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Abstract. We consider the possibility of defining a general mathemat-
ical framework for the homogeneous modeling and analysis of hetero-
geneous spatio-temporal computations as they occur more and more in
modern computerized systems of systems. It appears that certain fibra-
tions of posets into posets, called here spatio-temporal domains, eventu-
ally provide a fully featured category that extends to space and time the
category of cpos and continuous functions, aka Scott Domains, used in
classical denotational semantics.

1 Introduction

Research context. Program semantics is classically divided between two com-
plementary approaches : denotational semantics and operational semantics. De-
notational semantics generally refers to what the partial functions encoded by
programs are : what is the relationship between (models of) their input val-
ues (or input memory state) and their output values (or output memory state).
Operational semantics refers instead to when and where these values are read,
transformed and eventually produced. To some extent, operational semantics de-
fines effective models for implementing programs. It provides tools for analyzing
the space and time behavior of programs therefore analyzing their complexity.
On the other hand, denotational semantics provides instead methods for analyz-
ing the (partial) correction of programs.

This suggests that semantic features can be distributed between typical op-
erational features (time and space values) and denotational features (other data
values). However, in many modern computerized systems such as, for instance,
interactive music or animation systems [14,18,2,3], timing or spacing informa-
tion plays a crucial rôle in the definition of system’s inputs and outputs. There,
many data values are implicitly parameterized by some space and/or time infor-
mation: think of an augmented music system taking as input the melody played
by a musician dancing on a stage. How the resulting spaced-and-timed signals
can be read, combined and transformed in both an efficient and a sound way
is one of the central questions of numerous domain specific language proposals
such as, for instance, Fran [14] for animation or Euterpea [18] for music.
? Work partially supported by Inria center Bordeaux-Sud-Ouest, from September 2016
to February 2017.



In all the underlying semantic models, compositionality is a key issue as it
allows efficient, structure driven, development and analysis techniques. In fact,
with compositionality, properties of complex systems/programs can be derived
from certain combinations of the properties of their (simpler) components. As
an immediate consequence, semantic models can also be studied and developed
per se, adequate (domain specific) programming languages deriving a posteriori
from the algebraic/combinatorial properties of these models.

Our contribution. Following such a model-driven development of program-
ming language, we consider the possibility of lifting space or time information
into typical denotational models: Scott Domains. It happens that this can be
done by restricting certain constructions known in topos and fibration theory to
posets. We thus provide in this paper an elementary description of these con-
structions and illustrate their applicability by interpreting the induced algebras
in terms of typical spaced or timed programming constructs.

Detailled structure. Technically, we define spatio-temporal domain as certain
discrete fibrations of posets into posets (Section 2). Simply said, elements of
these domains are (partially ordered) computation histories indexed over space-
time scales. Relationships with other known semantic models are detailled in
Section 3. Spatio-temporal morphisms are defined in Section 4 as monotone
functions between spatio-temporal domains that uniformly act on the underlying
spacetime scales. This eventually yields a fully featured category that extends to
space and time the categories of posets/cpos/domains and monotone/continuous
functions typically used in classical denotational semantics.

The proposed approach yields two layers of program constructs that have
been long identified in Globally-Asynchronous Locally-Synchronous (GALS) sys-
tem design [10,30]. More precisely, there appear:

(1) a synchronous layer of programming constructs available when components’
inputs and outputs are located and timed on the same spacetime scale and
received or produced in a synchronous way (Section 5),

(2) an asynchronous layer of programming constructs available when compo-
nent’s inputs and outputs are located and timed on possibly distinct space-
time scales (Section 6).

At the border of these two layers, when inputs and outputs are located on the
same scale but without any synchronicity assumption, we show that feedback
loop constructs are available for defining non trivial (least) fixpoints (Section 8),
that is, infinite signals. Continuously spaced and timed posets are also studied
in Section 7 where a tight relationship with various key concepts from Domain
Theory is established.

It is known that fibration theory [29] is used in denotational semantics of
higher-order dependently typed lambda calculus [20]. Restricting ourselves to
discrete fibrations over posets yields a notion of types that weakly depends on
spacetime scales (or clocks). These possibilities were already studied in language
extension proposals [12,11] of the Synchronous Programming Language fam-



ily [7,5]. Our approach provides a sound mathematical framework for the formal
study of these possible extensions.

Although we aim at providing elementary descriptions of all concepts, the
reader is still expected to know the (basic) definitions of a partially ordered set
(poset), a category and the associated notions of (possibly continuous) functors.
All other concepts are defined in the text when needed. Concrete examples de-
fined over spaced and timed signals are detailed throughout, illustrating most
concepts and their applicability to spacetime program’s semantics.

Some notations. A partially ordered set, or poset, is a set P equipped with
a partial order relation, that is, a reflexive, symmetric and transitive binary
relation. Given a poset P , we use the notation x, y ≤ z (resp. z ≤ x, y) or even
X ≤ z (resp. z ≤ X) to denote the fact that both x, y ∈ P are smaller (resp.
greater) than z ∈ P , or the fact that z ∈ P is an upper bound (resp. a lower
bound) of the subset X ⊆ P .

The downward closure ↓X ⊆ P of X ⊆ P is defined by ↓X = {y ∈ P :
∃x ∈ X, y ≤ x}. By extension, for every element x ∈ P we also use the notation
↓x = {y ∈ P : y ≤ x}. We say that X is downward closed when ↓X = X.
When it exists, its greatest lower bound (resp. least upper bound) is denoted by∧
X (resp.

∨
X). The poset P is a meet-semilattice when every two elements

x, y ∈ P have a meet, that is, a greatest lower bound denoted by x ∧ y.
A subset X ⊆ P is directed when it is non empty and for all x, y ∈ X there is

z ∈ X such that x, y ≤ z. The poset P is a (directed) complete partially ordered
set, or complete poset, or even cpo, when every directed subset X ⊆ P has a
least upper bound

∨
X.

A function f : P → Q between two posets is called monotone when x ≤ y
implies f(x) ≤ f(y) for every x, y ∈ X. Whenever needed, the function f is
extended point-wise to every subset X ⊆ P by f(X) = {f(x) ∈ Q : x ∈ X}.
The function f is continuous when, for every directed subset X ⊆ P , if

∨
X is

defined then
∨
f(X) = f(

∨
X). A continuous function is necessarily monotone

and, as such, maps every directed subsets to a directed subset.
In a cpo P with a least element ⊥, we know from Knaster-Tarski that every

monotone function f : P → P has a least fixpoint µ(f) =
∨
λ∈Λ f

λ(⊥) with Λ
any ordinal which cardinal is strictly greater than the cardinal of P . In the case
f is continuous, we have µ(f) =

∨
n∈ω f

n(⊥).
Last, we shall consider various categorical concepts that are detailed when

needed. We may also consider the categories Poset with partially ordered sets
and monotone functions, SLattice with meet-semilattices and meet-preserving
functions and Cpo with complete posets and continuous functions, as well as
their restriction to posets with a least element, the resulting (full) subcategories
(possibly with non strict functions) being denoted by Poset⊥, SLattice⊥ and
Cpo⊥. All these categories are known to be cartesian closed and, possibly ex-
tended with the empty set, bi-cartesian. Details about these category theoretical
concepts are given in the text when needed.



2 Timed posets

Throughout this text, an arbitrary poset T may be interpreted as a spatio-
temporal scale. This means that for every element u, v ∈ T , we say that u lies
before v, or v lays after u, when u ≤ v, and that u lays beside v when u and
v are incomparable. In other words, there is the time dimension that increases
with the order, and, there is the space dimension where incomparable elements
are also related.

Example 2.1 (N-distributed spacetime). As an example, let N be a set
of mobile agents, each with its own clock timed over, say, the positive real line
R+. As a variant of message timestamps used in distributed computing, one can
define a spacetime location as any pair (S,C) with S ⊆ N a non empty set of
synchronized agents and C : N → R+ their shared knowledge of all clocks. This
interpretation yields a partial order defined by (S′, C ′) < (S,C) when C ′ ≤ C
(point-wise) and C ′(n) < C(n) for all n ∈ S. Then it can be shown that every
sub-poset of space time locations induces a canonical communication scenario
between the agents that justifies the order between these locations.

More precisely, let TN be the poset of spacetime locations induced by N .
We assume the following communication model between agents. There may be
two-way synchronizations among a group of agent S ⊆ N when these agents
are, say, in the same space location. In this case, they share all their knowledge
of local clock values, taking the max of clock values of unsynchronized agents.
There may also be one-way messages sent by one agent, with a copy of its own
local clock value, to (any member of) a synchronized group of agents.

Then it is an easy observation that any discrete sub-poset X ⊆ TN of space-
time locations induces a canonical communication scenario define in the obvious
way for two-way synchronization and as follows for one-way messages. For every
spacetime location (S,C) ∈ X, for every n 6∈ S, either there is (S′, C ′) ≤ (S,C)
such that C ′(n) = C(n), or there is a one-way message from n to S sent from n
at (local) instant C(n) and received by one/any m ∈ S at (local) instant C(m).

An example of such a communication scenario is illustrated in Figure 1 in the
case of N = {1, 2, 3, 4}. The selected subset of spacetime locations is detailed on

({1, 2, 3, 4}, 〈0, 0, 0, 0〉)

({1, 2}, 〈5, 4, 0, 0〉) ({3, 4}, 〈0, 0, 1, 4〉)

({2, 3}, 〈5, 6, 3, 5〉)

({1, 2}, 〈8, 7, 3, 5〉)

(T{1,2,3,4}) (1) (2) (3) (4)
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Fig. 1. A communication scenario.



the left of the figure, with functions from N into R+ represented by vectors of
length four. The resulting communication scenario is detailed on the right, with
two-way (resp. one-way) transversal arrows modeling two-way synchronizations
(resp. one-way messages). Arrows resulting from transitivity of two-way synchro-
nizations have been omitted.

One can observe that such a model extends to arbitrary collection of posets
taken as (local) time scales since local time scales are not required to be com-
patible in any sense.

Having said so, throughout the rest of this presentation, a spatio-temporal
scale is simply referred to as a time scale and its elements are simply called
instants.

Definition 2.2 (Timed poset). Let T be a time scale. A poset timed over T
is a poset P equipped with a temporal projection π : P → T such that:

(IN1) if x ≤ y then π(x) ≤ π(y), i.e. the temporal projection is monotone,
(IN2) for every t ≤ π(x) there is a unique element x ↓ t ∈ P such that
π(x ↓ t) = t and x ↓ t ≤ x,

for all x, y ∈ P . The element x ↓ t is called the temporal cut, or simply the cut of
x at instant t. This situation is depicted in (1). The cut function (x, t) 7→ x ↓ t
can be seen as sort of a (partial) action of the poset T over the poset P .

(IN2)(IN1)

x ↓ t

t

x

π(x)

π∃!π

≤

≤

x

π(x)

y

π(y)

π

≤

π

≤

(1)

Property (IN1) states that temporal projections are poset functors. Property
(IN2) states that these functors are discrete fibrations1.

Example 2.3 (Self-timed poset). Every poset T is a timed poset over itself
with identity id as temporal projection.

Example 2.4 (Sub-timed poset). Let P be a poset timed over T . Let X ⊆ P
be a downward closed subset of P . Let incX : X → P be the inclusion function.
Then the set X ordered as in P with π ◦ incX as temporal projection is also a
timed poset.

Example 2.5 (Timed impulses). Let T be a time scale and E a set of event
values extended into E⊥ = E ∪{⊥}. The set Imp(T,E) = T ×E⊥ is turned into
a timed poset by equipping it with the temporal projection and partial order
defined by π(u, e) = u and (t, e) ≤ (t′, e′) when either (t, e) = (t′, e′) or t < t′

and e = ⊥.
1 Discrete fibrations and the related notion of categories of elements of a functor on
Set are presented in [4] (Section 12.2) or in [27] (Section 1.5).



An element (t, e) ∈ Imp(T,E) with e 6= ⊥ is a timed impulse with value e at
instant t. Observe there are no elements strictly above (or after) such an impulse
and all elements strictly below (or before) bear no value as they are of the form
(t′,⊥) for some t′ < t. Rephrased in terms of temporal cut, for every element
(t, e) ∈ Imp(T,E) and instant t′ ≤ t, two cases are possible: either t′ = t and we
have (t, e) ↓ t′ = (t, e), or t′ < t and we have (t, e) ↓ t′ = (t′,⊥).

Example 2.6 (Timed signals). With T and E as above, a timed signal is
defined as a relation S ⊆ T × E that maps every instant t ∈ T to the set
S(t) = {e ∈ E : (t, e) ∈ S} of event values received at instant t. Then a partial
timed signal is a pair (u, S) ∈ T × P(T ×E) such that for all (t, e) ∈ S we have
t ≤ u.

The set Sig(T,E) of partial timed signals is turned into a timed poset by
equipping it with the temporal projection defined by π(u, S) = u and the partial
order relation defined by (u, S) ≤ (u′, S′) when u ≤ u′ and S(t) = S′(t) for all
t ≤ u, for all (u, S), (u′, S′) ∈ Sig(T,E). Following [28], a pair (u, S) ∈ Sig(T,E)
represents the observation of a timed signal until the instant u. In some sense,
it is the temporal trace of some computation until that instant.

Rephrased in terms of temporal cut, for every partial signal (u, S) ∈ Sig(T,E)
and instant v ≤ u = π(u, S) we have (u, S) ↓ v = (v, S ↓ v) with S ↓ v = {(t, e) ∈
S : t ≤ v}. Such a temporal cut (u, S) ↓ v models the observation of the partial
signal (u, S) until instant v that lies before instant u.

Definition 2.7 (Local cut). Let P be a poset timed over T . For every x ∈ P ,
property (IN2) induces a (total) function cutx : ↓π(x) → P , called local cut,
defined by cutx(u) = x ↓u for every u ∈ T such that u ≤ π(x).

Remark 2.8. In the definition above and later in the text, we use the notation
↓X ⊆ P for the downward closure of a subset X ⊆ P of a poset P defined
by ↓X = {y ∈ P : ∃x ∈ X, y ≤ x} that extends to an element x ∈ P by
putting ↓x = {y ∈ P : y ≤ x}. At first sight, this notation may clash with
our chosen notation for cuts. However, for all x ∈ P and all u ≤ π(x) we have
↓(x ↓u) = (↓x) ↓u as soon as we extent the (partially defined) cut point-wise. It
follows that we can even write ↓x ↓u without any parenthesis with no ambiguity.
Moreover, the downward closure can itself be seen as a cut over subsets of posets,
defining for every X ⊆ P and x ∈ P the cut X ↓x = {y ∈ X : y ≤ x}. Then we
have ↓x = P ↓x.

Lemma 2.9 (Local cut properties). Let x, y ∈ P and u, v ∈ T such that
u, v ≤ π(x). Then:

(1) x ≤ y if and only if π(x) ≤ π(y) and x = y ↓π(x),
(2) u ≤ v if and only if x ↓u ≤ x ↓ v.

In particular, the (sub)posets ↓x ⊆ P and ↓π(x) ⊆ T are isomorphic posets as
shown by the restriction of the cut to ↓x and, as inverse, the temporal projection.



Proof. (1). Assume that x ≤ y. By (IN1) we have π(x) ≤ π(y) hence by (IN2),
x = y ↓π(x) since π(y ↓π(x)) = π(x). Conversely, assume that π(x) ≤ π(y) and
x = y ↓π(x). Then, by definition of local cut, we have x ≤ y.
(2). Let u, v ≤ π(x). By (IN2) we have π(x ↓u) = u and π(x ↓ v) = v. Assuming
that u ≤ v we thus have u ≤ π(x ↓ v) hence there is y = (x ↓ v) ↓u such that
π(y) = u and y ≤ x ↓ v. But x ↓ v ≤ x hence y ≤ x and thus, by unicity (IN2),
we have y = x ↓u therefore x ↓u ≤ x ↓ v. Conversely, assuming that x ↓u ≤ x ↓ v
by (IN1) we have π(x ↓u) ≤ π(x ↓ v) hence u ≤ v since, by (IN2), we have
π(x ↓u) = u and π(x ↓ v) = v.

Corollary 2.10. An element x ∈ P is minimal (resp. minimum) in P if and
only if its temporal projection π(x) ∈ T is minimal (resp. minimum) in T . On
the other hand, maximal elements in a timed poset can have arbitrary temporal
projection as shown by timed impulse timed posets (see 2.5).

3 Derived notions

We review below several notions that derive from the notion of timed posets
and that allow this notion to be related with other known concepts appearing
in computer system modeling or programming language semantics.

Temporal coherence. The following notion is inspired by Girard’s notion of
coherent space in linear logic [16]. A similar notion, even more closely related
with timed domains, also appears in Winskel’s notion of event structures [31].

Definition 3.1. Let P be a poset timed over T . Let x, y ∈ P . We say that x
and y are coherent, a property denoted by x ¨ y, when, for every x′, y′ ∈ P such
that x′ ≤ x and y′ ≤ y, if π(x′) = π(y′) then x′ = y′, or, equivalently, for all
u ≤ π(x), π(y), x ↓u = y ↓u. By extension, a subset X ⊆ P is a coherent subset
when x ¨ y for all x, y ∈ X.

Lemma 3.2. Let x, y ∈ P . Then x ≤ y if and only if π(x) ≤ π(y) and x ¨ y.

Proof. Assume that x ≤ y then we have π(x) ≤ π(x) hence x = y ↓π(x). Let
u ≤ π(x), π(y). We have x ↓u ≤ x ≤ y hence, since ϕ(x ↓u) = u, by (IN2), we
have x ↓u = y ↓u. This proves that x ¨ y. Conversely, assume that x ¨ y and
π(x) ≤ π(y). This implies that x ↓π(x) = y ↓π(x) hence x = y ↓π(x) and thus
x ≤ y.

In other words, coherence offers an alternative to the definition of timed poset
via an order relation.

Remark 3.3. In some sense, every coherent subsetX ⊆ P can be interpreted as
the trace of a spatio-temporal computation that has been observed at the instants
π(X). The (sub)posets X and π(X) are even isomorphic via the restriction of π
to X and the downward closure ↓X of a coherent subset is itself coherent.



Remark 3.4. The structure (P,≤, 6¨) defined for every timed poset P is a spe-
cial case of an event structure [31], though dropping the finite history require-
ment. The same computational interpretations are possible. Two elements x and
y in P describe concurrent computations when they are coherent and incompa-
rable: they can both appear in the same computation trace as suggested above.

On the other hand, two incoherent elements x and y in P describe conflict-
ing computations: they cannot appear in the same computation trace. More
precisely, by the definition of coherence, when x 6¨ y there is u ∈ T in the past
of both π(x) and π(y) such that x ↓u 6= y ↓u. This means that two distinct com-
putations occur at the same instant (and position) u, a case that is interpreted
as impossible.

Remark 3.5. Relating timed posets with event structures, one can also observe
that the equivalence induced by π, defined by x ∼π y when π(x) = π(y) for
every x, y ∈ P , essentially is a symmetry2 as recently defined by Winskel in
event structures [32].

This observation relates timed posets even more closely with the concepts
introduced by Winskel in concurrency theory. However, the notion of timed
poset is more restrictive than the notion of event structure. In a timed poset,
coherence is uniformly defined via temporal projection. In an event structure,
coherence is a given as part of the definition of that event structure.

Temporal distance. Timed concurrent system semantics can also be modeled
by means of generalized ultrametric distance, as already developed quite in the
depth by Lee, Liu et Matsikoudis [28,26,25]. The following definition shows that
timed posets also induce such distances over their elements.

Definition 3.6. Let P be a poset timed over T . Let P↓(T ) be the set of down-
ward closed subsets of T ordered by reverse inclusion therefore with T itself as
least element. The distance induced by π over P is the function

d : P × P → P↓(T ) defined by d(x, y) = {t ∈ T : t ≤ π(x), π(y), x ↓ t = y ↓ t}

when x 6= y and by d(x, y) = T when x = y.

One can easily check that d(x, y) = ↓ d(x, y) for all x, y ∈ P hence the above
definition is sound.

Lemma 3.7. The function d : P ×P → P↓(T ) is a generalized ultrametric, that
is, we have:

(1) d(x, y) = T if and only if x = y (separation),
(2) d(x, y) = d(y, x) (symmetry),
(3) d(x, y) ⊇ d(x, z) ∩ d(z, y) (ultra-metric inequality),

2 Strictly speaking, for ∼π to be a symmetry, the timed poset P must be completed
with sorts of “passing time” elements of the form (u, x) with x ≤ (u, x) and π(u, x) =
u, defined for all x ∈ P and u ∈ T such that there is no y above x with π(y) = u.



for all x, y, z ∈ P .

Proof. Properties (1) and (2) are immediate from the definition. Let x, y, z ∈ P
and let u ∈ d(x, z) ∩ d(z, y). This implies that x ↓u = z ↓u with u ≤ π(x), π(z)
and z ↓u = y ↓u with u ≤ π(z), π(x) hence x ↓u = y ↓u with u ≤ π(x), π(y)
that is u ∈ d(x, y).

Temporal presheaves. One last connection of timed posets with an existing
notion, now complete, goes via the notion of categorical presheaves, a notion
already used in concurrency theory especially by Catani, Stark and Winskel for
modeling process calculi like CCS and the π-calculus [9,8].

Let T be a poset. A presheaf on T is a functor F : T op → Set from the
category T op, obtained from T by reversing the order relation, into the category
Set of sets and functions. Then the following lemmas state that posets timed
over T are isomorphic with what are known in category theory as the categories
of elements of presheaves over T . This shows that timed posets and presheaves
are essentially equivalent notions, an equivalence later stated as a categorical
equivalence (see 4.10 below).

Lemma 3.8. Let F : T op → Set be a presheaf over T . Then the set PF =
Σt∈TF (t) = {(t, x) : t ∈ T, x ∈ F (t)}, equipped with the temporal projection
defined by π(u, x) = u and the order relation defined by (u, x) ≤ (v, y) when
u ≤ v and F (u ≤ v)(y) = x for all (u, x), (v, y) ∈ PF , is a timed poset, also
known as the category of elements of F .

Proof. The fact PF equipped with ≤ is a poset goes as follows. Reflexivity follows
from reflexivity of the order in T and the fact that F (u ≤ u) = idF (u) for all
u ∈ T . Transitivity follows from the transitivity of the order in T and the fact
that F (u ≤ v) ◦ F (v ≤ w) = F (u ≤ w) for all u, v, w ∈ T with u ≤ v ≤ w.
Anti-symmetry follows the anti-symmetry of the order in T . Indeed, whenever
(u, x) ≤ (v, y) and (v, y) ≤ (u, y), by definition, we must have u ≤ v a,d v ≤ u
hence u = v and thus x = idF (u)(y) hence x = y.

It remains to prove that π is a temporal projection. Let (u, x), (v, y) ∈ PF . If
(u, x) ≤ (v, y), then, by definition of the order relation, we must have π(u, x) =
u ≤ v = π(v, y) which proves (IN1). Given w ≤ u = π(u, x) then there is z =
F (w ≤ u)(x) with, by definition of the order (w, z) ≤ (u, x) and if (w, z′) ≤ (u, x)
then, again by definition of the order, we must have z′ = F (w ≤ u)(x) therefore
z′ = z. This proves (IN2).

Lemma 3.9. Let P be poset timed over T . Then the presheaf FP : T op → Set
defined by FP (t) = {x ∈ P : π(x) = t} and FP (u ≤ v)(x) = x ↓u for all
t, u, v ∈ T with u ≤ v and x ∈ FP (v), has an its category of elements isomorphic
to P .

Proof. We first observe that whenever u ≤ v we indeed have u ≤ π(x) for all
x ∈ FP (v) hence x ↓u is well-defined. Then, proving that FP is a functor just
amounts to proving that FP (u ≤ u) = idFP (u) and FP (u ≤ v) ◦ FP (v ≤ w) =



FP (u ≤ w) for all u, v, w ∈ T such that u ≤ v ≤ w which makes no difficulty.
The stated isomorphism between P ans the category of elements of FP is also
straightforward.

4 Timed morphisms

In this section, we define a class of timed morphisms between timed posets,
called ∆-synchronous functions, as monotonic functions between timed posets
that uniformly act on their underlying time scales. Somehow generalizing the
approach of Colaço et al. [12,11], with timed posets interpreted as timed types,
this uniformity requirement allows timed morphisms types to be defined not
only as the domains and codomains of these morphisms, as in the simply-typed
definition of function types, but also as the uniform transformation of time scales
they induce.

∆-synchronous function. Throughout this section, let P and, resp. Q, be two
posets timed over the time scales U and, resp. V .

Definition 4.1 (∆-synchronous functions). A function f : P → Q together
with a monotone function δ : U → V , called the temporal projection of f , is
∆-synchronous when, as depicted in (2):

(SD1) π(f(x)) = δ ◦ π(x),
(SD2) if x ≤ y then f(x) ≤ f(y),
(SD3) f(x ↓u) = f(x) ↓ δ(u),

for all x, y ∈ P and all u ∈ U such that u ≤ π(x).

U

V

δ (SD1) (SD2)
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Q Q
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Remark 4.2. As soon a u ≤ π(x) then, by monotonicity of δ we have δ(u) ≤
δ ◦ π(x) hence, by (SD1), δ(u) ≤ π(f(x)) therefore property (SD3) is sound.
Property (SD2) states that∆-synchronous functions are poset functors. Property
(SD1) formalizes the statement that they uniformly acts on the underlying time
scales.

Example 4.3 (Self-synchronous). Every monotone function δ : U → V is
a ∆-synchrone function between the self-timed posets U and V , with itself as
temporal projection.

Lemma 4.4. Under hypothesis (SD1), properties (SD2) and (SD3) are equiva-
lent.



Proof. Let f : P → Q be a function and let δ : U → V be a monotone function.
Assume (SD1) and (SD2). Let x ∈ P and u ≤ π(x). By (IN2) we have

π(x ↓u) = u hence π(f(x ↓u)) = δ(u) by (SD1). By (SD2) we also have f(x ↓u) ≤
f(x) hence, by (IN1), we have δ(u) = π(f(x ↓u)) ≤ π(f(x)) and thus δ(u) ≤
π(f(x)). It follows, that f(x ↓u) = f(x) ↓ δ(u) by (IN2). This proves (SD3).

Conversely, assume (SD1) and (SD3). Let x, y ∈ P such that x ≤ y. By (IN2)
we have x = y ↓π(x) hence f(x) = f(y) ↓ δ◦π(x) by (SD3) and thus f(x) ≤ f(y).
This proves (SD2).

On coherence preservation. It is easy to see that the ∆-synchronous image of
a coherent subset bounded above is coherent. With a view towards application,
this coherence preservation property is probably enough. Nevertheless, we show
that without the boundedness condition this is no longer true and we provide
sufficient additional conditions on time scale changes for coherence preservation.

Example 4.5. Let U = {⊥, a, b}, self-timed, with minimum element ⊥ and a
and b incomparable. Let P = U ordered the same as U but timed over V = {0, 1}
by π(⊥) = 0, π(a) = 1 and π(b) = 1. The function f : U → P defined by
f(⊥) = ⊥, f(a) = a and f(b) = b is ∆-synchronous with temporal projection
δ : U → V defined by δ(⊥) = 0, δ(a) = 1 and δ(b) = 1. Although a ¨ b in U we
have f(a) = a 6¨ b = f(b) in P . The function f does not preserve coherence.

Lemma 4.6. Assume that both U and V are meet-semilattices. Let δ : U → V
be a meet-preserving function and let f : P → Q be a ∆-synchronous function
with temporal projection δ. Then f is coherence preserving. Moreover, both P
and Q are conditional meet-semilattice and the function f preserves conditional
meet, i.e. it is stable in the sense of Berry [6].

Proof. We first prove that f preserves coherence. Let x, y ∈ P such that x ¨ y.
We aim at proving that f(x) ¨ f(y). Let v ≤ π(f(x), π(f(y)). By (SD1), both
U and V are meet-semilattices and δ is meet-preserving, we have v ≤
delta(π(x) ∧ π(y)). Given u = π(x) ∧ π(y), since x ¨ y we have x ↓u = y ↓u
hence, by (SD3), f(x) ↓ δ(u) = f(y) ↓ δ(u). It follows, since v ≤ δ(u) that we
have f(x) ↓ v = f(y) ↓ v. This concludes the proof that f(x) ¨ f(y).

Let x, y, z ∈ P such that x, y ≤ z. This means that x = z ↓π(x) and y =
z ↓π(y) therefore, as routine checking shows, we have x ∧ y = z ↓π(x) ∧ π(y).
Indeed, if there is any z′ ≤ x, y then we have π(z′) ≤ π(x) ∧ π(y) therefore
z′ = z ↓π(z) ≤ z ↓π(x) ∧ π(y).

By definition, a function is stable when it preserves pullbacks, that is, with
timed posets, conditional meets. Let again x, y, z ∈ P such that x, y ≤ z. Since
x∧y = z ↓π(x)∧π(y), by (SD3), we have f(x∧y) = f(z) ↓ δ(π(x)∧π(y)). Since
δ is meet preserving, together with (SD1), this yields f(x∧y) = f(z) ↓π(f(x))∧
π(f(y)) therefore f(x∧ y) = f(x)∧ f(y) since V is also a meet-semilattice. This
concludes the proof that f is stable.

Corollary 4.7. Let Coh(P ) and, resp. Coh(Q) be the set of coherent subsets
of P and, resp. of Q, ordered by inclusion. Then, equipped with the point-wise



extension of their temporal projection, they both are posets timed over P(U) and
P(V ) respectively. Moreover, the function f : Coh(P ) → Coh(Q) defined by
extending f point-wise is ∆-synchronous, stable, and event linear in the sense
of Girard [16], i.e. it is well-defined and we have f(X ∩ Y ) = f(X) ∩ f(Y ) and
f(X ∪ Y ) = f(X) ∪ f(X) for all X,Y ∈ Coh(X).

Remark 4.8. In example 4.5, both U and V are meet semi-lattices, but the
function δ : U → V is indeed not meet-preserving since, a∧ b = ⊥ while δ(⊥) =
0 < 1 = δ(x) ∧ δ(b).

Synchronous functions. We restrict our attention to a smaller class of timed
morphisms we call synchronous in the sense that their outputs are timed the
same way as their inputs.

Definition 4.9 (Synchronous function). A ∆-synchronous function f : P →
Q with temporal projection δ : U → V is a synchronous function when U = V
and δ = idU . In other words, f is synchronous when:

(SI1) π(f(x)) = π(x),
(SI2) if x ≤ y then f(x) ≤ f(y),
(SI3) f(x ↓u) = f(x) ↓u,

for all x ∈ P and u ∈ U such that u ≤ π(x).

Theorem 4.10. The category TPoset(T ) of posets timed over T and synchronous
functions is equivalent to the category Psh(T ) of presheaves over T and natural
transformations. More precisely, the functor ϕ : TPoset(T ) → Psh(T ) defined,
for every timed poset P ∈ TPoset(T ), by ϕ(P ) = FP (see 3.9) and, for all syn-
chronous function f : P → Q in TPoset(T ), by ϕ(f) = α with αt(x) = f(x) for
all t ∈ T and x ∈ FP (t), is a categorical equivalence.

Proof. A pseudo inverse functor for ϕ is the functor ψ : Psh(T ) → TPoset(T )
defined, for all presheaf F ∈ Psh(T ), by ψ(F ) = PF (see 3.8), and, for all natural
transformation α : F ⇒ G in Psh(T ), by ψ(α) = f with f(t, x) = (t, αt(x)) for
all (t, x) ∈ PF .

This implies that the category TPoset(T ) is a Grothendieck topos. In the next
section, we shall make explicit the constructions that prove it is, as a conse-
quence, an elementary topos.

∆-synchronous vs synchronous functions. We show that every time scale
change δ induces a (simple) contravariant time scale change functor in such a
way that every ∆-synchronous function f with temporal projection δ uniquely
(and uniformly) factorizes into a synchronous function followed by a (simple)
time scale change, this functor having a (less simple) left adjoint.

Theorem 4.11 (Left Kan extension). Let δ : U → V be a monotone func-
tion. Then there are two categorical functors δ∗ : TPoset(V ) → TPoset(U)and
δ! : TPoset(U)→ TPoset(V ) and, for every P ∈ TPoset(U) and Q ∈ TPoset(V ),



two ∆-synchronous functions ωQ : δ∗(Q) → Q and αP : P → δ!(P ) both with
temporal projection δ, such that every ∆-synchronous f : P → Q with temporal
projection δ we both have:

(1) there is a unique synchronous function f∗ : P → δ∗(Q) such that f = ωQ◦f∗,
(2) there is a unique synchronous function f! : δ!(P )→ Q such that f = f! ◦αP ,

i.e. f uniquely factorizes through αP or ωQ. In particular, there is the categorical
adjunction δ! a δ∗. The functor δ! is the left Kan extension operation along δ.
This situation is depicted in (3).

U

V

δ

P

Q

f

δ∗(Q)

ωQ

∃!f∗

δ!(P )

αP

∃!f!

(3)

Proof. The functor δ∗ is defined as follows. Let Q ∈ TPoset(V ). We define
δ∗(Q) = {(u, y) ∈ U × Q : π(y) = δ(u)} ordered point-wise with projection
π(u, y) = u for all (u, y) ∈ δ∗(Q). Clearly π is monotone, moreover, for every
(u, y) ∈ δ∗(Q) and u′ ≤ u we have (u, y) ↓u′ = (u′, y ↓ δ(u′) which proves that
δ∗(Q) ∈ TPoset(V ).

Let h : Q → Q′ synchronous into some Q′ ∈ TPoset(V ). We define δ∗(h) :
δ∗(Q) → DS(Q′) by δ∗(h)(u, y) = (y, h(y)) for all (u, y) ∈ δ∗(Q). Clearly δ∗(h)
is synchronous, and δ∗ defined this way is indeed a functor.

Let then ωQ : δ∗(Q) → Q simply defined by ωQ(u, y) = y for every (u, y) ∈
δ∗(Q). By definition, we have π(y) = δ(u) for all (u, y) ∈ δ∗(Q) and since ωQ is
clearly monotone this proves it is ∆-synchronous.

Given ∆-synchronous f : P → Q with temporal projection δ, we define
f∗ : P → δ∗(Q) by f∗(x) = (π(x), f(x)). Given x ∈ P , by (SD1) we have
(π(x), f(x)) ∈ δ∗(Q) and π(f∗(x)) = π(x). Given u ≤ π(x), we also have
f∗(x ↓u) = (u, f(x ↓u)) hence, by (SD2), f∗(x ↓u) = (u, f(x) ↓ δ(u)) hence
f∗(x ↓u) = f∗(x) ↓u. This proves that f∗ is synchronous.

Last, by construction, we have f = ωQ◦f∗. The unicity of f∗ follows from the
fact that, though not injective, ωQ is a mono since, when f = ωQ ◦ g, for every
x ∈ P , the value of f(x) in Q fixes the right projection of g(x) and synchronicity
fixes its left projection.

The functor δ! is defined as follows. Let P ∈ TPoset(U). We define x ↑ v =
{y ∈ P : ∃z ∈ P, v ≤ δ ◦ π(z), z ≤ x, y} for every x ∈ P and v ∈ V . The set
x ↑ v is the connected component of x above v via δ. This allows for defining
δ!(P ) = {(v, x ↑ v) ∈ V × P(P ) : v ∈ V, x ∈ P, v ≤ π(x)} ordered point-wise
with reverse inclusion over P(P ) and with projection π(v,X) = v for every
(v,X) ∈ δ!(P ). We check that (v,X) ↓w = (w, x ↑w) for all w ≤ v and x ∈ X.

Let g : P → P ′ be a synchronous function from into P ′ ∈ TPoset(U). We
define δ!(g) : δ!(P ) → δ!(P

′) by δ!(g)(v,X) = (v, g(x) ↑ v) for any choice of



x ∈ X. If we chose another y ∈ X, then there is z ∈ P such that v ≤ δ ◦ π(z)
and z ≤ x, y. By monotony of g we thus have f(z) ≤ g(x), g(y) with π(f(z)) =
π(z) since g is synchronous therefore f(y) ∈ f(x) ↑ v hence, as observed above,
f(y) ↑ v = f(x) ↑ v, i.e. our definition is sound.

We easily check that δ!(g) is synchronous and proving that δ! defined as above
is a functor makes no difficulty.

Let then αP : P → δ!(P ) simply defined by αP (x) = (δ◦π(x), x ↑ δ◦π(x)) for
every x ∈ P . We easily check that αP is monotone and since π(αP (x)) = δ◦π(x)
for all x ∈ P , it is ∆-synchronous. The fact δ! defined as above is a functor makes
no difficulties.

Given ∆-synchronous f : P → Q with temporal projection δ, we define
f! : δ!(P )→ Q by f!(v,X) = f(x) ↓ v for every (v,X) ∈ δ!(P ) and any choice of
x ∈ X. We check that we indeed have v ≤ δ ◦π(x) hence, by (SD1), v ≤ π(f(x)).
If we chose another y ∈ X, then there is z ∈ P such that v ≤ δ ◦ π(z) and
z ≤ x, y. This implies that f(z) ≤ f(x), f(y) hence, since v ≤ π(f(z)), we have
f(z) ↓ v = f(x) ↓ v and f(z) ↓ v = f(y) ↓ v hence f(x) ↓ v = f(y) ↓ v, i.e. our
definition is sound.

Given (v,X) ∈ δ!(P ), by (SD1), we clearly have v = π(f!(v,X)) and since f!
is obviously monotone this proves it is synchronous.

The fact f!◦αP = f follows from the definition. The unicity of f! follows from
the fact that αP , though not surjective, is an epi since every element (v,X) ∈
δ!(P ) lays below αP (y) for some y ∈ P with X ≤ y hence f!(v,X) is fully
determined by f! ◦ αP (y) = f(y).

Example 4.12 (Timed signals). Continuing examples on signals (see 2.6),
with P = Sig(U,A) and Q = Sig(V,B), the “lower” part of the above theorem
can defined within a slight extension of the notion signals as follows. We define
δ∗(Q) = Sig∗(δ,B) as the set of all pairs (u, Y ) ∈ U × P(V × B) such that
v ≤ δ(u) for all (v, b) ∈ Y , with the cut defined by

(u, Y ) ↓u′ = (u′, {(v, b) ∈ Y : v ≤ δ(u′)})

for all (u, Y ) ∈ Sig∗(δ,B) and u′ ≤ u. Then there is the ∆-synchronous function
ωQ : Sig∗(δ,B) → Sig(V,B) defined by ωQ(u, Y ) = (δ(u), Y ) for all (u, Y ) ∈
Sig∗(δ,B) and, for every ∆-synchronous f : Sig(U,A) → Sig(V,B) with pro-
jection δ, the synchronous function f∗ : Sig(U,A) → Sig∗(δ,B) defined for all
(u,X) ∈ Sig(U,A) by f∗(u,X) = (u, Y ) when f(u,X) = (δ(u), Y ) that uniquely
factorizes f as above.

For the “upper” part, one can define over Sig(U,A) the least equivalence 'δ
such that (u,X) 'δ (u′, X ′) whenever there is u′′ ∈ U such that u, u′ ≤ u′′,
δ(u) = δ(u′) and X ↓u′ = X ′ ↓u. Then, one can check if (u,X) 'δ (u′, X ′) then
f(u,X) = f(u′, X ′) for any ∆-synchronous function f with temporal projection
δ. This means that Sig(U,A)/ 'δ can be used for defining δ!(Q). However, in
general, it does not seem that such a quotient is itself embeddable into (a sort
of) a signal timed poset as done for the “lower” part above.



Remark 4.13. In some sense, in the above example, the function ωQ acts as a
scheduler that plans, within the time scale U , the events that will be emitted
within the time scale V . Somehow dually, in the case both δ!(Q) and αP are
definable over timed signals, for instance when δ is injective, then it can be
observed that function αP acts as a buffer that delays events timed on U until
they are necessary for computation. More general conditions under which such
an interpretation makes sense can be defined within timed signals, but we failed
yet to find any general enough to be worth being detailed.

Remark 4.14. Every choice of a time scale provides a granularity at which a
system behavior can be observed. The above result can thus be seen as a tool box
that allows the behavior of a timed system to be analyzed at various granularity.
There appear some potential links with abstraction/refinement techniques for
system design [1] and abstract interpretation techniques for system analysis [13].

5 More on synchronous functions

Theorem 4.11 shows that ∆-synchronous functions are inherently linked with
synchronous functions. Theorem 4.10 ensures that the category TPoset(T ) of
posets timed over T and synchronous functions is a Grothendieck topos (see 5.18)
therefore an elementary topos. We review below the concrete constructions over
timed posets that derive from such a result and, with a view towards system
modeling, describe their fairly intuitive interpretation.

Lemma 5.1 (Clock ticks). Let P be a poset timed over T . Then the temporal
projection π : P → T is the unique synchronous function from P into T . In
other words, the self-timed poset T is terminal in TPoset(T ).

Remark 5.2. In some sense, the time scale T , seen as a self-timed poset, can be
understood as a clock. Indeed, every synchronous function c : T → P defines a
timed constant which is produced, pieces after pieces, as time is passing. Observe
however that the existence of such a function implies that c(T ) is a subset of P
isomorphic to T . There are posets timed over T with no such a subset as shown
by any strict downward closed subset of T (see 2.4). In other words, timed posets
may also contain timed constants in which evolution in time may stop at some
instant as if they were timed over a smaller (sub) time scale.

Definition 5.3 (Synchronous product). Let P,Q be two posets timed over
T . The synchronous product of P and Q is defined as the set P ⊗Q = {(x, y) ∈
P × Q : πP (x) = πQ(y)} ordered point-wise and equipped with the temporal
projection defined by π(x, y) = π(x) = π(y) for all (x, y) ∈ P ⊗Q.

Example 5.4 (Timed signals). One can check that we have Sig(T,A) ⊗
Sig(T,B) ∼= Sig(T,A⊕B).

Lemma 5.5. Then P ⊗ Q is a timed poset over T and, with projections p1 :
P ⊗ Q → P and p2 : P ⊗ Q → Q, it is the categorical product of P and Q in
TPoset(T ).



Proof. Given f : R→ P and g : R→ Q, we have to show that f×g : R→ P⊗Q
defined for all z ∈ R by f×g(z) = (f(z), g(z)) is the unique synchronous function
h : RT → P ⊗Q through which f and g factorizes, i.e. we have f = p1 ◦ h and
g = p2 ◦ h, as depicted in Figure 2.

P

Q

P ⊗QR

∀f

∀g

∃!h
p1

p2

Fig. 2. Categorical product diagram.

This property is routine to check.

Remark 5.6. The interpretation of the above synchronous product shall be ob-
vious. Thanks to the fact it is a categorical product, every pair of synchronous
functions f : R → P and g : R → Q uniquely factorizes through some syn-
chronous gluing f × g : R→ P ⊗Q of the functions f and g. Such a combinator
over synchronous functions could be used is an arrow programming style [19].

Remark 5.7 (On coproduct). One can check that the coproduct3 P ⊕ Q of
two timed posets with canonical injection eventually leads to the definition of
categorical coproduct of P and Q in TPoset(T ). Then the empty timed poset
is the initial object in TPoset(T ). This shows that the category TPoset(T ) is
bi-cartesian.

Such a coproduct can be used as a timed alternative. However, such an
alternative is very likely to be solved at initialization time, before any instant
in T . Indeed, as soon as T has a minimum, every coherent subset of P ⊕ Q is
necessarily either the embeddings of a coherent subsets of P or the embedding
of a coherent subset of Q. No mixed subset is coherent.

Definition 5.8 (Temporal cut of a synchronous function). Let f : P → Q
be a synchronous function on the time scale T . Let u ∈ T . The temporal cut of f
at u is the function f ↓u : P ↓u→ Q ↓u defined by P ↓u = {x ∈ P : π(x) ≤ u},
Q ↓u = {y ∈ Q : π(y) ≤ u} and (f ↓u)(x) = f(x) for all x ∈ P ↓u.

Observe that both P ↓u and Q ↓u are downward closed hence (see Example 2.4)
they both are posets timed over T . Moroever, since f is synchronous, property
(SI1) ensures that f(x) ∈ Q ↓u for all x ∈ P ↓u therefore f ↓u is a well defined
synchronous function from P ↓u into Q ↓u.

3 Possibly gluing minimal elements when considering the subcategory of timed posets
with a minimum elements



Definition 5.9 (Synchronous exponent). Let P and Q be two posets timed
over T . The synchronous exponent of Q by P is defined to be the set [P →T Q]
of all pairs (u, h) with u ∈ T and synchronous functions h : P ↓u → Q ↓u,
with temporal projection defined by π(u, h) = u and partial order defined by
(u1, h1) ≤ (u2, h2) when u1 ≤ u2 and h1 = h2 ↓u1 for all (u, h), (u1, h2), (u2, h2) ∈
[P →T Q].

Lemma 5.10. Let P,Q,R be three posets timed over T . Then [Q →T R] is
a poset timed over T . Moroever, there is also the synchronous function eval :
QR ⊗ Q → R defined by eval((u, h), y) = h(y) for all ((u, h), y) ∈ RQ ⊗ Q
therefore with π(y) = u.

The timed poset [Q→T R] with function eval is the categorical exponent of R
by Q in TPoset(T ), i.e. for all synchronous function g : P⊗Q→ R, the function
g∗ : P → RQ defined, for all x ∈ P , by g∗(x) = (π(x), λy.g(x ↓π(y), y)) is the
unique synchronous function from P into RQ such that g(x, y) = eval(g∗(x), y)
for all (x, y) ∈ P ⊗Q.

Proof. The above situation is depicted in Figure 3.

P

RQ

∃!g∗

P ⊗Q

RQ ⊗Q R

g∗ × id

eval

∀g

Fig. 3. Categorical exponent diagram.

The proof of this lemma essentially goes by first checking that both eval
and g∗ are indeed well defined synchronous functions. In particular, when y ∈
P ↓π(x) then we indeed have π(y) ≤ π(x) therefore eval(g∗(x), y) = f(x ↓π(y), y)
is indeed well-defined. The fact that g∗ is the unique synchronous function such
that g(x, y) = eval(g∗(x), y) for all (x, y) ∈ P ⊗Q is then routine to check.

Remark 5.11. This result states that every synchronous function f : P → Q
can itself be represented by coherent subset {f ↓u}u∈T of exponent QP which
can be transmitted and applied on-the-fly over the pieces {x ↓u}u≤π(x) of an
argument x ∈ P . Then, as soon as the instant π(x) is reached, such an on-the-
fly application stops since the remaining values {f ↓u}u6≤π(x) of the functions
cannot be synchronized with any further argument. This property could perhaps
be used designing a timed programming language where resources are indeed
freed whenever a timed (sub)computation terminates.

The following lemma comes as a complement of the construction of timed posets
from downward closed subsets of timed posets (see 2.4), by characterizing sub-
objects4 of the category TPoset(T ) precisely as these downward closed subsets.

4 One can easily verify that the monomorphisms in TPoset(T ) are the injective syn-
chronous functions. Then, as a consequence of the lemma, every injective syn-



Lemma 5.12 (Timed subobjects). Let f : P → Q be a synchronous function.
Then f(P ) = ↓ f(P ), moreover, f is injective if and only if P ' f(P ) as posets.

Proof. Let x ∈ P and let y ≤ f(x). This means that y = f(x) ↓π(y). By (SI3)
we thus have y = f(x ↓π(y)) hence y ∈ f(P ).

Given then x, y ∈ P . If x ≤ y then, by (SI2), we have f(x) ≤ f(y). Conversely,
assume that f(x) ≤ f(y) hence f(x) = f(y) ↓π(f(x)). By (SI1) and monotony of
π we thus have π(x) ≤ π(y). Then, (SI3) we have f(y ↓π(x)) = f(y) ↓π(x) hence,
by (SI1), f(y ↓π(x)) = f(y) ↓π(f(x)). Together, we thus have f(y ↓π(x)) = f(x)
hence x = y ↓π(x) since f is injective and thus x ≤ y.

In the category Set , there is the powerset construction P(E) of subsets of a
set E. In TPoset(T ) the analogous power object is defined below.

Definition 5.13 (Synchronous power). Let P be a poset timed over T . The
synchronous power of P is defined as the set ΩP = {(u,X) ∈ T × P(P ) :
X = ↓X,π(X) ≤ u} with temporal projection defined by π(u,X) = u and
partial order defined by (u,X) ≤ (v, Y ) when u ≤ v and X = Y ↓u for all
(u,X), (v, Y ) ∈ ΩP .

Lemma 5.14. The synchronous power ΩP of a timed poset P is a poset timed
over T and the power object of P in TPoset(P ).

Proof. We first prove that ΩT is the subobject classifier in TPoset(T ) as stated
in Remark 5.17. For such a purpose, given a poset P timed over T , we easily
check that the characteristic function XX : P → ΩT of a downward closed subset
X ⊂ P is uniquely defined by XX(x) = (π(x), π(↓x ∩X)) for every x ∈ P .

Then we prove that that ΩP ' [P → ΩT ] which, by known result in topos
theory proves that ΩP is indeed the power object of P . The expected isomor-
phism f : ΩP → [P → ΩT ] is defined, for every (u,X) ∈ ΩP , by f(u,X) =
(u,XX ↓u) ∈ [P → ΩT ]. The inverse image of every pair (u, h) ∈ [P → ΩT ] is
defined by f−1(u, h) = (u, {x ∈ P ↓u : h(x) = true(x)}) with true defined in
Remark 5.17.

Example 5.15 (Timed signals). Continuing Examples 2.5 and 2.6 we have
ΩImp(T,E) ∼= Sig(T,E). Indeed, every timed signal (u,X) ∈ Sig(T,E) is a col-
lection of (non trivial) timed impulses arrived before or at instant u.

Remark 5.16. The above example illustrates how power objects can be inter-
preted in terms of parallelism: a computation trace in ΩP models arbitrarily
many computation traces in P that are run synchronously. Moreover, just like
subsets, two sub-traces identical at some instant are eventually merged into a sin-
gle one. Alternatively, it also makes sense to interpret traces in the power object
as pending nondeterministic choices much like in power domain constructions.

chronous function f : Q → P is equivalent (as sub-object) with the inclusion syn-
chronous function incf(Q) : f(Q)→ P .



Remark 5.17. Following topos theory [4,27], the timed domainΩT = {(u, V ) ∈
T ×P(T ) : V = ↓V ≤ u}, with the synchronous function true : T → ΩT defined
by true(t) = (t, ↓ t) for all t ∈ T is the subobject classifier in TPoset(T ). In
other words, for every poset P timed over T , for every downward closed subset
X ⊆ P , there is a unique synchronous function XX : P → Ω, the characteristic
synchronous function of X, such that, given the synchronous inclusion incX :
X → P we have Xf ◦ incX = true ◦ π and this is a pullback square, i.e. for
all synchronous f : Q → P such that Xf ◦ f = true ◦ π we necessarily have
f(Q) = X therefore f uniquely factorizes through incX .

P

Q ΩT

T

∀f

∃!Xf

π

true

Fig. 4. Subobject classifier pullback square.

As an immediate consequence of Theorem 4.10, or gathering the results stated
in this section5, we have:

Theorem 5.18. The category TPoset(T ) is an elementary topos, i.e. it is carte-
sian closed, finitely complete and has all powerobjects.

6 More on ∆-synchronous functions

Clearly, timed posets identities are synchronous functions and every composition
of two ∆-synchronous functions is itself ∆-synchronous with temporal projection
the composition of their temporal projections. It follows that every choice of a
category C ⊆ Poset of time scales and time scale transformations yields the
category TPoset(C) of posets timed over time scales in C and ∆-synchronous
functions with temporal projections that are morphisms inC. In the most general
case, one can choose for C the category Poset .

Throughout the rest of the section, we assume that the chosen time scale
category C ⊆ Poset is cartesian closed with terminal poset {∗} ∈ C. We also
assume some time scales U and V ∈ C and some posets P and, resp., Q ∈
TPoset(C) timed over U and, resp., V .

Lemma 6.1 (One instant clock). Let 1 be the one element poset {∗} timed
over itself. Then 1 is the terminal element in TPoset(C).

5 additionally proving that TPoset(T ) also has all equalizers, which is easy since they
are essentially defined as in Set .



Definition 6.2 (Asynchronous product). The asynchronous product of P
and Q is defined as the cartesian product P × Q with temporal projection π :
P ×Q→ U × V by π(x, y) = (π(x), π(y)), ordered point wise.

Lemma 6.3. Then P × Q is a poset timed over U × V ∈ C. Both projections
p1 : P ×Q→ P and p2 : P ×Q→ Q are ∆-synchronous with temporal projection
π(p1) = p1 : U ×V → U in C and π(p2) = p2 : U ×V → V in C. Together, they
form the categorical product of P and Q in TPoset(C).

Definition 6.4 (Asynchronous exponent). The asynchronous exponent of
Q by P is defined as the set QP of ∆-synchronous function from P into Q with
temporal projections in V U ∈ C just as already defined in 4.1.

Lemma 6.5. Then QP is a poset timed over V U ∈ C. The evaluation mapping
eval : QP × P → Q defined, for all f ∈ QP and x ∈ P , by eval(f, x) = f(x) is
∆-synchronous with, thanks to (SD1), temporal projection π(eval) = eval in C.
Together, they form the exponent of Q by P in TPoset(C).

Gathering all the above lemmas, we have:

Theorem 6.6. The category TPoset(C) is cartesian closed whenever C is.

Remark 6.7. The empty poset timed over the empty time scale is the initial
object. The disjoint sum is the coproduct in TPoset(C) therefore TPoset(C)
is even bi-cartesian closed whenever C is. The next theorem generalizes such a
remark.

Definition 6.8 (Projection of diagram functor). Let G = 〈V,E, s, t〉 be a
graph with vertices V , edges E, source and target functions s, t : E → V . Let
F : G → TPoset(C) be a diagram functor6. The temporal projection of F is
defined to be the diagram functor H : G→ C defined by, for all v ∈ V , the poset
H(v) is the time scale over which F (v) is timed and, for all e ∈ E, the time scale
tranformation H(e) is the temporal projection π ◦ F (e) of the ∆-synchronous
function F (e).

Theorem 6.9 (Limit and colimit). A diagram functor F : G → TPoset(C)
has a limit (resp. a co-limit) in Poset(C) whenever its temporal projection
H : G→ C has a limit (resp. a colimit) in C.

Proof. Throughout this proof, for each v ∈ V , let πv : F (v) → H(v) be the
temporal projection of the poset F (v) timed over H(v).

The limit case. Assume H has a limit cone given by T ∈ C and, for each
v ∈ V , a function δv : T → H(v) in C. By definition, we have δt(e) = H(e)◦ δs(e)
6 We call here a diagram functor a functor from the category freely generated by a
graph G. As such a functor is fully determined by its value on graph vertices and
edges it can simply be seen as a graph morphism from G into (the graph of) its
codomain category.



for every e ∈ E. Let then

P =
⋃
t∈T

(
{t} ×

∏
v∈V

π−1v (δv(t))

)
ordered point-wise with first projection as temporal projection. It is a poset
timed over T . There are also the ∆-synchronous projection pv : P → F (v), one
for each v ∈ V , defined by

pv(t, {xv}v∈V ) = xv

for every (t, {xv}v∈V ) ∈ P with temporal projection π(pv) = δv. Then it is
routine to check that the subset

X =
{
(t, {xv}v∈V ) ∈ P : ∀e ∈ E, xt(e) = F (e)(xs(e))

}
is downward closed therefore a sub-timed poset of P and, equipped with the
(restriction of) the projection {pv}v∈V is the limit of F .

The colimit case. Assume that H has a colimit cone given by T ∈ C and,
for each v ∈ V , a function δv : H(v) → T in C. By definition, we have δs(e) =
δt(e) ◦H(e) for every e ∈ E. Then we can define

P =
⋃
t∈T

(
{t} ×

⋃
v∈V
{v} × π−1v (δv(t))

)
ordered point-wise with first projection as temporal projection. It is a poset
timed over T . Moreover, there are the ∆-synchronous injection ιv : F (v) → P
with temporal projection δv defined by

ιv(x) = (δv ◦ πv(x), v, x)

for all x ∈ F (v) and we have P =
⋃
v∈V ιv(F (v)).

Let then ' be the least equivalence over P such that we have

ιs(e)(x) ' ιt(e)(F (e)(x))

for all e ∈ E and x ∈ F (s(e)). It is routine checking that for all x, y ∈ P , if x ' y
then π(x) = π(y) and for all t ∈ T such that t ≤ π(x) we have x ↓ t ' y ↓ t. It
follows that P/ ' can be equipped with the order defined for all x, y ∈ P by
[x] ≤ [y] when there is x′ ∈ [x] such that x′ ≤ y and the temporal projection
defined for all x ∈ P by π([x]) = π(x).

Then P/ ' is a poset timed over T and, for every v ∈ V , the function
jv : F (v)→ P/ ', defined by

jv(x) = [ιv(x)]

for all x ∈ F (v) is ∆-synchronous with temporal projection δv. By construction,
we have js(e) = jt(e) ◦ F (e) for every e ∈ E. Then, it is routine to check that
P/ ' equipped with the functions {jv}v∈V form the colimit of F .



As a particular case, a fixpoint equation of timed posets (or, as defined below,
timed domains) has an inductive (resp. co-inductive) solution whenever the pro-
jection of this equation over time scales has an inductive (resp. co-inductive)
solution.

7 Timed domains

Timed domains ought to be cpos timed over cpos with continuous projections
and cuts. Such a definition is formalized via the notion of pre-continuous timed
posets so that timed domains can precisely be defined as pre-continuous timed
posets timed over cpos.

Definition 7.1 (Pre-continous timed posets). Let P be a poset timed over
T . We say that P is a pre-continuous timed poset when

(IN3) if X is directed and
∨
π(X) is defined then so is

∨
X,

for all X ⊆ P .

Remark 7.2. In general, neither Imp(T,E) nor Sig(T,E) (see 2.5 and 2.6) are
pre-continuous. Indeed, as soon as there is t =

∨
U with directed U ⊆ T and

t 6∈ U , then, in Imp(T,E), we have {(t, e) ↓u}u∈U = {(t,⊥) ↓u}u∈U therefore
this set as no upper bound. A remedy to this fact is proposed below.

Example 7.3 (Observable timed signals). Let << be the relation called
here way before, defined for every instant t, u ∈ T by t<<u when for every
directed subset U ⊆ X such that

∨
U = u there must exists u′ ∈ U such that

t ≤ u′. Let SigC(T,E) ⊆ Sig(T,E) be the set of timed signals (u,X) such
that t<<u for all (t, e) ∈ X, i.e. every event (t, e) ∈ X is observable in the
sense that it can be observed in any series of observations performed as any
(directed) set of instants U such that

∨
U = u. Then, with the cut defined by

(u,X) ↓u′ = (u′, {(t, e) ∈ X : t<<u′}) for all u′ ≤ u, the resulting set of signals
SigC(T,E) is a pre-continuous timed poset though not, in general, a sub-timed
poset of Sig(T,E).

Lemma 7.4. Let P be a pre-continous timed poset timed over T . Then, for
every x ∈ P the local cut cutx : ↓π(x)→ P (see 2.7) is continuous.

Proof. Let x ∈ P and let U ⊆ T , directed, such that U ≤ π(x). Assume
that there is v =

∨
U . Proving the continuity of cutx amounts to proving that∨

x ↓U = x ↓ v.
Since the local cut is monotone the set x ↓U is directed with π(x ↓U) = U .

By (IN3), there is thus y ∈ P such that
∨
(x ↓U) = y ≤ x. Moreover, by (IN1),

we have π(y) ≤ π(x) hence, by (IN2), we have y = x ↓π(y).
Since π(x ↓u) = u, by monotony of the temporal projection, we have

∨
U =

v ≤ π(y). Moreover, since
∨
U = v we have x ↓U ≤ x ↓ v hence, by definition

of least upper bound we have y = x ↓π(y) ≤ x ↓ v hence π(y) ≤ v. This proves
that π(y) = v hence y = x ↓ v.



Remark 7.5. In general, the continuity of all local cuts in a timed poset does
not imply the continuity of that timed poset as shown by the example P1 = N
timed as a timed subset of T1 = N = N ∪ {∞} self-timed.

Also, the continuity of a timed poset does not imply the continuity of its
temporal projection, as shown by the example P2 = N timed as a timed subset
of T2 = N ∪ {∞′} self-timed, with ∞′ another upper bound of N, distinct and
incomparable with ∞.

Lemma 7.6. Let P be a pre-continuous timed poset, timed over T . Assume that
T is complete. Then P is complete and its temporal projection is continuous.

Proof. Let X ⊆ P directed. By monotony of the temporal projection, the set
π(X) ⊆ T is directed. Since T is complete, there is v =

∨
π(X). Since P is

pre-continuous, by (IN3), there is y =
∨
X. This concludes the proof that P is

complete.
For every x ∈ X, we have x ≤ y therefore we have x = y ↓π(x). Since π(X)

is directed, by continuity of cuty (Lemma 7.4) we have
∨
x = y ↓

∨
π(X) that is

y = y ↓ v hence v = π(y). This concludes the proof that π is continuous.

Definition 7.7 (Timed domain). A timed domain is a pre-continuous timed
poset timed over a complete time scale, hence, as proved above also a complete
poset with continuous local cuts and temporal projection.

Remark 7.8. As a consequence of 7.4, a timed domain P is continuous/algebraic
in the sense of Scott if and only if T itself is continuous/algebraic. Indeed, it can
be shown that for all x, y ∈ P , we have x<<y if and only if π(x)<<π(u).

Lemma 7.9 (∆-synchronous vs continuous). Let P and Q be two timed
domains. Let f : P → Q be a ∆-synchronous function with temporal projection
δ : U → V . Assume that δ is continuous. Then f is continuous.

Proof. Let X ⊆ P directed and, by completness of P , let y =
∨
X. For every x ∈

X we have x ≤ y hence x = y ↓π(x) and thus, by (SD3), f(x) = f(y) ↓ δ ◦ π(x)
with δ ◦π(x) ≤ π(f(y)). Since the temporal projection π, the function δ and the
local cut cutf(y are all continuous this ensures that

∨
f(X) = f(y)δ ◦ π(

∨
X).

By continuity of π we have π(
∨
X) = π(y). By (SD1) we have π(f(y)) = δ ◦π(y)

therefore by (IN2) we have f(y)δ ◦ π(
∨
X) = f(y) hence

∨
f(X) = f(y).

Remark 7.10. As a special case of the above lemma every synchronous function
between timed domains is continuous.

Theorem 7.11. Let T be a cpo. Then the category TCpo(T ) of timed domain
over T and, when T has a least element, the category TCpo⊥(T ) of timed domain
over T with least element, with, in both cases, synchronous (and continuous)
functions between them, are topoi.

Proof (Sketch of). The proof goes by rephrasing the Scott topology in terms
of a Grothendieck topology J over posets in such a way that (the categories of



elements of the) sheaves in Sh(T, J) are the pre-continuous timed posets timed
over T . As a reminder, a subset X of a poset E is Scott closed when it is
downward closed and for every directed Y ⊆ X, if

∨
Y is defined then

∨
Y ∈ X.

Then, for every t ∈ T , we define J(t) to be the set of all downward closed subsets
U ⊆ T such that U ≤ t, i.e. U is a sieve on t, and their Scott closure U equals
↓ t.

One can easily check that J is a Grothendieck topology (see [27] p 110). More-
over, one can also check that a timed poset P ∈ TPoset(T ) is pre-continuous if
and only if its associated presheaf FP : T op → Set (see 3.9) is a sheaf for J (see
[27] p 121). This ensures that the categorical equivalence between TPoset(T )
and Psh(T ) (see Theorem 4.10) also defines a categorical equivalence between
the subcategories TCpo(T ) and Sh(T, J). It follows that TCpo(T ) is also a topos
since Sh(T, J) is.

For the category TCpo⊥(T ) the argument is similar, though taking instead
the topology J ′ defined from J , by letting J ′(t) = J(t) when t > ⊥ and
J ′(⊥) = {{⊥}, ∅}. This forces every sheaf in Sh(T, J ′) to be a singleton on
⊥, and therefore its category of elements to have a least element. �

Remark 7.12. The terminal object, products and exponentials in both TCpo(T )
and TCpo⊥(T ) are defined just in the same way as in TPoset(T ). The power
object ΩP differs from TPoset(T ) by the fact that it only contains pairs of the
form (u,X) ∈ T × P(P ) where X is not only downward closed but also Scott
closed. This follows from the fact that in both TCpo(T ) or TCpo⊥(T ), subob-
jects correspond to Scott closed subsets of timed domains.

Theorem 7.13. Both categories TCpo(Cpo) of timed domains or TCpo⊥(Cpo⊥)
of timed domains with least elements, and, in both cases, ∆-synchronous func-
tions with continuous temporal projections (therefore themselves continuous) are
cartesian closed categories.

Proof. Since Cpo and, resp. Cpo⊥ are cartesian closed, it is routine to check
that terminal objects, asynchronous products and asynchronous exponents both
in TCpo(Cpo) or in TCpo⊥(Cpo⊥) are defined just as in TPoset(Poset) (see
Theorem 6.6).

Remark 7.14. Both categories above have an initial object when extended with
the empty timed domain over the empty time scale. They also have coproducts:
the disjoint sum in TCpo(Cpo) and the coalescent sum in TCpo⊥(Cpo⊥). In
other words, both (slightly extended) categories are bi-cartesian closed. More
generally, it can be shown that Theorem 6.9 still holds when restricted to the
category TCpo⊥(Cpo⊥).

8 Timed fixpoints and causality

In the category TCpo⊥(Cpo⊥) of timed domains with least elements, every ∆-
synchronous function has a least fixpoint. Following the footsteps of Matsikoudis
and Lee [28], we examine below the property of the induced least fixpoint oper-
ators.



Lemma 8.1. Let P ∈ TCpo⊥(Cpo⊥) be a timed domain with least element ⊥P
timed over a complete time scale T with least element ⊥T . Let f : P → P be a
∆-synchronous function with continuous temporal projection δ : T → T . Then
both least fixpoints µP (f) ∈ P and µT (δ) ∈ T are defined. Moreover, we have
π ◦ µP (f) = µT (δ).

Proof. By Scott continuity, we have µP (f) =
∨
n∈ω f

n(⊥P ) and µT (δ) =
∨
n∈ω δ

n(⊥T ).
Moreover, by (SD1) and induction over n ∈ ω, since π(⊥P ) = ⊥T we easily
prove that π ◦ fn(⊥P ) = δn(⊥T ) for all n ∈ ω. By continuity of π (7.6) we have
π ◦ µP (f) =

∨
n∈ω δ

n(⊥T ) and thus π ◦ µP (f) = µT (δ).

Example 8.2 (Timed signals). Let T = R+ be the time scale of positive reals
completed with a maximum element ∞. Let f : Sig(T,E) → Sig(T,E) defined
for all (u,X) ∈ Sig(T,E) by f(u,X) = (u+2, {(0, e0)}∪{(t+2, e) : (t, e) ∈ X})
for some fixed event value e0 ∈ E. Then f is ∆-synchronous with temporal
projection t 7→ t + 2 with ∞ as least fixpoint. Then we have the least fixpoint
µ(f) = (∞, {(2 ∗ n, e0) : n ∈ N}).

Theorem 8.3. Let PP be the exponent in TCpo⊥(Cpo⊥) of the timed domain
P by itself and let TT be the exponent of the object T by itself in Cpo⊥. Then
the least-fixpoint mapping µP : PP → P is a ∆-synchronous function with con-
tinuous temporal projection π(µP ) = µT : TT → T .

Proof. The fact µP : PP → P is ∆-synchronous follows from the fact that µP is
monotone (SD2) and, by Lemma 8.1, we have π ◦ µP (f) = µT ◦ π(f) for every
f ∈ PP (SD1). This means that π(µP ) = µT . Finally, as it is a known fact from
domain theory that µT : TT → T is continuous this proved that µP is indeed in
TCpo⊥(TCpo⊥).

Remark 8.4. When computing the fixpoint of a function f the output of that
function is sort of rewired on its input. In signal processing, there is a feedback
loop. Since both inputs and outputs lie in the same timed domain, their temporal
projections lie in the same time scale and can thus be compared. By default, every
∆-synchronous function is locally causal in the sense that, by monotonicity, for
every n ∈ ω, with xn = fn(⊥P ), we have xn ≤ f(xn) and π(xn) ≤ π(f(xn)).
This suffices for Theorem 8.3 to hold. However, intuition suggests that we could
require these functions to be globally causal as defined and studied below.

Definition 8.5 (Global causality). Let P be a poset timed over T with least
element ⊥P ∈ P therefore also a least element ⊥T ∈ T . Let f : P → P be a
∆-synchronous function with temporal projection δ : T → T . We say that f is
globally causal when π(x) ≤ π(f(x)) for every x ∈ P . Equivalently, by (SD1),
when t ≤ δ(t) for all t ∈ π(P ).

Though not needed in the general case, such a notion appears when restrict-
ing to TCpo⊥(SLattice⊥) so that ∆-synchronous function preserves arbitrary
coherence ( 4.6). Indeed, in SLattice⊥, the fixpoint function µT is not in general
meet-preserving hence Theorem 8.3 fails.



Theorem 8.6. In the category TCpo⊥(CSLattice⊥) of domains timed over con-
tinuous meet-semilattices and ∆-synchronous functions with meet-preserving tem-
poral projections, the fixpoint mapping µP : PP → P is ∆-synchronous provided
we restrict ourselves to causal ∆-synchronous functions.

Proof. Applying Theorem 8.3 it suffices to prove that, restricted to (self-synchronous)
meet-preserving causal functions, the least fixpoint function µT : TT → T is it-
self meet preserving.

For such a purpose, let δ1, δ2 : T → T be two causal meet-preserving func-
tions. Remember that δ1 ∧ δ2 : T → T is simply defined by (δ1 ∧ δ2)(u) =
δ1(u)∧ δ2(u) for every u ∈ T . Since both δ1 and δ2 are causal then δ1 ∧ δ2 is also
causal therefore the restriction to causal functions still yields a meet-semilattice.

Since δ2 is causal, we have δ1 ≤ δ2 ◦ δ1. But we also have id ≤ δ2 hence, by
monotony of δ1, we have δ1 ≤ δ1 ◦ δ2. Rephrased in a single line we this have
proved that

δ1 ≤ δ1 ◦ δ2, δ2 ◦ δ1 (4)

By symmetry, we prove similarly that

δ2 ≤ δ1 ◦ δ2, δ2 ◦ δ1 (5)

Let then A = {1, 2} seen as a two letter alphabet. Let A∗ be the set of finite
strings over A with ε the empty string. Let {δw : T → T}w∈A∗ be the family of
function inductively defined by δε(u) = u, δ1w = δ1 ◦ δw(u) and δ2w = δ2 ◦ δw(u)
for all u ∈ T and all w ∈ A∗. For any string w ∈ A∗, let also denote by |w|1 the
number of 1 in w and by |w|2 the number of 2 in w.

Let n ∈ N. Since both δ1 and δ2 are meet preserving, we observe that we
have

(δ1 ∧ δ2)2n =
∧

w∈A2n

δw

Let then w ∈ A2n. Two cases are possible. In the case |w|2 ≤ |w|1, by applying
|w|2 times the inequality (4) we have δ|w|11 ≤ δw hence, since δ1 is causal and
n ≤ |w|1 we have δn1 ≤ δw. In the symmetric case |w|1 ≤ |w|2, by applying |w|1
times the inequality (5) we have δ|w|22 ≤ δw hence, since δ2 is causal and n ≤ |w|2
we have δn2 ≤ δw. Applied to the above finite meet, since on of the two above
cases must occur in each member, we have

δn1 ∧ δn2 ≤ (δ1 ∧ δ2)2n

As this holds for every n ∈ N, applied to the minimal element ⊥, we thus have∨
n∈N

δn1 (⊥) ∧ δn2 (⊥) ≤
∨
n∈N

(δ1 ∧ δ2)2n(⊥)

Now, by continuity of the meet, we have µ(δ1)∧µ(δ2) on the left of that inequal-
ity. Moreover, since the sequence {(δ1 ∧ δ2)n(⊥)} is monotonic it has the same
greatest lower bound than its even subsequence, we thus have µ(δ1 ∧ δ2) on the
right of the inequality. It follows that µ(δ1) ∧ µ(δ2) ≤ µ(δ1 ∧ δ2).



By causality, µ(δ1) ∧ µ(δ2) is a fixpoint of δ1 ∧ δ2 and µ(δ1 ∧ δ2) is its least
fixpoint hence we also have µ(δ1 ∧ δ2) ≤ µ(δ1) ∧ µ(δ2). It follows that µ(δ1) ∧
µ(δ2) = µ(δ1 ∧ δ2) which concludes the proof that µ is meet-preserving over non
expanding functions.

Remark 8.7. Despite such a result, global causality remains quite an ad hoc
restriction. We are still in need of some additional restrictions on the notion of
∆-synchronous functions in a category TCpo⊥(C⊥) that would guarantee their
combinations to be globally causal whenever applicable. For such a purpose,
adjunctions in posets could be a direction to investigate.

9 Conclusion

Along these pages, we have detailed a possible mathematical framework for the
modeling of spatio-temporal system behaviors that extends to space and time the
classical notion of cpos and continuous functions used in denotational semantics.

Bi-cartesian closed with internal fixpoint operators, and essentially all lim-
its or co-limits that may exist in Cpo⊥, the category TCpo⊥(Cpo⊥) eventually
turned out to be a fairly general and fully featured category for defining and ana-
lyzing the behaviors of timed programs with both synchronous and asynchronous
versions of typical categorical constructs such as sum, products or exponents, as
well as, in the synchronous case, power-objects.

Technically rooted in topos and fibration theory, via the category of elements
of sheaves over certain Grothendieck topologies, the resulting definitions and
constructions have (mostly) been stated in elementary mathematical terms. This
means that, after some more polishing and more detailed application studies,
such material could even be taught to standard students in computer science
and software engineering.

With a view towards concrete applications, we have not yet developed at
all the potential offered by the left Kan extension theorem (see 4.11 and 4.12).
When time scales are built from concrete numerical scales such a N, Q+ or R+,
it allows us to define sound lifting of operators over these time scales such as
delays, projections, stretches, etc., into timed program constructs. This would
lead to pursuing the research program initiated by Paul Hudak for an algebraic
and programming theory of Polymorphic Temporal Media [17] and the somehow
related though earlier proposal of Functional Reactive Programming [14,15].
Links with the related ultrametric [24] or categorical models [21,22] could be
investigated.

Examples over timed signals detailed throughout suggest that timed domains
also may induce some notion of timed operational semantics, probably deeply
linked with the existing state based timed system modeling frameworks such
as IO-timed automata theory [23]. This surely necessitates focussing our atten-
tion on finite (or finitely representable) spaced and timed functions, a necessity
that may benefit from our somewhat strong restriction to timed behaviors that
uniformly act on the underlying time scales.
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