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Abstract
Though radio and TV broadcast are highly structured docu-
ments, state-of-the-art speaker identification algorithms do not
take advantage of this information to improve prediction per-
formance: speech turns are usually identified independently
from each other, using unstructured multi-class classification
approaches. In this work, we propose to address speaker identi-
fication as a sequence labeling task and use two structured pre-
diction techniques to account for the inherent temporal structure
of interactions between speakers: the first one relies on Condi-
tional Random Field and can take into account local relations
between two consecutive speech turns; the second one, based on
the SEARN framework, sacrifices exact inference for the sake
of the expressiveness of the model and is able to incorporate
rich structure information during prediction. Experiments per-
formed on The Big Bang Theory TV series show that structured
prediction techniques outperform the standard unstructured ap-
proach.
Index Terms: speaker identification, speaker diarization, se-
quence labeling, structured prediction

1. Introduction
Thanks to NIST Rich Transcription evaluation series started
in 2002 [1] and to more recent initiatives such as ESTER [2],
ETAPE and REPERE [3] evaluation campaigns, a significant
amount of research has focused on speaker diarization and iden-
tification in conversational phone calls, radio and TV broadcast
news or meetings – all with the same objective: answering the
who speaks when? question.

Compiled in the recent review by Anguera et al. [4] and il-
lustrated in the upper part of Figure 1, most (if not all) speaker
diarization approaches share the same processing pipeline:
speech activity detection, followed by two (sometimes merged
into a single one) modules for temporal segmentation into ho-
mogeneous segments and their unsupervised clustering accord-
ing to the identity of the speaker. Speaker identification is then
addressed as a supervised multi-class classification problem.

Both clustering and classification modules consider their in-
puts (speech turns for the former, speaker clusters for the latter)
as unordered, unstructured and independent from each other.
For instance, hierarchical agglomerative clustering approaches
(e.g. BIC clustering [5]) take a bag of speech turns as initial in-
put and iteratively merge the two most similar clusters, update
the similarity matrix and start again until a stopping criterion is
met, completely disregarding the actual speech turns order.

1.1. Structure

As shown by the example in Figure 4, conversations within a
typical TV series episode are highly structured: as episodes are
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Figure 2: Speaker identification for episode 2 of season 1 of
The Big Bang Theory.
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Figure 3: Raj’s (left) and Sheldon’s (right) interactions with
other characters

usually divided into scenes involving only a subset of charac-
ters, speech turns of a given character are not uniformly dis-
tributed over the duration of the episode. Hence, knowing that
Penny is speaking at a particular time t tells us a lot about the
probability that she is also going to speak a few seconds later.

Similarly, Figure 3 provides additional evidence – if need
be – of the existing structure of the sequence of speakers. It
depicts the amount of interaction (i.e. consecutive speech turns)
between the main characters of the TV series. While Raj is
the less talkative character, knowing that he is speaking at a
particular time greatly increases the chance for the next speaker
to be Howard or Leonard.

A very few attempts have been made to take advantage of
prior knowledge about the structure in the speaker identification
process. For instance, local clustering (a.k.a. linear clustering)
is usually applied as a pre-processing step to merge adjacent
speech turns of a same speaker [4]. Though its objective is to
reduce the size of the clustering problem and obtain more dis-
criminant similarity matrices, this kind of approaches is also
motivated by the non-uniform distribution of speech turns high-
lighted in Figure 4. In the same vein, recent variational Bayes
approaches such as the “sticky HDP-HMM” proposed by Fox
et al. [6] jointly constrain minimum speech turn duration (the
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Figure 1: Speaker identification pipeline – structured (black) vs. unstructured (gray) prediction.

“sticky” part) and models the inter-speaker dynamics via tran-
sition probabilities (the “HMM” part). Attempts to step into
the structured prediction bandwagon have been proposed re-
cently, mostly through the use of Conditional Random Fields
(CRF). For instance, [7] proposes a variational CRF to address
the speaker tracking and detection tasks. However, they rely
on a linear CRF that only accounts for dependencies between
adjacent speech turns.

1.2. Sequence Labeling & Structured Prediction

Overall, existing approaches only take simple and local struc-
ture into account and completely overlook long-term (did
sheldon speak during the last 30 seconds?) and higher-order
structure (is raj discussing with both howard and penny?). In
this paper, we propose to address speaker identification as a se-
quence labeling task and to use structured prediction techniques
to account for the inherent temporal structure of interactions be-
tween speakers.

Sequence labeling consists in assigning a label to every el-
ement in a sequence of observations. Let x = (xi)

n
i=1 be a se-

quence of n observations and yi be the label of the ith element.
The sequence of labels, denoted by y = (yi)

n
i=1, generally

presents multiple dependencies. Because of the relations be-
tween the yi, some combinations of labels will not be possible
and some combinations will be more frequent. More formally,
if Λ denotes the set of all possible labels (the domain of the yi),
and Y the domain of the macro-label y, then the actual range
of possible labelings Y is only a (tiny) subset of Λn. Structured
prediction aims at developing models able to detect and exploit
these dependencies so as to improve prediction performance.

1.3. Outline

The main contribution of this paper is to show that speaker iden-
tification can benefit from structured prediction, whose general
theory is introduced in Section 2, along with the SEARN algo-
rithm which provides an efficient way to take long-term struc-
ture into account. The experimental protocol and implementa-
tion details are presented in Section 3. Results are summarized
and discussed in Section 4. Section 5 concludes the paper.

2. Structured Prediction
We will now present two frameworks that have been proposed
for sequence labeling.

2.1. Generalizing Multi-Class Classification

Many machine learning models like CRF [8] or SVMstruct [9]
have been proposed to take advantage of the information con-
veyed by relations between the labels. They all adopt the same

approach which can be seen as a generalization of multi-class
classification: given a w-parametrized scoring function F that
measures the compatibility between a sequence of observations
x and a sequence of labels y, sequence labeling amounts at find-
ing the most compatible output among all possible labelings in
Λn:

y∗ = arg max
y∈Λn

F (x,y;w) (1)

The arg max operator denotes the search in the space of all pos-
sible outputs that takes place during inference. Existing meth-
ods differ by the way they estimate the parameter vector: in a
CRF, w is chosen by maximizing the conditional likelihood of
y given x, in SVMstruct by maximizing a margin criterion.

The scoring function used to discriminate the expected so-
lution among all possible solutions is generally defined as a dot
product between a parameter vector w and a feature function
φ(x,y). φ can account for any relevant relation between labels,
and between input data and labels. In the case of speaker iden-
tification, features can be the time elapsed since the last speech
turn of a particular speaker, the list of the m speakers who last
spoke, or even the number of time a character spoke up since
the beginning. All these features can be directly inferred from
the sequence of labels.

In their general formulation, structured prediction methods
can use arbitrary relations. However, in practice, solving the
arg max in Equation (1) is a combinatorial optimization prob-
lem (the number of label sequences grows exponentially with
the sequence length) for which exact solutions can be found
efficiently only when very specific feature functions are con-
sidered. More precisely, if the scoring function is assumed to
be decomposable (i.e. it can be expressed as a product of local
scoring functions), the arg max can be solved efficiently thanks
to the Viterbi algorithm [10]. This is why existing sequence la-
beling methods usually rely on the following decomposition:

F (x,y;w) =

n∑

i=1

f(yi−1, yi,x;w) (2)

where f is a local scoring function that only takes local relations
between consecutive labels into account.

2.2. SEARN (Search-Learn)

SEARN [11] is another structured prediction method that pro-
poses an alternative framework for sequence labeling. It relies
on the intuition that solving the arg max problem can be per-
formed as a series of local decisions. In this approach, the out-
put label sequence is built by choosing, at each position i, the
label yi of the current observation xi using features that de-
scribe the full observation sequence x and the past decisions
from y1 to yi−1. This approach reduces structured prediction to
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a sequence of multiclass classification problems. Inference then
consists in predicting labels one after the other – using a linear
model, for instance:

y∗i = g(x, i, hi) = arg max
y∈Λ

〈w|φ(x, i, y, hi)〉 (3)

where y∗i is the predicted label at position i, w the parameter
vector, hi = y∗1 , ..., y

∗
i−1 the history of past decisions and φ a

joint feature map that can incorporate any features related to the
sequence of observations x and the labels history hi.

Sketched in Algorithm 11, the training procedure performs
inference on each input sequence (lines #5 and #6) while keep-
ing track of both actual y∗i and expected decisions yi. The pa-
rameter vector w can then be estimated using a standard multi-
class learning algorithm (line #15). The main challenge faced
by SEARN is that the previous predictions influence the distribu-
tion of examples S upon which the learn will be tested, violat-
ing the crucial assumption that examples are i.i.d.. To avoid this
problem, SEARN relies on an iterative procedure that progres-
sively takes a larger amount of past decisions into consideration
(lines #8 to #11), thus ensuring that the distribution of examples
will become more and more similar at train and test times.

Algorithm 1: SEARN-inspired learning algorithm

Input : labeled sequences T = (xi,yi)
l
i=1, the number

of iterations N , β = 0, βstep ∈ [0, 1], the
uniform random number generator rand(0, 1)

1 for t ∈ J1, NK do
2 S ← ∅ ; . Set of collected examples
3 for x,y ∈ T do
4 h← ∅;
5 for i ∈ J0, nK do
6 y∗i = arg maxy∈Λ 〈w|φ(x, i, y, h)〉;
7 S ← S ∪ {φ(x, i, h), yi};
8 if rand(0, 1) > β then
9 h← h ∪ {yi};

10 else
11 h← h ∪ {y∗i };
12 end
13 end
14 end

. Train classifier
15 w∗ = arg minw E(x,y)∼S [1 {y 6= g(x)}] ;
16 β ← min(β + βstep, 1)

17 end

While inference is exact in the CRF model, SEARN relies
on a greedy search in the space of all allowed labelings Λn.
Trading-off the global optimality of inference for the additional
flexibility in the design of features and long range dependencies
between labels has proved useful for many sequence labeling
tasks in natural language processing [12, 13, 14]. However, it
is hindered by error propagation. Past decisions are never ques-
tioned: an error will make future decisions more difficult.

To alleviate this problem, we propose an easy-first sequence
labeling strategy. The classifier starts by labeling the observa-
tions it is the most confident about and makes the most difficult
decisions at the end, minimizing their impact on subsequent de-
cisions. Easy-first strategies can readily be implemented within

1For the sake of efficiency, we used a stochastic approximation of
SEARN. Refer to [11] for a more general description.

the SEARN framework by generalizing the definition of deci-
sions: the label sequence will be built by successively (a) choos-
ing an ‘open’ position for which the label has not been predicted
yet and (b) labeling it. Inference then amounts to solving:

i∗, y∗ = arg max
i,y∈O×Λ

〈w|φ(x, i, y, hi)〉 (4)

where O is the set of positions that must still be labeled. One
complication arises during learning as easy-first oracles are not
deterministic: there are as many oracle decisions in Equation 4,
as open positions. This problem has already been described in
natural language processing for dependency parsing [15] and
PoS tagging [16]. The chosen solution is to randomly select
one oracle decision (i∗, y∗) among all oracle positions, in order
to avoid any bias while moving from the oracle to the real case
decisions distribution.

3. Experiments
We now turn to the experimental part, where we show how
structure can help identifying the speaker of a segment.

3.1. Corpus and protocol

Experiments are conducted on the first season of The Big Bang
Theory TV series and results are reported using standard Iden-
tification error rate (IER):

IER =
miss + fa + confusion

speech
(5)

where speech is the total duration of speech according to the
reference annotation, miss (respectively fa) is the total duration
of segments incorrectly classified as non-speech (resp. speech)
and confusion is the total duration of speech segments whose
detected label is incorrect.

Manual annotations are available for episodes 1 to 6 with la-
bels Λ = {non-speech, howard, leonard, penny, raj, sheldon, other} where
other englobes all characters but the main five [17, 18]. Due
to the limited size of this test set (≈ 2 hours), we use leave-
one-episode-out cross-validation and report IER values aver-
aged over the six rotations.

3.2. Baseline

Coarse annotations for the remaining episodes 7 to 17 are ob-
tained from the publicly available TVD corpus [19] via the auto-
matic alignment of subtitles and transcripts procedure described
in [20]. They are used to train and tune the various modules of
the baseline system described at the top of Figure 1. Table 1
lists the acoustic features used for each module. Speech activity
detection relies on a 2-states HMM with 64 Gaussians per state
(speech vs. non-speech). Temporal segmentation relies on stan-
dard BIC segmentation with full covariance and 500ms mini-
mum duration constraint [5]. Speech turns are then passed di-
rectly to the supervised classification module implemented us-
ing the standard GMM/UBM open-set speaker identification ap-
proach [21], with one 64-component Gaussian mixture for each
main character. Finally, HMM resegmentation is applied using
256 Gaussians per state.

3.3. Structured prediction

In our experiments, we consider 4 different sequence labeling
methods. Linear SVM is a multi-class classifier based on the
linear Support Vector Machine (SVM) implementation of the
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ZCR Energy ∆ ∆∆ MFCC ∆ ∆∆
SAD X 14 X
Seg. X 12
SID X X 11 X X

Table 1: Acoustic features for speech activity detection (SAD),
segmentation/resegmentation (Seg.) and speaker identification
(SID) modules are computed every 16ms on 32ms windows.

SCIKITLEARN library [22] – it serves as an additional unstruc-
tured prediction baseline. Chain CRF is a linear CRF that
takes into account local structure through interactions between
consecutive labels (Equation (2)) – we use the PYSTRUCT li-
brary [23] for that purpose. Left-to-right SEARN is the greedy
method described by Equation (3) and Easy-first SEARN the
free-order method described in Equation (4). Parameter β is set
to 0.1 in all experiments, as proposed in [11]. All other hyper-
parameters are chosen by cross-validation.

The 14-dimensional observation vector xi is made of the
concatenation of p(speech|si) and p(non-speech|si) estimated by
the SAD module, p(C|si) for each of the 5 main characters
C as estimated by the SID module, and 7 binary features (one
per possible label) encoding the output of the baseline system.
GMM/UBM log-likelihood ratios are calibrated into probabili-
ties using isotonic regression [24].

The left-to-right SEARN approach relies on an additional
set of binary features derived from the last K = 4 predictions.
It includes simple history features such as is prediction yi−k

non-speech? penny? sheldon? and higher order features made of
the conjunction of the previous pairs (and triplets) of predictions
such as are predictions yi−k = non-speech and yi−k−1 = raj
? We also consider a feature describing the number of times
a label was selected in the last K predictions. The easy-first
SEARN approach relies on a simpler set of binary features de-
rived from the previous predictions within a ±2 neighborhood,
such that both SEARN approaches rely on a context of K = 4
predictions.

4. Results
Results achieved by the different methods are presented in Ta-
ble 2. To assess the impact of error propagation, we also report
“oracle” experiments for the two SEARN models, in which the
classifier relies on the true history to perform its predictions.

PREDICTION IER
Baseline 30.5%
Linear SVM 29.8%
Chain CRF 29.3%
Left-to-right SEARN 30.0%
with oracle history 23.9%
Easy-first SEARN 29.1%
with oracle neighborhood 23.4%

Table 2: Performance comparison.

Results show that the three structured prediction methods
(chain CRF, left-to-right and easy-first SEARN) outperform both
unstructured approaches (baseline and multi-class SVM), high-
lighting the relevance of the episode structure for identifying
speakers. It also appears that the best performance are obtained
with chain CRF and easy-first SEARN based on a small ±1 or
±2 neighborhood. This questions the interest of considering

non-local dependencies.
However, the results achieved when considering an oracle

history show that non-local dependencies are, in fact, highly
relevant. Models simply fall far short of taking advantage of
them. This might be due (i) to error propagation or (ii) to a
poor estimate of the weights given to each structure features.
The best performance obtained by the easy-first strategy tends
to show that efforts to reduce error propagation might indeed
be beneficial. For instance, the proportion of other labels (i.e.
secondary characters) in episode 4 is a lot larger than for the
other episodes (30% vs. ≤ 10% on average). IER for this
particular episode drops from 40.8% to 21.1% when relying on
the oracle neighborhood. Error propagation has a huge impact
in this case.

K=1 K=5 K=10 K=15 K=20 K=25

15%

20%

25%

30%

IER

train

test

Figure 4: Learning curve of the Left-to-Right SEARN model.

Figure 4 represents the learning curve of the left-to-right
SEARN model. It appears that the model quickly overfits when
the history size K increases. While a large history helps identi-
fying the speaker on the training set, structure information does
not generalize well to other episodes.

5. Conclusion and Future Work
In this paper, we proposed to model the speaker identification
problem as a sequence labeling task. Based on the observa-
tion that TV series episodes are highly structured documents,
we show that structured prediction techniques lead to improved
identification performance.

Oracle experiments suggest that error propagation is the
main issue in the approaches based on SEARN. Ways to re-
duce the influence of errors will be investigated in the future
(for instance by weighing each decision by a confidence score).
We have also showed that structured prediction approaches are
prone to overfitting – maybe due to the relatively high dimen-
sion of the structured features space. One way of reducing this
dimension would be to delexicalize structure features (for in-
stance by switching from “is prediction yi−i non-speech? penny?
raj?” to “is prediction yi−i similar to current label yi?”. Pro-
viding a better initial segmentation into speech turns would also
definitely help to achieve better performance. As a matter of
fact, we ran the same experiments on perfect speech turn seg-
mentation and readily gained an absolute 10% improvement in
terms of IER.
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