∣∣
Γ ` V :: κ} and Λ⊕ (Γ, κ) =

{
M ∈ Λ⊕

∣∣ Γ `M :: κ
}

. We simply write
ΛV⊕ (κ) = ΛV⊕ (∅, κ) and Λ⊕ (κ) = Λ⊕ (∅, κ) when the terms or values are closed.
These closed, typable terms enjoy subject reduction and the progress property.

4.2 Monadic Affine Sized Types

This section is devoted to giving the basic definitions and results about monadic
affine sized types (MASTs, for short), which can be seen as decorations of the
affine simple types with some size information.

Sized Types. We consider a set S of size variables, denoted i, j, . . . and define
sizes (called stages in [19]) as:

s, r ::= i
∣∣ ∞ ∣∣ ŝ

where ·̂ denotes the successor operation. We denote the iterations of ·̂ as follows:̂̂s is denoted ŝ
2

,
̂̂̂
s is denoted ŝ

3

,and so on. By definition, at most one variable
i ∈ S appears in a given size s. We call it its spine variable, denoted as spine (s).
We write spine (s) = ∅ when there is no variable in s. An order 4 on sizes can



be defined as follows:

s 4 s
s 4 r r 4 t

s 4 t s 4 ŝ s 4∞

Notice that these rules imply notably that ∞̂ is equivalent to ∞, i.e., ∞̂ 4 ∞
and∞ 4 ∞̂. We consider sizes modulo this equivalence. We can now define sized
types and distribution types by mutual induction, calling distributions of (sized)
types the distributions over the set of sized types:

Definition 6 (Sized Types, Distribution Types). Sized types and distri-
bution types are defined by mutual induction, contextually with the function 〈·〉
which maps any sized or distribution type to its underlying affine type.

Sized types: σ, τ ::= σ → µ
∣∣ Nats

Distribution types: µ, ν ::=
{
σpii

∣∣ i ∈ I
}
,

Underlying map: 〈σ → µ〉 = 〈σ〉 → 〈µ〉
〈Nats〉 = Nat

〈
{
σpii

∣∣ i ∈ I
}
〉 = 〈σj〉

For distribution types we require additionally that
∑
i∈I pi ≤ 1, that I is a

finite non-empty set, and that 〈σi〉 = 〈σj〉 for every i, j ∈ I. In the last equation,
j is any element of I.

The definition of sized types is monadic in that a higher-order sized type is
of the shape σ → µ where σ is again a sized type, and µ is a distribution of sized
types.

Contexts and Operations on Them. Contexts are sequences of variables together
with a sized type, and at most one distinguished variable with a distribution
type:

Definition 7 (Contexts). Contexts are of the shape Γ |Θ, with

Sized contexts: Γ, ∆, . . . ::= ∅
∣∣ x : σ, Γ (x /∈ dom(Γ ))

Distribution contexts: Θ, Ψ, . . . ::= ∅
∣∣ x : µ

As usual, we define the domain dom(Γ ) of a sized context Γ by induction:
dom(∅) = ∅ and dom(x : σ, Γ ) = {x} ] dom(Γ ). We proceed similarly for
the domain dom(Θ) of a distribution context Θ. When a sized context Γ =
x1 : σ1, . . . , xn : σn (n ≥ 1) is such that there is a simple type κ with
∀i ∈ {1, . . . , n} , 〈σi〉 = κ, we say that Γ is uniform of simple type κ. We
write this as 〈Γ 〉 = κ.

We write Γ, ∆ for the disjoint union of these sized contexts: it is defined
whenever dom(Γ ) ∩ dom(∆) = ∅. We proceed similarly for Θ, Ψ , but note that
due to the restriction on the cardinality of such contexts, there is the additional
requirement that Θ = ∅ or Ψ = ∅.

We finally define contexts as pairs Γ |Θ of a sized context and of a distribu-
tion context, with the constraint that dom(Γ ) ∩ dom(Θ) = ∅.



Definition 8 (Probabilistic Sum). Let µ and ν be two distribution types. We
define their probabilistic sum µ ⊕p ν as the distribution type p · µ + (1 − p) · ν.
We extend this operation to a partial operation on distribution contexts:
• For two distribution types µ and ν such that 〈µ〉 = 〈ν〉, we define (x : µ) ⊕p

(x : ν) = x : µ ⊕p ν,
• (x : µ) ⊕p ∅ = x : p · µ,
• ∅ ⊕p (x : µ) = x : (1− p) · µ,
• In any other case, the operation is undefined.

Definition 9 (Weighted Sum of Distribution Contexts). Let (Θi)i∈I be
a non-empty family of distribution contexts and (pi)i∈I be a family of reals of
[0, 1]. We define the weighted sum

∑
i∈I pi · Θi as the distribution context x :∑

i∈I pi · µi when the following conditions are met:

1. ∃x, ∀i ∈ I, Θi = x : µi,
2. ∀(i, j) ∈ I2, 〈Θi〉 = 〈Θj〉,
3. and

∑
i∈I pi ≤ 1,

In any other case, the operation is undefined.

We define the substitution [r/i] of a size variable in a size or in a sized or
distribution type in the expected way; see the long version [18] for details. A
subtyping relation allows to lift the order 4 on sizes to monadic sized types:

Definition 10 (Subtyping). We define the subtyping relation v on sized types
and distribution types as follows:

σ v σ
s 4 r

Nats v Natr
τ v σ µ v ν
σ → µ v τ → ν

∃f : I → J ,
(
∀i ∈ I, σi v τf(i)

)
and

(
∀j ∈ J ,

∑
i∈f−1(j) pi ≤ p′j

)
{
σpii

∣∣ i ∈ I
}
v
{
τ
p′j
j

∣∣ j ∈ J
}

Sized Walks and Distribution Types. As we explained in Section 2, the rule typing
letrec in the monadic, affine type system relies on an external decision procedure,
computable in polynomial time. This procedure ensures that the sized walk — a
particular instance of one-counter Markov decision process (OC-MDP, see [31]),
but which does not make use of non-determinism — associated to the type of
the recursive function of interest indeed ensures almost sure termination. Let us
now define the sized walk associated to a distribution type µ. For the precise
connection with OC-MDPs, see the long version [18].

Definition 11 (Sized Walk). Let I ⊆fin N be a finite set of integers. Let
{pi}i∈I be such that

∑
i∈I pi ≤ 1. These parameters define a Markov chain

whose set of states is N and whose transition relation is defined as follows:
• the state 0 ∈ N is stationary (i.e. one goes from 0 to 0 with probability 1),
• from the state s+ 1 ∈ N one moves:



• to the state s+ i with probability pi, for every i ∈ I;
• to 0 with probability 1−

(∑
i∈I pi

)
.

We call this Markov chain the sized walk on N associated to
(
I, (pi)i∈I

)
. A sized

walk is almost surely terminating when it reaches 0 with probability 1 from any
initial state.

Notably, checking whether a sized walk is terminating is relatively easy:

Proposition 1 (Decidability of AST for Sized Walks). It is decidable in
polynomial time whether a sized walk is AST.

Proof. By encoding sized walks into OC-MDPs, which enjoy this property [31].
See the long version [18].

Definition 12 (From Types to Sized Walks). Consider a distribution type
µ =

{
(Natsj → νj)

pj
∣∣ j ∈ J

}
such that ∀j ∈ J , spine (sj) = i. Then µ

induces a sized walk, defined as follows. First, by definition, sj must be of the

shape î
kj

with kj ≥ 0 for every j ∈ J . We set I =
{
kj

∣∣ j ∈ J
}

and qkj = pj
for every j ∈ J . The sized walk induced by the distribution type µ is then the
sized walk associated to (I, (qi)i∈I)).

Example 1. Let µ =

{(
Nati → Nat∞

) 1
2

,

(
Nat̂i

2

→ Nat∞
) 1

3

}
. Then the in-

duced sized walk is the one associated to
(
{0, 2} ,

(
p0 = 1

2 , p2 = 1
3

))
. In other

words, it is the random walk on N which is stationary on 0, and which on non-
null integers i+ 1 moves to i with probability 1

2 , to i+ 2 with probability 1
3 , and

jumps to 0 with probability 1
6 . Note that the type µ, and therefore the associated

sized walk, models a recursive function which calls itself on a size lesser by one
unit with probability 1

2 , on a size greater by one unit with probability 1
3 , and

which does not call itself with probability 1
6 .

Typing Rules. Judgements are of the shape Γ |Θ ` M : µ. When a distribu-
tion µ =

{
σ1
}

is Dirac, we simply write it σ. The type system is defined in

Figure 4. As earlier, we define sets of typable terms, and set Λs,V
⊕ (Γ |Θ, σ) ={

V
∣∣ Γ |Θ ` V : σ

}
, and Λs

⊕ (Γ |Θ,µ) =
{
M

∣∣ Γ |Θ `M : µ
}

. We abbre-

viate Λs,V
⊕ (∅ | ∅, σ) as Λs,V

⊕ (σ) and Λs
⊕ (∅ | ∅, σ) as Λs

⊕ (σ).

This sized type system is a refinement of the affine simple type system for
λ⊕: if x1 : σ1, . . . , xn : σn | f : µ ` M : ν, then it is easily checked that
x1 :: 〈σ1〉, . . . , xn :: 〈σn〉, f :: 〈µ〉 `M :: 〈ν〉.

Lemma 2 (Properties of Distribution Types).

• Γ |Θ ` V : µ =⇒ µ is Dirac.
• Γ |Θ `M : µ =⇒ µ is proper.



Var
Γ, x : σ |Θ ` x : σ

Var’
Γ |x : σ ` x : σ

Γ |Θ ` V : Nats
Succ

Γ |Θ ` S V : Natŝ
Zero

Γ |Θ ` 0 : Natŝ

Γ, x : σ |Θ ` M : µ
λ

Γ |Θ ` λx.M : σ → µ

Γ |Θ ` M : µ µ v ν
Sub

Γ |Θ ` M : ν

Γ, ∆ |Θ ` V : σ → µ Γ, Ξ |Ψ ` W : σ 〈Γ 〉 = Nat
App

Γ, ∆, Ξ |Θ, Ψ ` V W : µ

Γ |Θ ` M : µ Γ |Ψ ` N : ν 〈µ〉 = 〈ν〉
Choice

Γ |Θ ⊕p Ψ ` M ⊕p N : µ⊕p ν

Γ, ∆ |Θ `M :
{
σpi
i

∣∣ i ∈ I } 〈Γ 〉 = Nat

Γ, Ξ, x : σi |Ψi ` N : µi (∀i ∈ I)
Let

Γ, ∆, Ξ |Θ,
(∑

i∈I pi · Ψi

)
` let x = M in N :

∑
i∈I pi · µi

Γ | ∅ ` V : Natŝ ∆ |Θ `W : Nats → µ ∆ |Θ ` Z : µ
Case

Γ, ∆ |Θ ` case V of {S→W | 0→ Z } : µ

〈Γ 〉 = Nat

i /∈ Γ and i positive in ν and ∀j ∈ J , spine (sj) = i{
(Natsj → ν[sj/i])

pj
∣∣ j ∈ J } induces an AST sized walk

Γ | f :
{

(Natsj → ν[sj/i])
pj

∣∣ j ∈ J } ` V : Nat̂i → ν [̂i/i]
letrec

Γ, ∆ |Θ ` letrec f = V : Natr → ν[r/i]

Fig. 4. Affine distribution types for λ⊕.

Subject Reduction for Monadic Affine Sized Types. The type system enjoys a
form of subject reduction adapted to the probabilistic case and more specifically
to the fact that terms reduce to distributions of terms. Let us sketch the idea of
this adapted subject reduction property on an example. Remark that the type
system allows us to derive the sequent

∅ | ∅ ` 0⊕ 0 :

{(
Natŝ

) 1
2

,
(
Nat̂̂r

) 1
2

}
(9)

where this distribution type is formed by typing a copy of 0 with Natŝ and the

other with Nat̂̂r. Then, the term 0 ⊕ 0 reduces to
{
0

1
2

}
+
{
0

1
2

}
=
{
01
}

=

[[ 0⊕0 ]]: the operational semantics collapses the two copies of 0 appearing during



the reduction. However, in the spirit of the usual subject reduction for deter-
ministic languages, we would like to type the two copies of 0 appearing dur-
ing the reduction with different types. We therefore use the notion of pseudo-

representation:
[
0

1
2 , 0

1
2

]
is a pseudo-representation of [[ 0⊕0 ]], and we attribute

the type Natŝ to the first element of this pseudo-representation and the type

Nat̂̂r to the other, obtaining the following closed distribution of typed terms:{(
0 : Natŝ

) 1
2

,
(
0 : Nat̂̂r

) 1
2

}
(10)

We can then compute the average type of (10), which we call the expectation
type of this closed distribution of typed terms:

1

2
·
{(

Natŝ
)1
}

+
1

2
·
{(

Nat̂̂r
)1
}

=

{(
Natŝ

) 1
2

,
(
Nat̂̂r

) 1
2

}
Remark that it coincides with the type of the initial term (9). This will be
our result of subject reduction: when a closed term M of distribution type µ
reduces to a distribution D of terms, we can type all the terms appearing in a
pseudo-representation of D to obtain a closed distribution of typed terms whose
expectation type is µ. Let us now introduce the definitions necessary to the
formal statement of the subject reduction property.

Definition 13 (Distributions of Distribution Types, of Typed Terms).

• A distribution of distribution types is a distribution D over the set of distri-
bution types, and such that µ, ν ∈ S(D) ⇒ 〈µ〉 = 〈ν〉.

• A distribution of typed terms, or typed distribution, is a distribution of
typing sequents which are derivable in the monadic, affine sized type sys-
tem. The representation of such a distribution has thus the following form:{

(Γi |Θi `Mi : µi)
pi

∣∣ i ∈ I
}
. In the sequel, we restrict to the uniform

case in which all the terms appearing in the sequents are typed with distribu-
tion types of the same fixed underlying type.

• A distribution of closed typed terms, or closed typed distribution, is a typed
distribution in which all contexts are ∅ | ∅. In this case, we simply write
the representation of the distribution as

{
(Mi : µi)

pi
∣∣ i ∈ I

}
, or even

as (Mi : µi)
pi when the indexing is clear from context. We write pseudo-

representations in a similar way.

Definition 14 (Expectation Types). Let (Mi : µi)
pi be a closed typed distri-

bution. We define its expectation type as the distribution type E ((Mi : µi)
pi) =∑

i∈I piµi.

We can now state the main lemma of subject reduction:

Lemma 3 (Subject Reduction, Fundamental Lemma). Let M ∈ Λs
⊕ (µ)

and D be the unique closed term distribution such that M →v D . Then there
exists a closed typed distribution

{
(Lj : νj)

pj
∣∣ j ∈ J

}
such that



• E ((Lj : νj)
pj ) = µ,

•
[

(Lj)
pj

∣∣ j ∈ J
]

is a pseudo-representation of D .
Note that the condition on expectations implies that

⋃
j∈J S(νj) = S(µ).

The proof of this result, and its generalization to the iterated reduction of
closed typed distributions, appear in the long version. They allow us to deduce
the following property on the operational semantics of λ⊕-terms:

Theorem 1 (Subject Reduction). Let M ∈ Λs
⊕ (µ). Then there exists a

closed typed distribution
{

(Wj : σj)
pj

∣∣ j ∈ J
}

such that
• E ((Wj : σj)

pj ) 4 µ,
• and that

[
(Wj)

pj
∣∣ j ∈ J

]
is a pseudo-representation of [[M ]].

Note that E ((Wj : σj)
pj ) 4 µ since the semantics of a term may not be

a proper distribution at this stage. In fact, it will follow from the soundness
theorem of Section 5 that the typability of M implies that

∑
[[M ]] = 1 and thus

that the previous statement is an equality.

5 Typability Implies Termination: Reducibility Strikes
Again

This section is technically the most advanced one of the paper, and proves that
the typing discipline we have introduced indeed enforces almost sure termina-
tion. As already mentioned, the technique we will employ is a substantial gener-
alisation of Girard-Tait’s reducibility. In particular, reducibility must be made
quantitative, in that terms can be said to be reducible with a certain probability.
This means that reducibility sets will be defined as sets parametrised by a real
number p, called the degree of reducibility of the set. As Lemma 4 will empha-
size, this degree of reducibility ensures that terms contained in a reducibility set
parametrised by p terminate with probability at least p. These “intermediate”
degrees of reducibility are required to handle the fixpoint construction, and show
that recursively-defined terms that are typable are indeed AST — that is, that
they belong to the appropriate reducibility set, parametrised by 1.

The first preliminary notion we need is that of a size environment:

Definition 15 (Size Environment). A size environment is any function ρ
from S to N ∪ {∞}. Given a size environment ρ and a size expression s, there
is a naturally defined element of N ∪ {∞}, which we indicate as JsKρ:

• Ĵi
n

Kρ = ρ(i) + n,
• J∞Kρ = ∞.

In other words, the purpose of size environments is to give a semantic meaning
to size expressions. Our reducibility sets will be parametrised not only on a
probability, but also on a size environment.

Definition 16 (Reducibility Sets).



• For values of simple type Nat, we define the reducibility sets

VRedpNats,ρ =
{
Sn 0

∣∣ p > 0 =⇒ n < JsKρ
}
.

• Values of higher-order type are in a reducibility set when their applications to
appropriate values are reducible terms, with an adequate degree of reducibility:

VRedpσ→µ,ρ =
{
V ∈ ΛV⊕ (〈σ → µ〉)

∣∣ ∀q ∈ (0, 1], ∀W ∈ VRedqσ,ρ,
V W ∈ TRedpqµ,ρ

}
• Distributions of values are reducible with degree p when they consist of values

which are themselves globally reducible “enough”. Formally, DRedpµ,ρ is the set
of finite distributions of values – in the sense that they have a finite support –
admitting a pseudo-representation D =

[
(Vi)

pi
∣∣ i ∈ I

]
such that, setting

µ =
{

(σj)
p′j

∣∣ j ∈ J
}

, there exists a family (pij)i∈I,j∈J ∈ [0, 1]|I|×|J | of

probabilities and a family (qij)i∈I,j∈J ∈ [0, 1]|I|×|J | of degrees of reducibility,
satisfying:
1. ∀i ∈ I, ∀j ∈ J , Vi ∈ VRedqijσj ,ρ,
2. ∀i ∈ I,

∑
j∈J pij = pi,

3. ∀j ∈ J ,
∑
i∈I pij = µ(σj),

4. p ≤
∑
i∈I
∑
j∈J qijpij.

Note that (2) and (3) imply that
∑

D =
∑

µ. We say that
[

(Vi)
pi
∣∣ i ∈ I ]

witnesses that D ∈ DRedpµ,ρ.

• A term is reducible with degree p when its finite approximations compute
distributions of values of degree of reducibility arbitrarily close to p:

TRedpµ,ρ =
{
M ∈ Λ⊕ (〈µ〉)

∣∣ ∀0 ≤ r < p, ∃νr 4 µ, ∃nr ∈ N,
M Vnr

v Dr and Dr ∈ DRedrνr,ρ
}

Note that here, unlike to the case of DRed, the fact that M ∈ Λ⊕ (〈µ〉) implies
that µ is proper.

The first thing to observe about reducibility sets as given in Definition 16 is
that they only deal with closed terms, and not with arbitrary terms. As such,
we cannot rely directly on them when proving AST for typable terms, at least
if we want to prove it by induction on the structure of type derivations. We will
therefore define in the sequel an extension of these sets to open terms, which will
be based on these sets of closed terms, and therefore enjoy similar properties.
The following lemma, relatively easy to prove, is crucial for the understanding
of the reducibility sets, for that it shows that the degree of reducibility of a term
gives information on the sum of its operational semantics:

Lemma 4 (Reducibility and Termination).
• Let D ∈ DRedpµ,ρ. Then

∑
D ≥ p.

• Let M ∈ TRedpµ,ρ. Then
∑

[[M ]] ≥ p.

It follows from this lemma that terms with degree of reducibility 1 are AST:

Corollary 1 (Reducibility and AST). Let M ∈ TRed1
µ,ρ. Then M is AST.



Fundamental Properties. Before embarking in the proof that typability implies
reducibility, it is convenient to prove some fundamental properties of reducibility
sets, which inform us about how these sets are structured, and which will be
crucial in the sequel. First of all, if the degree of reducibility p is 0, then no
assumption is made on the probability of termination of terms, distributions or
values. It follows that the three kinds of reducibility sets collapse to the set of
all affinely simply typable terms, distributions or values:

Lemma 5 (Candidates of Null Reducibility).
• If V ∈ ΛV⊕ (κ), then V ∈ VRed0

σ,ρ for every σ such that 〈σ〉 = κ and every
size environment ρ.

• Let D =
{

(Vi)
pi

∣∣ i ∈ I
}

be a finite distribution of values. If ∀i ∈ I, Vi ∈
ΛV⊕ (κ), then D ∈ DRed0

µ,ρ for every µ such that 〈µ〉 = κ and
∑

µ =
∑

D
and every ρ.

• If M ∈ Λ⊕ (κ), then M ∈ TRed0
µ,ρ for µ such that 〈µ〉 = κ and every ρ.

As p gives us a lower bound on the sum of the semantics of terms, it is easily
guessed that a term having degree of reducibility p must also have degree of
reducibility q < p. The following lemma makes this statement precise:

Lemma 6 (Downward Closure). Let σ be a sized type, µ be a distribution
type and ρ be a size environment. Let 0 ≤ q < p ≤ 1. Then:
• For any value V , V ∈ VRedpσ,ρ =⇒ V ∈ VRedqσ,ρ,
• For any finite distribution of values D , D ∈ DRedpµ,ρ =⇒ D ∈ DRedqµ,ρ,
• For any term M , M ∈ TRedpµ,ρ =⇒ M ∈ TRedqµ,ρ.

To analyse the letrec construction, we will prove that, for every ε ∈ (0, 1],
performing enough unfoldings of the fixpoint allows to prove that the recursively-
defined term is in a reducibility set parametrised by 1 − ε. We will be able
to conclude on the AST nature of recursive constructions using the following
continuity lemma, proved using the theory of linear programming [18]:

Lemma 7 (Continuity). Let σ be a sized type, µ be a distribution type and ρ
be a size environment. Let p ∈ (0, 1]. Then:
• VRedpσ,ρ =

⋂
0<q<p VRedqσ,ρ,

• DRedpµ,ρ =
⋂

0<q<p DRedqµ,ρ,
• TRedpµ,ρ =

⋂
0<q<p TRedqµ,ρ.

The last fundamental property about reducibility sets which will be crucial
to treat the recursive case is the following, stating that the sizes appearing in
a sized type may be recovered in the reducibility set by using an appropriate
semantics of the size variables, and conversely:

Lemma 8 (Size Commutation). Let i be a size variable, s be a size such that
s = ∞ or that spine (s) 6= i and ρ be a size environment. Then:
• VRedpσ[s/i],ρ = VRedpσ,ρ[i 7→JsKρ],

• DRedpµ[s/i],ρ = DRedpµ,ρ[i 7→JsKρ],

• TRedpµ[s/i],ρ = TRedpµ,ρ[i7→JsKρ].



Unfoldings. The most difficult step in proving all typable terms to be reducible
is, unexpectedly, proving that terms involving recursion are reducible whenever
their respective unfoldings are. This very natural concept expresses simply that
any term in the form letrec f = W is assumed to compute the fixpoint of the
function defined by W .

Definition 17 (n-Unfolding). Suppose that V = (letrec f = W ) is closed,
then the n-unfolding of V is:

• V if n = 0;
• W [Z/f ] if n = m+ 1 and Z is the m-unfolding of V .

We write the set of unfoldings of V as Unfold (V ). Note that if V admits a simple
type, then all its unfoldings have this same simple type as well. In the sequel, we
implicitly consider that V is simply typed.

Any unfolding of V = (letrec f = W ) should behave like V itself: all unfoldings
of V should be equivalent. This, however, cannot be proved using simply the
operational semantics. It requires some work, and techniques akin to logical
relations, to prove (see [18]) this behavioural equivalence between a recursive
definition and its unfoldings.

Proposition 2 (Reducibility is Stable by Unfolding). Let n ∈ N and V =
(letrec f = W ) be a closed value. Suppose that Z is the n-unfolding of V . Then
V ∈ VRedpNats→µ,ρ if and only if Z ∈ VRedpNats→µ,ρ.

Extension to Open Terms. We are now ready to extend the notion of reducibility
set from the realm of closed terms to the one of open terms. This turns out to
be subtle. The guiding intuition is that one would like to define a term M with

free variables in −→x to be reducible iff any closure M [
−→
V /−→x ] is itself reducible in

the sense of Definition 16. What happens, however, to the underlying degree of

reducibility p? How do we relate the degrees of reducibility of
−→
V with the one

of M [
−→
V /−→x ]? The answer is contained in the following definition:

Definition 18 (Reducibility Sets for Open Terms). Suppose that Γ is a
sized context in the form x1 : σ1, . . . , xn : σn, and that y is a variable distinct
from x1, . . . , xn. Then we define the following sets of terms and values:

OTRedΓ | ∅µ,ρ =
{
M

∣∣ ∀(qi)i ∈ [0, 1]n, ∀ (V1, . . . , Vn) ∈
∏n
i=1 VRedqiσi,ρ,

M [
−→
V /−→x ] ∈ TRed

∏n
i=1 qi

µ,ρ

}
OVRedΓ | ∅µ,ρ =

{
W

∣∣ ∀(qi)i ∈ [0, 1]n, ∀ (V1, . . . , Vn) ∈
∏n
i=1 VRedqiσi,ρ,

W [
−→
V /−→x ] ∈ VRed

∏n
i=1 qi

µ,ρ

}



OTRed
Γ | y : {τ

pj
j }j∈J

µ,ρ =
{
M

∣∣ ∀(qi)i ∈ [0, 1]n, ∀
−→
V ∈

∏n
i=1 VRedqiσi,ρ,

∀
(
q′j
)
j
∈ [0, 1]J , ∀W ∈

⋂
j∈J VRed

q′j
τj ,ρ,

M [
−→
V ,W/−→x , y] ∈ TRedαµ,ρ

}
OVRed

Γ | y : {τ
pj
j }j∈J

µ,ρ =
{
Z
∣∣ ∀(qi)i ∈ [0, 1]n, ∀

−→
V ∈

∏n
i=1 VRedqiσi,ρ,

∀
(
q′j
)
j
∈ [0, 1]J , ∀W ∈

⋂
j∈J VRed

q′j
τj ,ρ,

Z[
−→
V ,W/−→x , y] ∈ VRedαµ,ρ

}

where α = (
∏n
i=1 qi)

((∑
j∈J pjq

′
j

)
+ 1−

(∑
j∈J pj

))
is called the degree of

reducibility. Note that these sets extend the ones for closed terms: in particular,
OTRed∅ | ∅µ,ρ = TRed1

µ,ρ.

Lemma 9 (Reducible Values are Reducible Terms). For every Γ, Θ, σ

and ρ, V ∈ OVRedΓ |Θσ,ρ if and only if V ∈ OTRed
Γ |Θ
{σ1 },ρ. An immediate conse-

quence is that OVRedΓ |Θσ,ρ ⊆ OTRed
Γ |Θ
{σ1 },ρ.

Reducibility and Sized Walks. To handle the fixpoint rule, we need to relate the
notion of sized walk which guards it with the reducibility sets, and in particular
with the degrees of reducibility we can attribute to recursively-defined terms.

Definition 19 (Probabilities of Convergence in Finite Time). Let us
consider a sized walk. We define the associated probabilities of convergence in
finite time (Prn,m)n∈N,m∈N as follows: ∀n ∈ N, ∀m ∈ N, the real number Prn,m
is defined as the probability that, starting from m, the sized walk reaches 0 in at
most n steps.

The point is that, for an AST sized walk, the more we iterate, the closer we get
to reaching 0 in finite time n with probability 1.

Lemma 10 (Finite Approximations of AST). Let m ∈ N and ε ∈ (0, 1].
Consider a sized walk, and its associated probabilities of convergence in finite
time (Prn,m)n∈N,m∈N. If the sized walk is AST, there exists n ∈ N such that
Prn,m ≥ 1− ε.

The following lemma is the crucial result relating sized walks with the re-
ducibility sets. It proves that, when the sized walk is AST, and after substitution
of the variables of the context by reducible values in the recursively-defined term,
we can prove the degree of reducibility to be any probability Prn,m of conver-
gence in finite time.

Lemma 11 (Convergence in Finite Time and letrec). Consider the distri-
bution type µ =

{
(Natsj → ν[sj/i])

pj
∣∣ j ∈ J

}
. Let Γ be the sized context

x1 : Natr1 , . . . , xl : Natrl . Suppose that Γ | f : µ ` V : Nat̂i → ν [̂i/i] and that



µ induces an AST sized walk. Denote (Prn,m)n∈N,m∈N its associated probabilities

of convergence in finite time. Suppose that V ∈ OVRed
Γ | f :µ

Natî→ν [̂i/i],ρ
for every ρ.

Let
−→
W ∈

∏l
i=1 VRed1

Natri ,ρ, then for every (n,m) ∈ N2, we have that

letrec f = V [
−→
W/−→x ] ∈ VRed

Prn,m
Nati→ν,ρ[i 7→m]

Proof. We give a sketch of the proof, to be found in the long version [18].
The proof is by recurrence on n. The main case relies on the decomposition

Prn+1,m′+1 =
∑
j∈J pjPrn,m′+kj + 1 −

(∑
j∈J pj

)
. The induction

hypothesis allows then to state that for every j ∈ J we have letrec f =

V [
−→
W/−→x ] ∈ VRed

Prn,m′+kj
Nati→ν,ρ[i 7→m′+kj ]

. We use the Size Commutation lemma

(Lemma 8) to obtain that letrec f = V [
−→
W/−→x ] is in an appropriate intersec-

tion of reducibility sets, and the hypothesis that V ∈ OVRed
Γ | f :µ

Natî→ν [̂i/i],ρ[i 7→m′]

then implies that V [
−→
W, letrec f = V [

−→
W/−→x ]/−→x , f ] ∈ VRed

Prn+1,m′+1

Nati→ν,ρ[i 7→m′+1]
,

using the Size Commutation lemma once again. As this term is an unfolding of

letrec f = V [
−→
W/−→x ], we conclude using Proposition 2. ut

When m = ∞, the previous lemma does not allow to conclude, and an
additional argument is required. Indeed, it does not make sense to consider a
sized walk beginning from ∞: the meaning of this size is in fact any integer, not
the ordinal ω. The following lemma justifies this vision by proving that, if a term
is in a reducibility set for any finite interpretation of a size, then it is also in the
set where the size is interpreted as ∞.

Lemma 12 (Reducibility for Infinite Sizes). Suppose that i pos ν and that
W is the value letrec f = V . If W ∈ VRedp

Nati→ν,ρ[i7→n]
for every n ∈ N, then

W ∈ VRedp
Nati→ν,ρ[i7→∞]

.

All these fundamental lemmas allow us to prove the following proposition,
which expresses that all typable terms are reducible and is the key step towards
the fact that typability implies AST:

Proposition 3 (Typing Soundness). If Γ |Θ `M : µ, then M ∈ OTRedΓ |Θµ,ρ

for every ρ. Similarly, if Γ |Θ ` V : σ, then V ∈ OVRedΓ |Θσ,ρ for every ρ.

Proof. We proceed by induction on the derivation of the sequent Γ |Θ `M : µ.
When M = V is a value, we know by Lemma 2 that µ =

{
σ1
}

; and we prove

that V ∈ OVRedΓ |Θσ,ρ for every ρ. By Lemma 9 we obtain that V ∈ OTRedΓ |Θµ,ρ

for every ρ. We proceed by case analysis on the last rule of the derivation:

• letrec: Suppose that Γ, ∆ |Θ ` letrec f = V : Natr → ν[r/i]. We treat
the case where ∆ = Θ = ∅. The general case is easily deduced using
the downward-closure of the reducibility sets (Lemma 6). Let Γ = x1 :



Natr1 , . . . , xn : Natrn . We need to prove that, for every family (qi)i ∈ [0, 1]n

and every (W1, . . . ,Wn) ∈
∏n
i=1 VRed

qi
Natri ,ρ, we have

(letrec f = V ) [
−→
W/−→x ] =

(
letrec f = V [

−→
W/−→x ]

)
∈ VRed

∏n
i=1 qi

Natr→ν[r/i],ρ

If there exists i ∈ I such that qi = 0, the result is immediate as the term
is simply-typed and Lemma 5 applies. Else, for every i ∈ I, we have by
definition that VRedqiNatri ,ρ = VRed1

Natri ,ρ. Since the sets VRed are downward-
closed (Lemma 6), it is in fact enough to prove that for every (W1, . . . ,Wn) ∈∏n
i=1 VRed

1
Natri ,ρ, we have

letrec f = V [
−→
W/−→x ] ∈ VRed1

Natr→ν[r/i],ρ

Moreover, by size commutation (Lemma 8),

VRed1
Natr→ν[r/i],ρ = VRed1

Nati→ν,ρ[i 7→JrKρ]

Let us therefore prove the stronger fact that, for every integer m ∈ N∪{∞},

letrec f = V [
−→
W/−→x ] ∈ VRed1

Nati→ν,ρ[i 7→m]

Now, the typing derivation gives us that Γ | f : µ ` V : Nat̂i → ν [̂i/i] and
that µ induces an AST sized walk. Denote (Prn,m)n∈N,m∈N its associated
probabilities of convergence in finite time. By induction hypothesis, V ∈
OVRed

Γ | f :µ

Natî→ν [̂i/i],ρ
for every ρ and we can apply Lemma 11. It follows that,

for every (n,m) ∈ N,

letrec f = V [
−→
W/−→x ] ∈ VRed

Prn,m
Nati→ν,ρ[i 7→m]

Let ε ∈ (0, 1). By Lemma 10, there exists n ∈ N such that Prn,m ≥ 1 − ε.
Using downward closure (Lemma 6) and quantifying over all the ε, we obtain

letrec f = V [
−→
W/−→x ] ∈

⋂
0<ε<1

VRed1−ε
Nati→ν,ρ[i 7→m]

so that, by continuity of VRed (Lemma 7), we obtain

letrec f = V [
−→
W/−→x ] ∈ VRed1

Nati→ν,ρ[i 7→m] (11)

for every m ∈ N, allowing us to conclude. It remains however to treat the case
where m =∞. Since i pos ν and that (11) holds for every m ∈ N, Lemma 12
applies and we obtain the result.

• Other cases: the other cases are treated in the long version [18]. ut
This proposition, together with the definition of OTRed, implies the main result
of the paper, namely that typability implies almost-sure termination:

Theorem 2. Suppose that M ∈ Λs
⊕ (µ). Then M is AST.

Proof. Suppose that M ∈ Λs
⊕ (µ), then by Proposition 3 we have M ∈ OTRed∅ | ∅µ,ρ

for every ρ. By definition, OTRed∅ | ∅µ,ρ = TRed1
µ,ρ. Corollary 1 then implies that

M is AST.



6 Conclusions and Perspectives

We presented a type system for an affine, simply-typed λ-calculus enriched with
a probabilistic choice operator, constructors for the natural numbers, and recur-
sion. This affinity constraint implies that a given higher-order variable may occur
(freely) at most once in any probabilistic branch of a program. The type system
we designed decorates the affine simple types with size information, allowing to
incorporate in the types relevant information about the recursive behaviour of
the functions contained in the program. A guard condition on the typing rule for
letrec, formulated with reference to an appropriate Markov chain, ensures that
typable terms are AST. The proof of soundness of this type system for AST
relies on a quantitative extension of the reducibility method, to accommodate
sets of candidates to the infinitary and probabilistic nature of the computations
we consider.

A first natural question is the one of the decidability of type inference for our
system. In the deterministic case, this question was only addressed by Barthe
and colleagues in an unpublished tutorial [20], and their solution is technically
involved, especially when it comes to dealing with the fixpoint rule. We believe
that their approach could be extended to our system of monadic sized types, and
hope that it could provide a decidable type inference procedure for it. However,
this extension will certainly be challenging, as we need to appropriately infer
distribution types associated with AST sized walks in the letrec rule.

Another perspective would be to study the general, non-affine case. This is
challenging, for two reasons. First, the system of size annotations needs to be
more expressive in order to distinguish between various occurrences of a same
function symbol in a same probabilistic branch. A solution would be to use the
combined power of dependent types – which already allowed Xi to formulate an
interesting type system for termination in the deterministic case [23] – and of
linearity: we could use linear dependent types [34] to formulate an extension of
the monadic sized type system keeping track of how many recursive calls are per-
formed, and of the size of each recursive argument. The second challenge would
then be to associate, in the typing rule for letrec, this information contained in
linear dependent types with an appropriate random process. This random pro-
cess should be kept decidable to guarantee that at least derivation checking can
be automated, and there will probably be a trade-off between the duplication
power we allow in programs and the complexity of deciding AST for the guard
in the letrec rule.

The extension of our type system to deal with general inductive datatypes
is essentially straightforward. Other perspectives would be to enrich the type
system so as to be able to treat coinductive data, polymorphic types, or ordinal
sizes, three features present in most system of sized types dealing with the tradi-
tional deterministic case, but which we chose not to address in this paper to focus
on the already complex task of accommodating sized types to a probabilistic and
higher-order framework.
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6. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In Shao, Z., Pierce, B.C., eds.: POPL 2009, ACM (2009) 90–101
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