
HAL Id: hal-01634897
https://hal.science/hal-01634897v1

Preprint submitted on 14 Nov 2017 (v1), last revised 17 Jul 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatio-temporal domains: an overview
David Janin

To cite this version:

David Janin. Spatio-temporal domains: an overview. 2017. �hal-01634897v1�

https://hal.science/hal-01634897v1
https://hal.archives-ouvertes.fr

Spatio-temporal domains: an overview
David Janin∗

UMR LaBRI, Bordeaux INP
Université de Bordeaux

janin@labri.fr

Abstract

We consider the possibility of defining a general mathematical framework for the homo-
geneous modeling of heterogeneous spatio-temporal computations as they more and more
occur in modern computerized systems of systems. It appears that the notion of element
categories of certain sheaves over cpos, called timed domains, and their associated trans-
formations eventually provide a fully featured category for such a purpose that extends to
space and time the category of cpos and continuous functions used in classical denotational
semantics.

1 Introduction

Research context. Time is what is indicated by a clock. By such an aphorism, Einstein
states that the proper time between two events is indicated by a clock present at both events.
This implies that time is inherently linked with space. Though defined in physics, such a prin-
ciple also applies to modern computerized systems: from networked multi-player entertainment
applications to semi-automatic navigation systems or high performance computers.

In fact, modern systems are often composed of heterogeneous sub-systems which individual
behaviors are based on events observed in some locally (and sometimes continuously) defined
space and time. Much like in physics, there is no longer any global notion of time nor space
in such a system of systems. Instead, subsystems interacts through hybrid interfaces that
translate between the local space and time information measured by each of these subsystems
and maintain the global coherence of their local behavior. For instance, the notion of Globally-
Asynchronous Locally-Synchronous (GALS) systems [10] that appears in the mid 80s already
put the emphasis on the necessity of combining locally linear behaviors with event based,
therefore generally non linear, causal dependencies.

In order to program these systems many proposals have been made. To name but a few,
the development of the synchronous programing language family [31, 6, 4] is an example. The
Functional Reactive Programing API [14, 15] with its numerous instances in typed functional
programing languages is another example. In theoretical computer science, various mathemat-
ical frameworks have also been proposed for modeling the behavior of such complex evolving
systems, ranging from domain theory [30, 22] to dataflow model of computations [21], ranging
from generalized ultra-metric spaces [28, 25] to category theoretical models [8, 9], ranging from
(timed) transducer theory [23] to co-algebraic constructions [3]. By targeting specific usage,
such as timed programing with Khan synchronous networks [7] or concurrent programing with
Winskel event structures[33], each of these approaches eventually lead to the definition of sound
semantic models. However, no proposed mathematical framework yet seems general enough to
model in a unified and homogeneous way the heterogeneity of modern computerized systems.

∗Work partially supported by Inria center Bordeaux-Sud-Ouest, from September 2016 to February 2017.

Timed domains David Janin

Main result. Keeping a view on the inherent link between time and space mentioned above, we
consider the possibility of defining such a uniform and homogeneous mathematical framework
into which the spatio-temporal semantics of the behavior of heterogeneous systems of systems
and the necessarily hybrid interfaces between their components can be modeled, analyzed and
eventually certified. For such a purpose, we develop the notion of timed domains and timed
morphisms that offer a versatile and sound mathematical framework for a timed denotational
semantics where every non trivial computation step necessarily takes some non zero time. As
a result, we obtain a somewhat fully featured extension to space and time of the category of
cpos and continuous functions as used in classical denotational semantics.

Paper content. Timed posets are defined as certain posets indexed over time scales (Sec-
tion 2). Various concepts deriving from such notions allow for relating timed posets and domains
with, among others, generalized ultra-metric approaches followed in timed system semantics or
event structures used in concurrent system semantics (Section 3). Timed morphisms are then
defined as monotonic functions between timed posets that uniformly act on the underlying time
scales (Section 4).

In the restricted synchronous case, over a given time scale, the resulting categories are shown
to be topoi. Each associated categorical constructs can be interpreted in terms of known notions
of synchronous transformations of timed ressources (Section 5). In the general case of timed
posets and timed morphisms the resulting categories are shown to be bi-cartesian closed. In
this case, the associated categorical constructs are interpreted instead in terms of asynchronous
transformations (Section 6).

Timed domain are eventually defined as certain continuous timed posets over complete time
scale (Section 7). Inductive or co-inductive systems of timed domain fixpoint equations are
shown to be solvable whenever their projections over time scales are (Sections 6 and 7). Least
fixpoints computation of timed morphisms are also shown to be computable by means of least
fixpoint operators which are, themselves, timed morphisms (Section 8).

The applicability of our proposal is illustrated throughout the paper by sketches of inter-
pretation and application examples that are related to existing works.

Some notations. A partially ordered set, or poset, is a set P equipped with a partial order
relation, that is, for all x, y, z ∈ P we have x ≤ x (reflexivity), if both x ≤ y and y ≤ z then
x ≤ z (transitivity) and if both x ≤ y and y ≤ x then x = y (anti-symmetry). Given a poset P ,
we use the notation x, y ≤ z (resp. z ≤ x, y) or even z ≤ X (resp. x ≤ X) to denote the fact
that both x, y ∈ P are smaller (resp. greater) dans z ∈ P , or the fact that z ∈ P is an upper
bound (resp. a lower bound) of the subset X ⊆ P .

The downward closure ↓X ⊆ P of X ⊆ P is defined by ↓X = {y ∈ P : ∃x ∈ X, y ≤ x}. By
extension, for every element x ∈ P we also use the notation ↓x = {y ∈ P : y ≤ x}. We say
that X is downward closed when ↓X = X. When it exists, its greatest lower bound (resp. least
upper bound) is denoted by

∧
X (resp.

∨
X). The poset P is a meet-semilattice when every

two elements x, y ∈ P have a meet, that is, a greatest lower bound denoted by x ∧ y.
A subset X ⊆ P is directed when for all x, y ∈ X there is z ∈ X such that x, y ≤ z. The

poset P is a (directed) complete partially ordered set, or complete poset, or even cpo, when
every directed subset X ⊆ P has a least upper bound

∨
X.

A function f : P → Q between two posets is monotone when x ≤ y implies f(x) ≤ f(y)
for every x, y ∈ X. Whenever needed, the function f is extended point-wise to every subset
X ⊆ P by f(X) = {f(x) ∈ Q : x ∈ X}. The function f is continuous when, for every subset
X ⊆ P , if X is directed and

∨
X is defined then

∨
f(X) = f(

∨
X). A continuous function is

necessarily monotone and, as such, maps every directed subsets to a directed subset.

2

Timed domains David Janin

In a cpo P with a least element ⊥, we know from Knaster-Tarski that a homogeneous
monotone function f : P → P has a least fixpoint µ(f) =

∨
λ∈Λ f

λ(⊥) with Λ any ordinal
which cardinal is strictly greater than the cardinal of P . In the case f is continuous, we know
from Scott that µ(f) =

∨
n∈ω f

n(⊥).
Last, we shall consider various categorical concepts that are detailled when needed. We

may also consider the categories: Poset with partially ordered sets and monotone functions,
SLattice with meet-semilattices and meet-preserving functions and Cpo with complete posets
and continuous functions, as well as their restriction to posets with a least element, the resulting
(full) subcategories being denoted by Poset⊥, SLattice⊥ and Cpo⊥. All these categories are
known to be cartesian closed and, possibly extended with the empty set, bi-cartesian.

2 Timed posets

Throughout this text, we may interpret an arbitrary poset T as a spatio-temporal scale. This
means that for every element u, v ∈ T , we may say that u lays before v when u ≤ v, that u lays
after v when v ≤ u, or that u lays aside v when u and v are incomparable. In other words,
there is the time dimension that increases with the order, and, by lack of a better name, there is
the space dimension where incomparable elements are also related. Having said so, throughout
the rest of this presentation, a spatio-temporal scale is simply be referred to as a time scale, its
elements being called instants.

Definition 2.1 (Timed poset). Let T be a time scale. A poset timed over T is a poset P
equipped with a temporal projection π : P → T such that:

(IN1) if x ≤ y then π(x) ≤ π(y), i.e. the temporal projection is monotone,

(IN2) for every u ≤ π(x) there is a unique element x ↓u ∈ P such that π(x ↓u) = u and
x ↓u ≤ x,

for all x, y ∈ P . The element x ↓u is called the temporal cut, or simply the cut of x at instant
u. This situation is depicted in Figure 1.

(IN2)(IN1)

x ↓u

u

x

π(x)

π∃!π

≤

≤

x

π(x)

y

π(y)

π

≤

π

≤

Figure 1: Temporal projection and temporal cut properties.

Remark 2.2. Property (IN1) states that π is a poset functor. With property (IN2) the
projection π is even a poset fibration.

Example 2.3 (Self-timed poset). Every poset T is a timed poset over itself with identity id as
temporal projection.

Example 2.4 (Sub-timed poset). Let P be a poset timed over T . Let X ⊆ P be a downward
closed subset of P . Let incX : X → P be the inclusion function. Then the set X ordered as in
P with π ◦ incX as temporal projection is also a timed poset.

3

Timed domains David Janin

Example 2.5 (Timed impulses). Let T be a time scale and E be a set of event value extended
into E⊥ = E ∪ {⊥}. The set Imp(T,E) = T ×E⊥ is turned into a timed poset by equipping it
with the temporal projection and partial order defined by π(u, e) = u and (t, e) ≤ (t′, e′) when
either (t, e) = (t′, e′) or t < t′ and e = ⊥.

An element (t, e) ∈ Imp(T,E) with e 6= ⊥ is a timed impulse with value e at instant t.
Observe there are no element strictly above (or after) such an impulse and all elements strictly
below (or before) bears no value as they are of the form (t′,⊥) for some t′ < t.

Rephrased in terms of temporal cut, for all element (t, e) ∈ Imp(T,E) and instant t′ ≤ t =
π(t, e), two cases are possible. Either t′ = t and we have (t, e) ↓ t′ = (t, e), or t′ < t and we have
(t, e) ↓ t′ = (t′,⊥).

Example 2.6 (Timed signals). Let again T be a time scale and E be the set of event values.
A timed signal is defined as a relation S ⊆ T × E that maps every instant t ∈ T to the set
S(t) = {e ∈ E : (t, e) ∈ S} of event values received at instant t. A partial timed signal is then
a pair (u, S) ∈ T × P(T × E) such that for all (t, e) ∈ S we have t ≤ u.

The set Sig(T, V) of partial timed signals is turned into a timed poset by equipping it
with the temporal projection defined by π(u, S) = u and the partial order relation defined by
(u, S) ≤ (u′, S′) when u ≤ u′ and S(t) = S′(t) for all t ≤ u, for all (u, S), (u′, S′) ∈ Sig(T, V).
Following [28], a pair (u, S) ∈ Sig(T, V) represents the observation of a timed until the instant u.
In some sense, it is the temporal trace of some computation until that instant.

Rephrased in terms of temporal cut, for all partial signal (u, S) ∈ Sig(T, V) and instant
v ≤ u = π(u, S) we have (u, S) ↓ v = (v, S′) with S′ = {(t, e) ∈ S : t ≤ v}. Such a temporal cut
(u, S) ↓ v models the observation of the partial signal (u, S) until v that occurs before u.

Definition 2.7 (Local cut). Let P be a poset timed over T . For every x ∈ P , property (IN2)
induces a (total) function cutx : ↓π(x) → P , called a local cut, defined by cutx(u) = x ↓u on
every u ∈ T such that u ≤ π(x).

Lemma 2.8 (Local cut properties). Let x, y ∈ P and u, v ∈ T such that u, v ≤ π(x). Then:

(1) x ≤ y if and only if π(x) ≤ π(y) and x = y ↓π(x),

(2) u ≤ v if and only if x ↓u ≤ x ↓ v.

In particular, the (sub)posets ↓π(x) ⊆ T and ↓x ⊆ P are isomorphic via π.

Proof. (1). Assume that x ≤ y. By (IN1) we have π(x) ≤ π(y) hence by (IN2), x = y ↓π(x)
since π(y ↓π(x)) = π(x). Conversely, assume that π(x) ≤ π(y) and x = y ↓π(x). Then, by
definition of local cut, we have x ≤ y.
(2). Let u, v ≤ π(x). By (IN2) we have π(x ↓u) = u and π(x ↓ v) = v. Assuming that u ≤ v
we thus have u ≤ π(x ↓ v) hence there is y = (x ↓ v) ↓u such that π(y) = u and y ≤ x ↓ v. But
x ↓ v ≤ x hence y ≤ x and thus, by unicity (IN2), we have y = x ↓u therefore x ↓u ≤ x ↓ v.
Conversely, assuming that x ↓u ≤ x ↓ v by (IN1) we have π(x ↓u) ≤ π(x ↓ v) hence u ≤ v since,
by (IN2), we have π(x ↓u) = u and π(x ↓ v) = v.

Corollary 2.9. An element x ∈ P is minimal (resp. minimum) in P if and only if its temporal
projection π(x) ∈ T is minimal (resp. minimum) in T .

On the contrary, maximal elements in a timed poset can have arbitrary temporal projection
as shown by the impulse timed poset described in Example 2.5.

4

Timed domains David Janin

Remark 2.10. Observe that the notation ↓ is used both for cuts or for downward closure.
There is a potential risk of ambiguity or confusion.

However, one can first check that for all x ∈ P and all u ≤ π(x) we have ↓(x ↓u) = (↓x) ↓u
as soon as we extent the (partially defined) cut point-wise. It follows that we can even write
↓x ↓u without parenthesis at all without any ambiguity.

Moreover, the downward closure can itself be seen as a cut over subsets of posets, defining
for every X ⊆ P and x ∈ P the cut X ↓x = {y ∈ X : y ≤ x}. In fact, a cut is sort of a (partial)
action of a poset over set.

3 Derived notions

We review below several notions that derived from the notion of timed posets and that allows
for relating this notion with other known concepts appearing in computer system modeling or
programing language semantics.

Temporal coherence. The following notion is inspired by Girard notion of coherent space in
linear logic [16]. A similar notion, even more closely related with timed domain, also appears
in Winskel notion of event structures [33].

Definition 3.1. Let P be a poset timed over T . Let x, y ∈ P . We say that x and y are
coherent, a property denoted by x ¨ y, when, for every x′, y′ ∈ P such that x′ ≤ x and y′ ≤ y,
if π(x′) = π(y′) then x′ = y′, or, equivalently, for all u ≤ π(x), π(y), x ↓u = y ↓u. By extension,
a subset X ⊆ P is a coherent subset when x ¨ y for all x, y ∈ X.

Lemma 3.2. Let x, y ∈ P . Then x ≤ y if and only if π(x) ≤ π(y) and x ¨ y.

Proof. Assume that x ≤ y then we have π(x) ≤ π(x) hence x = y ↓π(x). Let u ≤ π(x), π(y). We
have x ↓u ≤ x ≤ y hence, since ϕ(x ↓u) = u, by (IN2), we have x ↓u = y ↓u. This proves that
x ¨ y. Conversely, assume that x ¨ y and π(x) ≤ π(y). This implies that x ↓π(x) = y ↓π(x)
hence x = y ↓π(x) and thus x ≤ y.

In other words, coherence offer an alternative to the definition of timed poset via an order
relation.

Remark 3.3. In some sense, every coherent subset X ⊆ P can be sense as the trace of a
spatio-temporal computation that has been observed at the instants π(X). One can even check
that the (sub)posets X and π(X) are necessarily isomorphic via the restriction of π to X. Also,
the downward closure ↓X of a coherent subset is itself coherent.

Remark 3.4. Observe also that a timed poset with its induced coherence relation is a particular
case of an event structure [33], though dropping the finite history requirement, and the same
computational interpretation can be done.

Two elements x and y in P describe concurrent computations when they are coherent and
incomparable: they can both appear in the same computation trace as suggested above. On
the contrary, two elements x and y in P describe conflicting computations when there are
incoherent: they cannot appear in the same computation trace.

To be more precise, by definition of coherence, when x 6¨ y there is u ∈ T in the past of
both π(x) and π(y) such that x ↓u 6= y ↓u. This means that two distinct computations occur
at the same instant (and position) u; a case that is interpreted as forbidden/impossible.

5

Timed domains David Janin

Remark 3.5. Relating timed posets with event structures, one can also observe that the
equivalence induced by π, defined by x ∼π y when π(x) = π(y) for every x, y ∈ P is almost1 a
symmetry as recently defined by Winskel in event structures [34]. This observation relates even
more closely timed posets with the concepts introduced by Winskel in concurrency theory.

However, the notion of timed poset is more restrictive than the notion of event structure. In
a timed poset, coherence is uniformly defined via temporal projection. In an event structure,
coherence is given as part of the definition of that event structure.

Problem 3.6. The possible conditions under which sets equipped with a coherence relation
can be viewed as timed posets is left as an open question.

Temporal distance. Timed concurrent system semantics can also be modeled by means
of generalized ultrametric distance as already developed quite in the depth by Lee, Liu et
Matsikoudis [28, 25]. The following definition shows that timed posets also induce such distances
over their elements.

Definition 3.7. Let P be a poset timed over T . Let P↓(T) be the set of downward closed
subsets of T ordered by reverse inclusion therefore with T as least element. The distance
induced by π over P is the function d : P × P → P↓(T) defined by:

d(x, y) = {t ∈ T : t ≤ π(x), π(y), x ↓ t = y ↓ t}

when x 6= y and by d(x, y) = T when x = y.

One can easily check that d(x, y) = ↓ d(x, y) for all x, y ∈ P hence the above definition is
sound.

Lemma 3.8. The function d : P × P → P↓(T) is a generalized ultrametric, that is, we have:

(1) d(x, y) = T if and only if x = y (separation),

(2) d(x, y) = d(y, x) (symmetry),

(3) d(x, y) ⊇ d(x, z) ∩ d(z, y) (ultra-metric inequality),

for all x, y, z ∈ P .

Proof. Properties (1) and (2) are immediate from the definition. Let x, y, z ∈ P and let u ∈
d(x, z) ∩ d(z, y). This implies that x ↓u = z ↓u with u ≤ π(x), π(z) and z ↓u = y ↓u with
u ≤ π(z), π(x) hence x ↓u = y ↓u with u ≤ π(x), π(y) that is u ∈ d(x, y).

Problem 3.9. Conversely, under which condition a generalized ultra-metric space can be
turned into a timed poset is left as open question.

Temporal presheaves. One last connection of timed posets with an existing notion, now
complete, goes via the notion of categorical presheaves, a notion already used in concurrency
theory especially by Catani, Stark et Winskel for modeling process calculi like CCS and the
π-calculus [9, 8].

Let T be a poset. A presheaf on T is a functor F : T op → Set of the category obtained from
T reversing the order relation into the category Set of sets and fonctions. Then the following

1For ∼π to be a symmetry, the timed poset P must be completed with sorts of non evolving elements of the
from (u, x) with x ≤ (u, x) and π(u, x) = u, defined for all x ∈ P and u ∈ T such that there is no y above x
such that π(y) = u.

6

Timed domains David Janin

lemmas state that poset timed over T are isomorphic with what are known in category theory
as the element categories of presheaves over T . This shows that timed posets and presheaves
are essentially equivalent notions.

Lemma 3.10. Let F : T op → Set be a presheaf over T . Then the set PF = Σt∈TF (t) = {(t, x) :
t ∈ T, x ∈ F (t)}, equipped with the temporal projection defined by π(u, x) = u and the order
relation defined by (u, x) ≤ (v, y) when u ≤ v and F (u ≤ v)(y) = x for all (u, x), (v, y) ∈ PF , is
a timed poset, also known as the element category of F .

Proof. The fact PF equipped with ≤ is a poset goes as follows. Reflexivity follows from reflex-
ivity of the order in T and the fact that F (u ≤ u) = idF (u) for all u ∈ T . Transitivity follows
from the transitivity of the order in T and the fact that F (u ≤ v) ◦ F (v ≤ w) = F (u ≤ w)
for all u, v, w ∈ T with u ≤ v ≤ w. Anti-symmetry follows the anti-symmetry of the order in
T . Indeed, whenever (u, x) ≤ (v, y) and (v, y) ≤ (u, y), by definition, we must have u ≤ v a,d
v ≤ u hence u = v and thus x = idF (u)(y) hence x = y.

It remains to prove that π is a temporal projection. Let (u, x), (v, y) ∈ PF . If (u, x) ≤ (v, y),
then, by definition of the order relation, we must have π(u, x) = u ≤ v = π(v, y) which proves
(IN1). Given w ≤ u = π(u, x) then there is z = F (w ≤ u)(x) with, by definition of the order
(w, z) ≤ (u, x) and if (w, z′) ≤ (u, x) then, again by definition of the order, we must have
z′ = F (w ≤ u)(x) therefore z′ = z. This proves (IN2).

Lemma 3.11. Let P be poset timed over T . Then the presheaf FP : T op → Set defined by
FP (t) = {x ∈ P : π(x) = t} and FP (u ≤ v)(x) = x ↓u for all t, u, v ∈ T with u ≤ v and
x ∈ FP (v), has an element category isomorphic to P .

Proof. We first observe that whenever u ≤ v we indeed have u ≤ π(x) for all x ∈ FP (v)
hence x ↓u is well-defined. Then, proving that FP is a functor just amounts to proving that
FP (u ≤ u) = idFP (u) and FP (u ≤ v) ◦ FP (v ≤ w) = FP (u ≤ w) for all u, v, w ∈ T such that
u ≤ v ≤ w which makes no difficulty. The stated isomorphism between P ans the element
category of FP is also straightforward.

See Theorem 4.10 below for a stronger statement.

4 Timed morphisms
In this section, we define a class of timed morphisms between timed posets, called ∆-synchronous
functions, as monotonic functions between timed posets that uniformly act on the underlying
time scales. In some sense, if we consider the time scales over which posets as part of their
types, then our proposed definition of timed morphisms allows to type them not only by the
type of their domain and codomain but also by the uniform transformation of time scales they
induces.

∆-synchronous function. Throughout this section, let P and, resp. Q, be two posets timed
over the time scales U and, resp. V .

Definition 4.1 (∆-synchronous functions). A function f : P → Q is ∆-synchrone when there
is a monotone function δ : U → V , called the temporal projection of f , such that:

(SD1) π(f(x)) = δ ◦ π(x),

(SD2) if x ≤ y then f(x) ≤ f(y),

7

Timed domains David Janin

(SD3) f(x ↓u) = f(x) ↓ δ(u),

for all x, y ∈ P and all u ∈ U such that u ≤ π(x). This situation is depicted in Figure 2.

U

V

δ (SD1) (SD2)

P
πP

P P
≤P

Q
πQ

Q Q
≤Q

f f f

Figure 2: ∆-synchronous conditions.

Remark 4.2. Observe that as soon a u ≤ π(x) then, by monotony of δ we have δ(u) ≤ δ ◦π(x)
hence, by (SD1), δ(u) ≤ π(f(x)) therefore property (SD3) is sound. Property (SD2) states that
∆-synchronous functions are poset functors. Property (SD1) formalizes the statement that they
uniformly acts on the underlying time scales.

Example 4.3 (Self-synchronous functions). Every monotone function δ : U → V is a ∆-
synchrone between the self-timed posets U and V , with itself as temporal projection.

Example 4.4 (Scale changes on timed signals). Continuing example 2.6, let δ : U → V be a
monotone function between two time scales. Let E be a set of event values. Then there is the
function fδ : Sig(U,E)→ Sig(V,E) defined par

fδ(u, S) = (δ(u), {(δ(t), e) ∈ V × E : (t, e) ∈∈ S})

for all partial signal (u, S) ∈ Sig(U,E). It is an easy observation that fδ is a ∆-synchrone with
temporal projection δ.

Lemma 4.5. Under hypothesis (SD1), property (SD2) and (SD3) are equivalent.

Proof. Let f : P → Q be a fonction and let δ : U → V be a monotone function.
Assume (SD1) and (SD2). Let x ∈ P and u ≤ π(x). By (IN2) we have π(x ↓u) = u hence

π(f(x ↓u)) = δ(u) by (SD1). By (SD2) we also have f(x ↓u) ≤ f(x) hence, by (IN1), we have
δ(u) = π(f(x ↓u)) ≤ π(f(x)) and thus δ(u) ≤ π(f(x)). It follows, that f(x ↓u) = f(x) ↓ δ(u)
by (IN2). This proves (SD3).

Conversely, assume (SD1) and (SD3). Let x, y ∈ P such that x ≤ y. By (IN2) we have
x = y ↓π(x) hence f(x) = f(y) ↓ δ◦π(x) by (SD3) and thus f(x) ≤ f(y). This proves (SD2).

On coherence preservation. It is easy to see that the ∆-synchronous image of a coherent
subset bounded above is coherent. However, without the boundedness condition this is no
longer true as shown by the following example.

Example 4.6. Let U = {⊥, a, b}, self-timed, with minimum element ⊥ and a and b incom-
parable. Let P = U ordered just as U but timed over V = {0, 1} by π(⊥) = 0, π(a) = 1
and π(b) = 1. The function f : U → P defined by f(⊥) = ⊥, f(a) = a and f(b) = b is ∆-
synchronous with temporal projection δ : U → V defined by δ(⊥) = 0, δ(a) = 1 and δ(b) = 1.
Although a ¨ b in U we have f(a) = a 6¨ b = f(b) in P . The function f does not preserve
coherence.

Lemma 4.7. Assume that both U and V are meet-semilattices. Let δ : U → V be meet-
preserving function and let f : P → Q be a ∆-synchronous function with temporal projection δ.
Then f is coherence preserving. Moreover, both P and Q are conditional meet-semilattice and
the function f preserves contional meet, i.e. it is stable in the sense of Berry [5].

8

Timed domains David Janin

Proof. We first prove that f preserves coherence. Let x, y ∈ P such that x ¨ y. We aim
at proving that f(x) ¨ f(y). Let v ≤ π(f(x), π(f(y)). By (SD1), both U and V are meet-
semilattices and δ is meet-preserving, we have v ≤
delta(π(x) ∧ π(y)). Given u = π(x) ∧ π(y), since x ¨ y we have x ↓u = y ↓u hence, by (SD3),
f(x) ↓ δ(u) = f(y) ↓ δ(u). It follows, since v ≤ δ(u) that we have f(x) ↓ v = f(y) ↓ v. This
concludes the proof that f(x) ¨ f(y).

Let x, y, z ∈ P such that x, y ≤ z. This means that x = z ↓π(x) and y = z ↓π(y) therefore,
as routine checking shows, we have x∧y = z ↓π(x)∧π(y). Indeed, if there is any z′ ≤ x, y then
we have π(z′) ≤ π(x) ∧ π(y) therefore z′ = z ↓π(z) ≤ z ↓π(x) ∧ π(y).

By definition, a function is stable when it preserves pullbacks, that is, with timed posets,
conditional meets. Let again x, y, z ∈ P such that x, y ≤ z. Since x ∧ y = z ↓π(x) ∧ π(y),
by (SD3), we have f(x ∧ y) = f(z) ↓ δ(π(x) ∧ π(y)). Since δ is meet preserving, together with
(SD1), this yields f(x ∧ y) = f(z) ↓π(f(x)) ∧ π(f(y)) therefore f(x ∧ y) = f(x) ∧ f(y) since V
is also a meet-semilattice. This concludes the proof that f is stable.

Remark 4.8. In example 4.6, both U and V are meet semi-lattices, but the function δ : U → V
is indeed not meet-preserving since, a ∧ b = ⊥ while δ(⊥) = 0 < 1 = δ(x) ∧ δ(b).

Synchronous functions. We restrict our attention to a smaller class of timed morphisms we
call synchronous for they produce output at the same time they read input.

Definition 4.9 (Synchronous function). A ∆-synchronous function f : P → Q with temporal
projection δ : U → V is a synchronous function when U = V and δ = idU . In other words, f
is synchronous when:

(SI1) π(f(x)) = π(x),

(SI2) if x ≤ y then f(x) ≤ f(y),

(SI3) f(x ↓u) = f(x) ↓u,

for all x ∈ P and u ∈ U such that u ≤ π(x).

Theorem 4.10. The category TPoset(T) of posets timed over T and synchronous functions is
equivalent to the category Psh(T) of presheaves over T and natural transformations.

More precisely, the functor ϕ : TPoset(T) → Psh(T) defined, for every timed poset P ∈
TPoset(T), by ϕ(P) = FP (see 3.11) and, for all synchronous function f : P → Q in
TPoset(T), by ϕ(f) = α with αt(x) = f(x) for all t ∈ T and x ∈ FP (t), is a categorical
equivalence.

Proof. A pseudo inverse functor for ϕ is the functor ψ : Psh(T) → TPoset(T) defined, for all
presheaf F ∈ Psh(T), by ψ(F) = PF (see 3.10), and, for all natural transformation α : F ⇒ G
in Psh(T), by ψ(α) = f with f(t, x) = (t, αt(x)) for all (t, x) ∈ PF .

We shall see in the next section that this implies that the category TPoset(T) is a topos.

From ∆-synchronous to synchronous functions. Synchronous functions eventually pro-
vide a double characterization of ∆-synchronous functions as stated in the next theorem which
generalizes in some sense Example 4.4.

9

Timed domains David Janin

Theorem 4.11 (Left Kan extension). Let δ : U → V be a monotone function. Then there are
two categorical functors

δ! : TPoset(U)→ TPoset(V) and δ∗ : TPoset(V)→ TPoset(U)

and, for every timed poset P ∈ TPoset(U) and QTPoset(V), two ∆-synchronous functions

αP : P → δ!(P) and ωQ : δ∗(Q)→ Q

both with temporal projection δ, such that every ∆-synchronous f : P → Q with temporal
projection δ we both have:

(1) there is a unique synchronous function f! : δ!(P)→ Q such that f = f! ◦ αP ,

(2) there is a unique synchronous function f∗ : P → δ∗(Q) such that f = ωQ ◦ f∗.

i.e. f uniquely factorizes through αP or ωQ. In particular, there is the categorical adjunction
δ! a δ∗. This situation is depicted in Figure 3.

U

V

δ

P

Q

∀f

δ∗(Q)

ωQ

∃!f∗

δ!(P)

αP

∃!f!

Figure 3: ∆-synchronous via synchronous.

Proof. The functor δ∗ is defined as follows. Let Q ∈ TPoset(V). We define δ∗(Q) = {(u, y) ∈
U × Q : π(y) = δ(u)} ordered point-wise with projection π(u, y) = u for all (u, y) ∈ δ∗(Q).
Clearly π is monotone, moreover, for every (u, y) ∈ δ∗(Q) and u′ ≤ u we have (u, y) ↓u′ =
(u′, y ↓ δ(u′) which proves that δ∗(Q) ∈ TPoset(V).

Let h : Q→ Q′ synchronous into some Q′ ∈ TPoset(V). We define δ∗(h) : δ∗(Q)→ DS(Q′)
by δ∗(h)(u, y) = (y, h(y)) for all (u, y) ∈ δ∗(Q). Clearly δ∗(h) is synchronous, and δ∗ defined
this way is indeed a functor.

Let then ωQ : δ∗(Q) → Q simply defined by ωQ(u, y) = y for every (u, y) ∈ δ∗(Q). By
definition, we have π(y) = δ(u) for all (u, y) ∈ δ∗(Q) and since ωQ is clearly monotone this
proves it is ∆-synchronous.

Given ∆-synchronous f : P → Q with temporal projection δ, we define f∗ : P → δ∗(Q) by
f∗(x) = (π(x), f(x)). Given x ∈ P , by (SD1) we have (π(x), f(x)) ∈ δ∗(Q) and π(f∗(x)) =
π(x). Given u ≤ π(x), we also have f∗(x ↓u) = (u, f(x ↓u)) hence, by (SD2), f∗(x ↓u) =
(u, f(x) ↓ δ(u)) hence f∗(x ↓u) = f∗(x) ↓u. This proves that f∗ is synchronous.

Last, by construction, we have f = ωQ ◦ f∗. The unicity of f∗ follows from the fact that,
though not injective, ωQ is a mono since, when f = ωQ ◦ g, for every x ∈ P , the value of f(x)
in Q fixes the right projection of g(x) and synchronicity fixes its left projection.

The functor δ! is defined as follows. Let P ∈ TPoset(U). We define x ↑ v = {y ∈ P : ∃z ∈
P, v ≤ δ◦π(z), z ≤ x, y} for every x ∈ P and v ∈ V . The setX ↑ v is the connected component of
x above v via δ. This allows for defining δ!(P) = {(v, x ↑ v) ∈ V ×P(P) : v ∈ V, x ∈ P, v ≤ π(x)}
ordered point-wise with reverse inclusion over P(P) and with projection π(v,X) = v for every
(v,X) ∈ δ!(P). We check that (v,X) ↓w = (w, x ↑w) for all w ≤ v and x ∈ X.

10

Timed domains David Janin

Let g : P → P ′ be a synchronous function from into P ′ ∈ TPoset(U). We define δ!(g) :
δ!(P) → δ!(P

′) by δ!(g)(v,X) = (v, g(x) ↑ v) for any choice of x ∈ X. If we chose another
y ∈ X, then there is z ∈ P such that v ≤ δ ◦π(z) and z ≤ x, y. By monotony of g we thus have
f(z) ≤ g(x), g(y) with π(f(z)) = π(z) since g is synchronous therefore f(y) ∈ f(x) ↑ v hence,
as observed above, f(y) ↑ v = f(x) ↑ v, i.e. our definition is sound.

We easily check that δ!(g) is synchronous and proving that δ! defined as above is a functor
makes no difficulty.

Let then αP : P → δ!(P) simply defined by αP (x) = (δ ◦ π(x), x ↑ δ ◦ π(x)) for every
x ∈ P . We easily check that αP is monotone and since π(αP (x)) = δ ◦ π(x) for all x ∈ P , it is
∆-synchronous. The fact δ! defined as above is a functor makes no difficulties.

Given ∆-synchronous f : P → Q with temporal projection δ, we define f! : δ!(P) → Q by
f!(v,X) = f(x) ↓ v for every (v,X) ∈ δ!(P) and any choice of x ∈ X. We check that we indeed
have v ≤ δ ◦ π(x) hence, by (SD1), v ≤ π(f(x)). If we chose another y ∈ X, then there is
z ∈ P such that v ≤ δ ◦ π(z) and z ≤ x, y. This implies that f(z) ≤ f(x), f(y) hence, since
v ≤ π(f(z)), we have f(z) ↓ v = f(x) ↓ v and f(z) ↓ v = f(y) ↓ v hence f(x) ↓ v = f(y) ↓ v, i.e.
our definition is sound.

Given (v,X) ∈ δ!(P), by (SD1), we clearly have v = π(f!(v,X)) and since f! is obviously
monotone this proves it is synchronous.

The fact f! ◦αP = f follows from the definition. The unicity of f! follows from the fact that
αP , though not surjective, is an epi since every element (v,X) ∈ δ!(P) lays below αP (y) for
some y ∈ P with X ≤ y hence f!(v,X) is fully determined by f! ◦ αP (y) = f(y).

Remark 4.12. Every choice of a time scale provides a granularity at which a system behavior
can be observed. The above result can thus be seen as a tool box that allows for analyzing
the behavior of a timed system at various granularity. Though further work is required for
a deeper understanding of how such a fact can be used in concrete application cases, there
appears some potential links with abstraction/refinement techniques for system design [1] and
abstract interpretation techniques for system analysis [13].

5 More on synchronous functions
Theorem 4.11 shows that ∆-synchronous functions are inherently linked with synchronous func-
tions. Theorem 4.10 ensures that the category TPoset(T) of poset timed over T and syn-
chronous functions is a topos. We review below the concrete constructions over timed posets
that derive from such a result. With a view towards system modeling, each of these construc-
tions have a fairly intuitive interpretation.

Lemma 5.1 (The clock). Let P be a poset timed over T . Then the temporal projection π :
P → T is the unique synchronous function from P into T . In particular, the self-timed poset
T is terminal in TPoset(T).

Remark 5.2. In some sense, the time scale T seen as a sel-timed poset, can be seen as a clock.
Indeed, every synchronous function c : T → P can be viewed as a timed constant which is
produced, pieces after pieces, as time is passing.

Observe however that the existence of such a function implies that c(T) is a subset of P
isomorphic to T . There are posets timed over T with no such a subset as show by any strict
downward closed subset of T (see Example 2.4).

In other words, timed posets may also contain timed constant which evolution in time may
stop at some instant as if they are timed over a smaller (sub) time scale.

11

Timed domains David Janin

Definition 5.3 (Synchronous product). Let P,Q be two posets timed over T . The synchronous
product of P and Q is defined as the set P ⊗ Q = {(x, y) ∈ P × Q : πP (x) = πQ(y)} ordered
point-wise and equipped with the temporal projection defined by π(x, y) = π(x) = π(y) for all
(x, y) ∈ P ⊗Q.

Remark 5.4. Though we do not propose (yet) a programing language associated to timed
poset, the interpretation of the above synchronous product shall be obvious. Thanks to the
fact it is a categorical product (see below), every pair of synchronous functions f : R→ P and
g : R→ Q uniquely factorizes through the gluing f × g : R→ P ⊗Q of the functions f and g.
This combinator over functions is much useful in data flow programming that allows for using
synchronous functions in an arrow programing style [18].

Lemma 5.5. Then P ⊗Q is a timed poset over T and, with projections p1 : P ⊗Q → P and
p2 : P ⊗Q→ Q, it is the categorical product of P and Q in TPoset(T).

Proof. Given f : R→ P and g : R→ Q, we have to show that f ×g : R→ P ⊗Q defined for all
z ∈ R by f × g(z) = (f(z), g(z)) is the unique synchronous function h : RT → P ⊗Q through
which f and g factorizes, i.e. we have f = p1 ◦ h and g = p2 ◦ h, as depicted in Figure 4.

P

Q

P ⊗QR

∀f

∀g

∃!h
p1

p2

Figure 4: Categorical product diagram.
This property is routine to check.

Remark 5.6. One can check that the disjoint sum2 P ⊕Q of two timed posets with canonical
injection eventually leads to the definition of categorical co-product of P and Q in TPoset(T).
Then the empty timed poset is the initial object in TPoset(T). This shows that the category
TPoset(T) is bi-cartesian.

With a view towards application, such a co-product can also be used for modeling alternative.
However, it is very likely that such an alternative must be solved “at initialization time” before
any instant in T . Indeed, when T is totally ordered, then a coherent subset of P ⊗Q can only
be (the embedding of) a coherent subset of P or coherent subset of Q. In this case, every mixed
subset with elements from both P and Q is time incoherent.

Definition 5.7 (Temporal cut of a synchronous function). Let f : P → Q be a synchronous
fonction on the time scale T . Let u ∈ T . The temporal cut of f at u is the function f ↓u :
P ↓u → Q ↓u defined by P ↓u = {x ∈ P : π(x) ≤ u}, Q ↓u = {y ∈ Q : π(y) ≤ u} and
(f ↓u)(x) = f(x) for all x ∈ P ↓u.

Observe that both P ↓u and Q ↓u are downward closed hence (see Example 2.4) they both
are posets timed over T . Moroever, since f is synchronous, property (SI1) ensures that f(x) ∈
Q ↓u for all x ∈ P ↓u therefore f ↓u is a well defined synchronous function from P ↓u into
Q ↓u.

2Possibly gluing minimal elements when considering the subcategory of timed posets with a minimum
elements

12

Timed domains David Janin

Definition 5.8 (Synchronous exponent). Let P and Q be two posets timed over T . The
synchronous exponent of Q by P is defined to be the set [P →T Q] of all pair (u, h) with
u ∈ T and synchronous functions h : P ↓u → Q ↓u, with temporal projection defined by
π(u, h) = u and partial order defined by (u1, h1) ≤ (u2, h2) when u1 ≤ u2 and h1 = h2 ↓u1 for
all (u, h), (u1, h2), (u2, h2) ∈ [P →T Q].

Lemma 5.9. Let P,Q,R be three posets timed over T . Then [Q →T R] is a poset timed
over T . Moroever, there is also the synchronous function eval : QR ⊗ Q → R defined by
eval((u, h), y) = h(y) for all ((u, h), y) ∈ RQ ⊗Q therefore with π(y) = u.

The timed poset [Q →T R] with function eval is the categorical exponent of R by Q in
TPoset(T), i.e. for all synchronous function g : P ⊗Q→ R, the function g∗ : P → RQ defined,
for all x ∈ P , by g∗(x) = (π(x), λy.g(x ↓π(y), y)) is the unique synchronous function from P
into RQ such that g(x, y) = eval(g∗(x), y) for all (x, y) ∈ P ⊗Q.

Proof. The above situation is depicted in Figure 5.

P

RQ

∃!g∗

P ⊗Q

RQ ⊗Q R

g∗ × id

eval

∀g

Figure 5: Categorical exponent diagram.
The proof of this lemma essentially goes by first checking that both eval and g∗ are indeed

well defined synchronous functions. In particular, when y ∈ P ↓π(x) then we indeed have
π(y) ≤ π(x) therefore eval(g∗(x), y) = f(x ↓π(y), y) is indeed well-defined. The fact that g∗ is
the unique synchronous function such that g(x, y) = eval(g∗(x), y) for all (x, y) ∈ P ⊗Q is then
routine to check.

Remark 5.10. In other words, such a result states that synchronous functions can themselves
be represented by (maximal) coherent subsets of a timed poset that can be transmitted piece
by piece in time. The synchronous function eval thus encodes the on-the-fly application of
such a function to its argument. Observe moreover that, by definition of the synchronous
product, whenever the argument is fully received then such an on-the-fly application ends since
the possible remaining values of the function cannot be synchronized with any further received
argument.

The following lemma comes as a complement of the construction of timed posets from
downward closed subsets of timed posets (see 2.4), by characterizing subobjects3 of the category
TPoset(T) precisely as these downward closed subsets.

Lemma 5.11 (Timed subobjects). Let f : P → Q be a synchronous function. Then f(P) =
↓ f(P), moreover, f is injective if and only if P ' f(P) as posets.

Proof. Let x ∈ P and let y ≤ f(x). This means that y = f(x) ↓π(y). By (SI3) we thus have
y = f(x ↓π(y)) hence y ∈ f(P).

Given then x, y ∈ P . If x ≤ y then, by (SI2), we have f(x) ≤ f(y). Conversely, assume
that f(x) ≤ f(y) hence f(x) = f(y) ↓π(f(x)). By (SI1) and monotony of π we thus have

3One can easily verify that the monomorphisms in TPoset(T) are the injective synchronous functions. Then,
as a consequence of the lemma, every injective synchronous function f : Q → P is equivalent (as sub-object)
with the inclusion synchronous function incf(Q) : f(Q)→ P .

13

Timed domains David Janin

π(x) ≤ π(y). Then, (SI3) we have f(y ↓π(x)) = f(y) ↓π(x) hence, by (SI1), f(y ↓π(x)) =
f(y) ↓π(f(x)). Together, we thus have f(y ↓π(x)) = f(x) hence x = y ↓π(x) since f is injective
and thus x ≤ y.

In the category Set , there is the powerset construction P(E) of subsets of a set E. In
TPoset(T) the analogous power object is defined below.

Definition 5.12 (Synchronous power). Let P be a poset timed over T . The synchronous
power of T is defined as the set ΩP = {(u,X) ∈ T ×P(P) : X = ↓X,π(X) ≤ u} with temporal
projection defined by π(u,X) = u and partial order defined by (u,X) ≤ (v, Y) when u ≤ v and
X = Y ↓u for all (u,X), (v, Y) ∈ ΩP .

Lemma 5.13. The synchronous power ΩP of a timed poset P is a poset timed over T and the
powerobject of P in TPoset(P).

Proof. We first prove that ΩT is the subobject classifier in TPoset(T) as stated in Remark 5.15.
For such a purpose, given a poset P timed over T , we easily check that the characteristic
function XX : P → ΩT of a downward closed subset X ⊂ P is uniquely defined by XX(x) =
(π(x), π(↓x ∩X)) for every x ∈ P .

Then we prove that that ΩP ' [P → ΩT] which, by known result in topos theory proves
that ΩP is indeed the power object of P . The expected isomorphism f : ΩP → [P → ΩT] is
defined, for every (u,X) ∈ ΩP , by f(u,X) = (u,XX ↓u) ∈ [P → ΩT]. The inverse image of
every pair (u, h) ∈ [P → ΩT] is defined by f−1(u, h) = (u, {x ∈ P ↓u : h(x) = true(x)}) with
true defined in Remark 5.15.

Remark 5.14. The interpretation of ΩP in terms of temporal traces is also fairly obvious.
It allows to represent arbitrarily many computation traces in P ran synchronously. One can
observe however, much like is sets by opposition to multisets that there two sub-traces identical
at some instant are considered as a single one. In other words, the number of “processors” onto
which these traces are run are kept minimum at every instant.

Extending this construction to allow “weighted” runs of traces, either with integer weight as
with multisets or positive reals as with probability distributions distribution is surely possible
but goes out of the scope of this overview.

Observe also that we have given above a parallel interpretation of the timed powerobject. It
would also make sense to interpret it as a non deterministic choice as done with power domain
constructions. The powerobject construct behaves much like the powerset construct. What it
should actually model is of course a matter of interpretation.

Remark 5.15. Following topos theory [2, 26], there is ΩT = {(u, V) ∈ T × P(T) : V = ↓V ≤
u}, with the synchronous function true : T → ΩT defined by true(t) = (t, ↓ t) for all t ∈ T
which form the subobject classifier in TPoset(T). In other words, as depicted in Figure 6, for

P

Q ΩT

T

∀f

∃!Xf

π

true

Figure 6: Subobject classifier diagram.
all poset P timed over T , for all downward closed subset X ⊆ P , there is a unique synchronous

14

Timed domains David Janin

function XX : P → Ω, the characteristic morphism of X, such that, given the synchronous
inclusion incX : X → P we have Xf ◦ incX = true ◦ π.

As an immediate consequence of Theorem 4.10 or gathering the results stated in this section4

we have:

Theorem 5.16. The category TPoset(T) is a topos, i.e. it is cartesian closed, finitely complete
and well-powered.

6 More on ∆-synchronous functions
There are several candidates as relevant categories of timed posets ∆-synchronous function. In
indeed, one can select the underlying category C of time scales and time scale transformations
such as the category Poset for the most general case, or, as observed in 4.7, the category
SLattice for preserving coherent subsets.

The resulting categories of timed posets and ∆-synchronous functions are denoted by TPoset(C)
where C is the chosen category of time scales.

Lemma 6.1 (One instant clock). Let 1 = {∗} be the one element poset timed over itself. Then
1 is the terminal element in TPoset(C).

Let P ∈ TPoset(C) timed over U ∈ C and let Q ∈ TPoset(C) timed over U∈Cc.

Definition 6.2 (Asynchronous product). The asynchronous product of P and Q is defined
as the cartesian product P × Q with temporal projection π : P × Q → U × V by π(x, y) =
(π(x), π(y)), ordered point wise.

Lemma 6.3. Then P ×Q is a poset timed over U × V ∈ C. Both projections p1 : P ×Q→ P
and p2 : P ×Q→ Q are ∆-synchronous with temporal projection π(p1) = p1 : U × V → U in C
and π(p2) = p2 : U × V → V in C. Together, they form the categorical product of P and Q in
TPoset(C).

Definition 6.4 (Asynchronous exponent). The asynchronous exponent of Q by P is defined
as the set QP of ∆-synchronous function from P into Q with temporal projections as already
defined.

Lemma 6.5. Then QP is a poset timed over V U ∈ C. The evaluation mapping eval : QP×P →
Q defined, for all f ∈ QP and x ∈ P , by eval(f, x) = f(x) is ∆-synchronous with, thanks to
(SD1), temporal projection π(eval) = eval in C. Together, they form the exponent of Q by P
in TPoset(C).

Gathering all the above lemmas, we have:

Theorem 6.6. The category TPoset(C) is cartesian closed.

Remark 6.7. In all the above cases, the empty poset timed over the empty time scale is the
initial object. The disjoint sum is the co-product in TPoset(C) therefore TPoset(C) is even
bi-cartesian closed. The next theorem generalizes such a remark.

4additionally proving that TPoset(T) also has all equalizers, which is easy since they are essentially defined
as in Set .

15

Timed domains David Janin

Definition 6.8 (Temporal projection of diagram functor). Let C ⊆ Poset be a sub-category.
Let G = 〈V,E, s, t〉 be a graph with vertices V , edges E, source s : E → V and target t : E → V .
Let F : G → TPoset(C) be a diagram functor5. The temporal projection of F is defined to
be the diagram functor H : G → C defined by, for all v ∈ V , the poset H(v) is the time scale
over which F (v) is timed and, for all e ∈ E, the time scale tranformation H(e) is the temporal
projection π ◦ F (e) of the ∆-synchronous function F (e).

Theorem 6.9 (Existence of limit and colimit). A diagram functor F : G → TPoset(C) has
a limit (resp. a co-limit) in Poset(C) whenever its temporal projection H : G → C has a limit
(resp. a colimit) in C.

Proof. Throughout this proof, for each v ∈ V , let πv : F (v)→ H(v) be the temporal projection
of the poset F (v) timed over H(v).

The limit case. Assume H has a limit cone given by T ∈ C and, for each v ∈ V , a fonction
δv : T → F (v) in C. By definition, we have δt(e) = H(e) ◦ δs(e) for every e ∈ E. Let then

P =
⋃
t∈T

(
{t} ×

∏
v∈V

π−1
v (δv(t))

)

ordered point-wise with first projection as temporal projection. It is a poset timed over T .
There are also the ∆-synchronous projection pv : P → F (v), one for each v ∈ V , defined by

pv((t, {xv}v∈V) = xv

for every (t, {xv}v∈V) ∈ P with temporal projection π(pv) = δv. Then it is routine to check
that the subset

X =
{

(t, {xv}v∈V) ∈ P : ∀e ∈ E, xt(e) = F (e)(xs(e))
}

is downward closed therefore a sub-timed poset of P and, equipped with the (restriction of)
the projection {pv}v∈V is the limit of F .

The colimit case. Assume that H has a colimit cocone given by T ∈ C and, for each v ∈ V , a
fonction δv : F (v)→ T in C. By definition, we have δs(e) = δt(e) ◦H(e) for every e ∈ E. Then
we can define

P =
⋃
t∈T

(
{t} ×

∑
v∈V

δ−1
v (t))

)
ordered point-wise with first projection as temporal projection. It is a poset timed over T .
Moreover, there are the ∆-synchronous injection iv : F (v)→ P defined by

iv(x) = (δv(x), v, x)

for all x ∈ F (v) with temporal projection δv and we have P =
⋃
{iv(x) ∈ P : v ∈ V, x ∈ F (v)}.

Let then ' be the least equivalence over P such that for all e ∈ E and x, y ∈ F (s(e)) we
have x ' F (e)(x) and if x ' y then F (e)(x) ∼ F (e)(y).

It is routine checking that for all x, y ∈ P , if x ' y then π(x) = π(y) and for all t ∈ T such
that t ≤ π(x) we have x ↓ t ' y ↓ t. It follows that P/ ' can be equipped with the order defined

5We call here a diagram functor a functor from the category freely generated by a graph G. As such a
functor is fully determined by its value on graph vertices and edges it can simply be seen as a graph morphism
from G into (the graph of) its codomain category.

16

Timed domains David Janin

for all x, y ∈ P by [x] ≤ [y] if and only if there is x′ ∈ [x] such that x′ ≤ y and the temporal
projection π([x]) = π(x).

Then P/ ' is a poset timed over T and the functions jv : F (v)→ P/ ', one for each v ∈ V ,
defined for all x ∈ F (v) by jv(x) = [iv(x)] are ∆-synchronous. By construction, for every e ∈ E
we have js(e) = jt(e) ◦F (e). Then, it is routine to check that P/ ' equipped with the functions
{jv}v∈V form the colimit of F .

In other words, fixpoint equations of timed domains have an inductive (resp. co-inductive)
solution whenever the projection of these equations over time scales have an inductive (resp.
co-inductive) solution.

7 Timed domains
We define and study in this section the notion of timed domain, simply defined as cpos timed
over cpos. For such a purpose we define the notion of continuous timed poset in such a way
that timed domains exactly corresponding to continuous timed poset that are timed over cpos.

Definition 7.1 (Continous timed posets). Let P be a poset timed over T . We say that P is a
continuous timed poset when

(IN3) if X is directed and
∨
π(X) is defined then so is

∨
X,

for all X ⊆ P .

Lemma 7.2. Let P be a continous timed poset timed over T . Then, for every x ∈ P the local
cut cutx : ↓π(x)→ P (see 2.7) is continuous.

Proof. Let x ∈ P and let U ⊆ T , directed, such that U ≤ π(x). Assume that there is v =
∨
U .

Proving the continuity of cutx amounts to proving that
∨
x ↓U = x ↓ v.

Since the local cut is monotone the set x ↓U is directed with π(x ↓U) = U . By (IN3), there
is thus y ∈ P such that

∨
(x ↓U) = y ≤ x. Moreover, by (IN1), we have π(y) ≤ π(x) hence, by

(IN2), we have y = x ↓π(y).
Since π(x ↓u) = u, by monotony of the temporal projection, we have

∨
U = v ≤ π(y).

Moreover, since
∨
U = v we have x ↓U ≤ x ↓ v hence, by definition of least upper bound we

have y = x ↓π(y) ≤ x ↓ v hence π(y) ≤ v. This proves that π(y) = v hence y = x ↓ v.

Remark 7.3. Observe that, in general, the continuity of all local cut in a timed poset does not
imply the continuity of that timed poset as shown by the example P1 = N timed as a timed
subset of T1 = N = N ∪ {∞} self-timed.

Also, the continuity of a timed poset does not imply the continuity of its temporal projection
has shown by the example P2 = N timed as a timed subset of T2 = N ∪ {∞′} self-timed with
∞′ another upper bound of N distinct and incomparable with ∞.

Lemma 7.4. Let P be a continuous timed poset, timed over T . Assume that T is complete.
Then P is complete and its temporal projection is continuous.

Proof. Let X ⊆ P directed. By monotony of the temporal projection, the set π(X) ⊆ T is
directed. Since T is complete, there is v =

∨
π(X). Since P is continuous, by (IN3), there is

y =
∨
X. This concludes the proof that P is complete.

For every x ∈ X, we have x ≤ y therefore we have x = y ↓π(x). Since π(X) is directed,
by continuity of cuty (Lemma 7.2) we have

∨
x = y ↓

∨
π(X) that is y = y ↓ v hence v = π(y).

This concludes the proof that π is continuous.

17

Timed domains David Janin

Definition 7.5 (Timed domain). A timed domain is a continuous timed poset timed over a
complete time scale, hence, as proved above also a complete poset with continuous local cuts
and temporal projection.

Lemma 7.6 (∆-synchronous vs continuous). Let P and Q be two timed domains. Let f :
P → Q be a ∆-synchronous function with temporal projection δ : U → V . Assume that δ is
continuous. Then f is continuous.

Proof. Let X ⊆ P directed and, by completness of P , let y =
∨
X. For every x ∈ X we have

x ≤ y hence x = y ↓π(x) and thus, by (SD3), f(x) = f(y) ↓ δ ◦ π(x) with δ ◦ π(x) ≤ π(f(y)).
Since the temporal projection π, the function δ and the local cut cutf(y are all continuous
this ensures that

∨
f(X) = f(y)δ ◦ π(

∨
X). By continuity of π we have π(

∨
X) = π(y). By

(SD1) we have π(f(y)) = δ ◦ π(y) therefore by (IN2) we have f(y)δ ◦ π(
∨
X) = f(y) hence∨

f(X) = f(y).

Remark 7.7. As a special case of the above lemma every synchronous function between timed
domains is continuous.

Theorem 7.8. Let T be a cpo. Then the category TCpo(T) of timed domain over T and, when
T has a least element, the category TCpo⊥(T) of timed domain over T with least element, with,
in both cases, synchronous (and continuous) functions between them, are topoi.

Proof (Sketch of). The proof goes by rephrasing Scott topology in terms of a Grothendieck
topology J over posets in such a way that (the element categories of the) sheaves in Sh(T, J)
are the continuous timed posets timed over T .

As a reminder, a subset X of a poset E is Scott closed when it is downward closed and for
every directed Y ⊆ X, if

∨
Y is defined then

∨
Y ∈ X. Then, for every t ∈ T , we define J(t)

be the set of all downward closed subsets U ⊆ T such that U ≤ t, i.e. U is a sieves on t, and
such that the Scott closure U of U equals ↓ t.

One can easily check that J is a Grothendieck topology (see [26] p 110). Moreover, one
can also check that a timed poset P ∈ TPoset(T) is continuous if and only if it associated
presheaf FP : T op → Set (see 3.11) is a sheaf for J (see [26] p 121). This ensures that
the categorical equivalence between TPoset(T) and Psh(T) (see Theorem 4.10) also defines
a categorical equivalence between the subcategories TCpo(T) and Sh(T, J). It follows that
TCpo(T) is also a topos since Sh(T, J) is.

For the category TCpo⊥(T) the argument is similar though taking instead the topology J ′
defined from J by letting J ′(t) = J(t) when t > ⊥ and J ′(⊥) = {{⊥}, ∅}. This forces all sheaves
in Sh(T, J ′) to be singletons on ⊥ therefore their element categories to have a least element. 2

Remark 7.9. In both cases, terminal object, product and exponent in TCpo(T) or TCpo⊥(T)
are defined just in the same way as in TPoset(T). The power object ΩP differs from TPoset(T)
by the fact that it only contains pairs of the form (u,X) ∈ T × P(P) were X is not only
downward closed but also Scott closed. This follows from the fact that in both TCpo(T) or
TCpo⊥(T), subobjects correspond to Scott closed subsets of timed domains.

Theorem 7.10. Both categories TCpo(Cpo) of timed domain or TCpo⊥(Cpo⊥) of timed do-
main with least elements, and, in both case, ∆-synchronous function with continuous temporal
projection (therefore themselves continuous) are cartesian closed categories.

Proof. Since Cpo and, resp. Cpo⊥ are cartesian closed, it is routine to check that termi-
nal objects, asynchronous products and asynchronous exponents both in TCpo(Cpo) or in
TCpo⊥(Cpo⊥) just as in TPoset(Poset) (see Theorem 6.6).

18

Timed domains David Janin

Remark 7.11. Extending these categories with the empty timed domain over the empty time
scale they both have an initial object. Then, it can be shown that both categories have co-
products: the disjoint sum in TCpo(Cpo) and the coalescent sum in TCpo⊥(Cpo⊥). In other
words, both categories are bi-cartesian closed.

Theorem 7.12. Given a graph G as in Theorem 6.9, given C ⊆ Cpo and F : G→ TCpo(Cpo)
(or F : G → TCpo⊥(C)). Then if the projection H : G → C of G has a limit (resp. a colimit)
then so does F and its limit (resp. colimit) is in TCpo(C) (or in TCpo⊥(C)) in C.

8 Timed fixpoints
We examined in this section the least fixpoints of homogeneous ∆-synchronous on timed do-
mains. Observe that all synchronous functions have ⊥ as least fixpoint. This fact alone justifies
the definition of the more general notion of ∆-synchronous functions.

Lemma 8.1. Let P ∈ TCpo⊥(Cpo⊥) a timed domain with least element ⊥P timed over a
complete time scale T with least element ⊥T . Let f : P → P be a ∆-synchronous function with
continuous temporal projection δ : T → T . Then both least fixpoint µP (f) ∈ P and µT (δ) ∈ T
are defined. Moreover, we have π ◦ µP (f) = µT (δ).

Proof. By Scott continuity, we have µP (f) =
∨
n∈ω f

n(⊥P) and µT (δ) =
∨
n∈ω δ

n(⊥T). More-
over, by (SD1) and induction over n ∈ ω, since π(⊥P) = ⊥T we easily prove that π ◦ fn(⊥P) =
δn(⊥T) for all n ∈ ω. By continuity of π (7.4) we have π ◦ µP (f) =

∨
n∈ω δ

n(⊥T) and thus
π ◦ µP (f) = µT (δ).

Theorem 8.2. Let then PP be the exponent of the object P by itself in TCpo⊥(Cpo⊥) and let
TT be the exponent of the object T by itself in Cpo⊥. Then the least-fixpoint mapping µP : PP →
P is a ∆-synchronous functions with continuous temporal projection π(µP) = µT : TT → T .

Proof. The fact µP : PP → P is ∆-synchronous follows from the fact that µP is monotone
(SD2) and, by Lemma 8.1, we have π ◦µP (f) = µT ◦π(f) for every f ∈ PP (SD1). This means
that π(µP) = µT . Finally, as it is a known fact from domain theory that µT : TT → T is
continuous this proved that µP is indeed in TCpo⊥(TCpo⊥).

In other words, the computation of a least fixpoint computation can be performed on-the-fly.

Remark 8.3. Computing the fixpoint of a function f implicitly mean that the output of that
function is sort of rewired on its input. In signal processing, there is a feedback loop. Since
both inputs and outputs lay in the same timed domain, their temporal projections lay in the
same time scale and can thus be compared. This eventually leads us to the notion of causality.

Definition 8.4 (Timed causality). Let P be a poset timed over T with least element ⊥P ∈ P
therefore also a least element ⊥T ∈ T . Let f : P → P be a ∆-synchronous function with
temporal projection δ : T → T . We say that f is globally causal when π(x) ≤ π(f(x)) for every
x ∈ P . Equivalently, by (SD1), when t ≤ δ(t) for all t ∈ π(P).

Remark 8.5. In Theorem 8.2, quite surprisingly at first sight, we do not require functions to
be causal. Of course, every ∆-synchronous function is in some sense locally causal since for
each n ∈ ω given xn = fn(⊥P) we indeed have π(xn) ≤ π(f(xn)).

Restricting to TCpo⊥(SLattice⊥) so that ∆-synchronous function preserves coherence, the
above general fixpoints property fails since nothing ensures that µT is meet-preserving.

19

Timed domains David Janin

Theorem 8.6. In the category TCpo⊥(CSLattice⊥) of domain timed over continuous meet-
semilattices and ∆-synchronous functions with meet-preserving temporal projections, the fixpoint
mapping µP : PP → P belongs to TCpo⊥(CSLattice⊥) provided we restrict ourselves to causal
∆-synchronous functions.

Proof. Applying Theorem 8.2 it suffices to prove that, restricted to (self-synchronous) meet-
preserving causal functions, the least fixpoint function µT : TT → T is itself meet preserving.

For such a purpose, let δ1, δ2 : T → T be two causal meet-preserving functions. Remember
that δ1 ∧ δ2 : T → T is simply defined by (δ1 ∧ δ2)(u) = δ1(u) ∧ δ2(u) for every u ∈ T . Since
both δ1 and δ2 are causal then δ1 ∧ δ2 is also causal therefore the restriction to causal functions
still yields a meet-semilattice.

Since δ2 is causal, we have δ1 ≤ δ2 ◦ δ1. But we also have id ≤ δ2 hence, by monotony of δ1,
we have δ1 ≤ δ1 ◦ δ2. Rephrased in a single line we this have proved that

δ1 ≤ δ1 ◦ δ2, δ2 ◦ δ1 (1)

By symmetry, we prove similarly that

δ2 ≤ δ1 ◦ δ2, δ2 ◦ δ1 (2)

Let then A = {1, 2} seen as a two letter alphabet. Let A∗ be the set of finite strings over A
with ε the empty string. Let {δw : T → T}w∈A∗ be the family of function inductively defined
by δε(u) = u, δ1w = δ1 ◦ δw(u) and δ2w = δ2 ◦ δw(u) for all u ∈ T and all w ∈ A∗. For any string
w ∈ A∗, let also denote by |w|1 the number of 1 in w and by |w|2 the number of 2 in w.

Let n ∈ N. Since both δ1 and δ2 are meet preserving, we observe that we have

(δ1 ∧ δ2)2n =
∧

w∈A2n

δw

Let then w ∈ A2n. Two cases are possible. In the case |w|2 ≤ |w|1, by applying |w|2 times the
inequality (1) we have δ|w|11 ≤ δw hence, since δ1 is causal and n ≤ |w|1 we have δn1 ≤ δw. In
the symmetric case |w|1 ≤ |w|2, by applying |w|1 times the inequality (2) we have δ|w|22 ≤ δw
hence, since δ2 is causal and n ≤ |w|2 we have δn2 ≤ δw. Applied to the above finite meet, since
on of the two above cases must occur in each member, we have

δn1 ∧ δn2 ≤ (δ1 ∧ δ2)2n

As this holds for every n ∈ N, applied to the minimal element ⊥, we thus have∨
n∈N

δn1 (⊥) ∧ δn2 (⊥) ≤
∨
n∈N

(δ1 ∧ δ2)2n(⊥)

Now, by continuity of the meet, we have µ(δ1)∧ µ(δ2) on the left of that inequality. Moreover,
since the sequence {(δ1 ∧ δ2)n(⊥)} is monotonic it has the same greatest lower bound than
its even subsequence, we thus have µ(δ1 ∧ δ2) on the right of the inequality. It follows that
µ(δ1) ∧ µ(δ2) ≤ µ(δ1 ∧ δ2).

By causality, µ(δ1)∧µ(δ2) is a fixpoint of δ1∧ δ2 and µ(δ1∧ δ2) is its least fixpoint hence we
also have µ(δ1 ∧ δ2) ≤ µ(δ1) ∧ µ(δ2). It follows that µ(δ1) ∧ µ(δ2) = µ(δ1 ∧ δ2) which concludes
the proof that µ is meet-preserving over non expanding functions.

20

Timed domains David Janin

Remark 8.7. In other words, quite surprisingly, the causality requirement that seems required
for modeling purpose, is a sufficient restriction for computing fixpoints within TCpo⊥(SLattice⊥).
This raises the question of how causality should be guaranteed. As ∆-synchronous functions are
expected to change the underlying time scale, there seems to be no condition over these func-
tions to ensure that, in fine, when eventually composed into a time homogeneous ∆-synchronous
function, the resulting function would be causal.

Remark 8.8. Another approach to handle the non preservation of coherence is to assume that,
when defining a ∆-synchronous function that do not preserve coherence, one knows the reason
for this and it shall be accepted. One way to formalize this is to lift every ∆-synchronous
function f : P → Q with temporal projection δ into a function Ωf : ΩP → ΩQ defined by
Ωf (u,X) = (δ(u), ↓ f(X)) which now preserves coherence. In other words, thanks to the fact
that TCpo⊥(T) is a topos for every time scale T , coherence preservation is not necessarily
a drastic issue and semantics modeling can still be done within the most general category
TCpo⊥(Cpo⊥).

9 Conclusion

Along these pages, we have briefly presented a possible mathematical framework for the mod-
eling of spatio-temporal system behaviors that extends to space and time the classical notion
of cpos and continuous functions used in denotational semantics.

Cartesian closed with internal fixpoint operators, with essentially all limits or co-limits that
may exist in Cpo⊥, the category TCpo⊥(Cpo⊥) looks like a fairly general and fully featured
category for defining and analyzing the behaviors of timed programs with both synchronous
and asynchronous versions of typical categorical constructs such as sum, products or expo-
nents, as well as, in the synchronous case, powerobjects for modeling unbounded (synchronous)
parallelism or, depending on the interpretation, unbounded non determinism.

Technically rooted in topos theory, via the element categories of sheaves over certain Grothen-
dieck topologies, the resulting definitions and constructions have (mostly) been stated in elemen-
tary mathematical terms. This suggest that, after some more polishing and a lot more detailed
application cases, such a material could also be taught to standard student in computer science
and software engineering.

Observe also that we have not developed at all the potential offered by the left Kan extension
theorem (see 4.11) that, in the case time scales are based on concrete numerical scales such
a N, Q+ or R+, allows for defining sound lifting of operators over time scales such as delays,
projections, stretches, etc. . . , into timed program constructs. In particular, this may allow
developing and pursuing the research program initiated by Paul Hudak for an algebraic and
programming theory of Polymorphic Temporal Media [17] and the somehow related though
anterior proposal of Functional Reactive Programing [14, 15].

Although we have not yet defined any programing language associated to the proposed
framework, most constructions convey effective program transformations or combinations. Fol-
lowing [11, 12] such a programing language would surely consists in including clocks and clock
transformations into types. Also, since the temporal projection of a ∆-synchronous function
can also be seen as a type modality that tells how the underlying time scales in a timed domain
is altered by the function, this would certainly lead to generalizing the reactive and discrete
modal type systems developed by Krishnaswami [24] and the related categorical models [19, 20].

Concerning numerical time scales, it must be mentioned that, there is also the (very) recent
work of Schultz and Spivak [29] that proposes a Temporal Type Theory which develops quite in

21

Timed domains David Janin

the depth a notion of time domains over some notions of real intervals time scale. The potential
links between their approach and the one proposed here need however to be investigated.

Since our time scales are not totally ordered, the choice of a time scale also specifies how
data dependencies are defined and may evolve as time is passing. Some links with sessions types
and beyond linear types [32], which allows specifying such evolving dependencies, could perhaps
be developed. Links with polymorphic reactive programing language such as ReactiveML [27]
should also be considered.

Last, it shall be clear that every timed semantic model has a strong flavor of operational
semantics. However, such an operational semantics still need to be made explicit, especially in
link with automata based timed operational semantics such as IO-timed automata theory [23].

Acknowledgment

The author wishes to express his deep gratitude to Gordon Plotkin et Phil Scott who both advise
him to look at the notion of presheaves, to Marek Zawadowski for his help in understanding
Grothendieck topologies and sheaves, and to Simon Archipoff, Michail Raskin and Bernard
Serpette for many fruitful discussions on various aspects of this work.

References

[1] J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University
Press, Cambridge, 2010.

[2] M. Barr and C. Wells. Category Theory for Computing Science, 3rd edition. Centre de Recherche
Mathématique (CRM), Montréal, 1999.

[3] H. Basold, M. M. Bonsangue, H. H. Hansen, and J. Rutten. (co)algebraic characterizations of
signal flow graphs. In Horizons of the Mind. A Tribute to Prakash Panangaden, volume 8464 of
LNCS. Springer, 2014.

[4] A. Benveniste, P. Caspi, S. A. Edwards, P. Le Guernic N. Halbwachs, and R. de Simone. The
synchronous languages twelve years later. Proceedings of the IEEE, 2002.

[5] G. Berry. Stable models of typed lambda-calculi. In Int. Col. on Aut., Lang. and Programming
(ICALP), volume 62 of LNCS, pages 72–89. Springer, 1978.

[6] G. Berry and G. Gonthier. The Esterel synchronous programming language: design, semantics,
implementation. Science of Computer Programming, 19(2):87 – 152, 1992.

[7] P. Caspi and M. Pouzet. Synchronous Kahn networks. In Int. Conf. Func. Prog. (ICFP), pages
226–238, 1996.

[8] G. L. Cattani, I.Stark, and G. Winskel. Presheaf models for the π-calculus. In Category Theory
and Computer Science (CTCT). Springer, 1997.

[9] G. L. Cattani and G. Winskel. Presheaf models for CCS-like languages. Theor. Comp. Sci.,
300(1):47 – 89, 2003.

[10] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis, Department
of Computer Science, Stanford University, 1985.

[11] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet. Towards a higher-order synchronous data-flow
language. In Int. Conf. On Embedded Software (EMSOFT), pages 230–239. ACM, 2004.

[12] J.-L. Colaço and M. Pouzet. Clocks as first class abstract types. In Int. Conf. On Embedded
Software (EMSOFT), pages 134–155. ACM, 2003.

[13] P. Cousot, R. Cousot, and L. Mauborgne. Logical abstract domains and interpretations. In
S. Nanz, editor, The Future of Software Engineering, pages 48–71. Springer-Verlag, 2010.

22

Timed domains David Janin

[14] C. Elliott and P. Hudak. Functional reactive animation. In Int. Conf. Func. Prog. (ICFP). ACM,
1997.

[15] C. M. Elliott. Push-pull functional reactive programming. In Symp. on Haskell, pages 25–36.
ACM, 2009.

[16] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.
[17] P. Hudak. A sound and complete axiomatization of polymorphic temporal media. Technical Report

RR-1259, Department of Computer Science, Yale University, 2008.
[18] J. Hughes. Programming with arrows. In Advanced Functional Programming, 5th International

School, AFP 2004, Revised lecture, volume 3622 of Lecture Notes in Computer Science, pages
73–129. Springer, 2005.

[19] A. Jeffrey. Functional reactive types. In IEEE Symp. on Logic in Computer Science (LICS). ACM,
2014.

[20] W. Jeltsch. An abstract categorical semantics for functional reactive programming with processes.
In Workshop on Programming Languages Meets Program Verification, pages 47–58. ACM, 2014.

[21] G. Kahn. The semantics of simple language for parallel programming. In IFIP Congress, pages
471–475, 1974.

[22] G Kahn and G. D. Plotkin. Concrete domains. Theor. Comp. Sci., 121(1&2):187–277, 1993.
[23] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O Automata.

Morgan & Claypool Publishers, 2006.
[24] N. R. Krishnaswami. Higher-order functional reactive programming without spacetime leaks. In

Int. Conf. Func. Prog. (ICFP), 2013.
[25] X. Liu and E. A. Lee. CPO semantics of timed interactive actor networks. Theoretical Computer

Science, 409(1):110 – 125, 2008.
[26] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Universitext. Springer, 1992.
[27] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Int. Symp. on Principles

and Practice of Declarative Programming (PPDP). ACM, 2005.
[28] E. Matsikoudis and E. A. Lee. The fixed-point theory of strictly causal functions. Theor. Comp.

Sci., 574:39–77, 2015.
[29] P. Schultz and D. I. Spivak. Temporal type theory : A topos-theoretic approach to systems and

behavior. Technical report, ArXiv:1710.10258, October 2017.
[30] D. S. Scott. Data types as lattices. In International Summer Institute and Logic Colloquium, Kiel,

volume 499 of LNM, pages 579–651. Springer, 1975.
[31] R. de Simone, J.-P. Talpin, and D. Potop-Butucaru. The synchronous hypothesis and synchronous

languages. In Embedded Systems Handbook. CRC Press, 2005.
[32] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.
[33] G. Winskel. Event structures. In Advances in Petri Nets, volume 255 of LNCS, pages 325–392.

Springer, 1987.
[34] G. Winskel. Events, causality and symmetry. In International Conference on Visions of Computer

Science, pages 111–128. BCS Learning & Development Ltd., 2008.

23

	Introduction
	Timed posets
	Derived notions
	Timed morphisms
	More on synchronous functions
	More on -synchronous functions
	Timed domains
	Timed fixpoints
	Conclusion

