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Data-driven kernel representations for sampling withan unknown blok dependene struture underorrelation onstraintsG. Perrina, C. Soizeb, N. OuhbiaCEA/DAM/DIF, F-91297, Arpajon, FranebUniversité Paris-Est, MSME UMR 8208 CNRS, Marne-la-Vallée, FraneInnovation and Researh Department, SNCF, Paris, FraneAbstratThe multidimensional Gaussian kernel-density estimation (G-KDE) is apowerful tool to identify the distribution of random vetors when the max-imal information is a set of independent realizations. For these methods, akey issue is the hoie of the kernel and the optimization of the bandwidthmatrix. To optimize these kernel representations, two adaptations of thelassial G-KDE are presented. First, it is proposed to add onstraints onthe mean and the ovariane matrix in the G-KDE formalism. Seondly, itis suggested to separate in di�erent groups the omponents of the randomvetor of interest that ould reasonably be onsidered as independent. Thisblok by blok deomposition is arried out by looking for the maximum ofa ross-validation likelihood quantity that is assoiated with the blok for-mation. This leads to a tensorized version of the lassial G-KDE. Finally, itis shown on a series of examples how these two adaptations an improve thenonparametri representations of the densities of random vetors, espeiallywhen the number of available realizations is relatively low ompared to theirdimensions.Key words:Kernel density estimation, optimal bandwidth, nonparametrirepresentation, data-driven samplingEmail addresses: guillaume.perrin2�ea.fr (G. Perrin)Preprint submitted to Journal of Computational Statistis & Data AnalysisNovember 14, 2017



1. IntrodutionThe generation of independent realizations of a seond-order R
d-valuedrandom vetor X, whose distribution, PX(dx), is unknown but an only beapproximated from a �nite set of N ≥ 1 realizations, is a entral issue inunertainty quanti�ation, signal proessing and data analysis. One possibleapproah to address this problem is to suppose that the searhed distribu-tion belongs to an algebrai lass of distributions, whih an be mappedfrom a relatively small number of parameters (for instane, the multidimen-sional Gaussian distribution). Generating new realizations of random vetor

X amounts therefore at identifying the parameters that best suit the avail-able data and then, at sampling independent realizations assoiated with theidenti�ed parametri distribution. However, when the dependene strutureassoiated with the omponents of X is omplex, suh that its distributionan be onentrated on an unknown subset of R
d, the de�nition of a rele-vant parametri lass to represent PX(dx) an beome very di�ult. In thatase, nonparametri approahes are generally preferred to these parametrionstrutions [16, 11℄. In partiular, the multidimensional Gaussian kernel-density estimation (G-KDE) method approximates the probability densityfuntion (PDF) of X, if it exists, as a sum of N multidimensional Gaus-sian PDFs, whih are entred at eah available independent realization of

X. Optimizing the ovariane matries assoiated with these N PDFs is aentral issue, as they ontrol the in�uene of eah realization of X on the�nal approximation of PX(dx). Even if there are many ontributions onthis subjet (see for instane [5, 4, 3, 6, 18℄), when the dimension d of X ishigh (d ∼ 10− 100), onstant ovariane matries parametrized by a uniquesaling parameter are generally onsidered. In partiular, the Silverman ruleof thumb [12℄ for hoosing this saling parameter is widely used beause ofits simpliity and its good asymptoti behaviour when N tends to in�nity.However, for �xed values of N , this Silverman hoie often overestimates thesattering of PX(dx), and an have di�ulties to orretly onentrate thenew generated realizations of X on their regions of high probability.To overome this problem, a two-step proedure is introdued. First, wesuggest to enter and to unorrelate the random vetor X (using a PrinipalComponent Analysis for instane). Then, based on the maximization of aglobal "Leave-One-Out" likelihood, the idea is to separate in di�erent bloksthe elements of X, whih ould reasonably be onsidered as statistiallyindependent. A tensorized version of the lassial G-KDE that is adapted2



to this dependene struture is eventually proposed. Indeed, for a �nitenumber of realizations of X, the less elements there are in eah group, themore hane we have to orretly infer the multidimensional distribution ofeah sub-vetor onstituted of eah group elements, and so the better shouldbe the estimation of the PDF of X. Nevertheless, the identi�ation of this(unknown) blok deomposition is a di�ult ombinatorial problem. Thispaper presents therefore two algorithms to �nd relevant blok deompositionsin a reasonable omputational time.The outline of this work is as follows. Setion 2 presents the theoretialframework assoiated with the G-KDE and the optimization of the ovarianematries on whih it is based. The blok deomposition we propose is thendetailed in Setion 3. At last, the e�ieny of the method is illustrated on aseries of analyti and industrial examples in Setion 4.2. Theoretial frameworkLet X := {X(ω), ω ∈ Ω} be a seond-order random vetor de�ned ona probability spae (Ω, T , P), with values in R
d. We assume that the prob-ability density funtion (PDF) of X exists. By de�nition, this PDF, whihis denoted by pX, is an element of M1(R

d, R+), the set of positive-valuedfuntions, whose integral over R
d is 1. It is assumed that the maximalavailable information about pX is a set of N > d independent and dis-tint realizations of X, whih are gathered in the deterministi set S(N) :=

{X(ωn), 1 ≤ n ≤ N}. Given these realizations of X, the kernel estimatorof pX iŝ
pX(x; H ,S(N)) =

det(H)−1/2

N

N∑

n=1

K
(
H−1/2 (x−X(ωn))

)
, (1)where det(·) is the determinant operator, K is any funtion ofM1(R

d, R+),and H is a (d × d)-dimensional positive de�nite symmetri matrix that isgenerally referred as the "bandwidth matrix". In the following, we fous onthe lassial ase when K is the Gaussian multidimensional density. Hene,the PDF pX is approximated by a mixture of N Gaussian PDFs, for whihthe means are the available realizations of X and the ovariane matriesare all equal to H : 3



p̂X(x; H ,S(N)) =
1

N

N∑

n=1

φ (x; X(ωn), H) , x ∈ R
d, (2)where for any R

d-dimensional vetor µ and for any (Rd × R
d)-dimensionalsymmetri positive de�nite matrixC, φ(·; µ, C) is the PDF of an R

d-dimensionalGaussian random vetor with mean µ and ovariane matrix C:
φ (x; µ, C) :=

exp
(
−1

2
(x− µ)T

C−1 (x− µ)
)

(2π)d/2
√det(C)

, x ∈ R
d. (3)By onstrution, the matrix H in Eq. (2) haraterizes the loal on-tribution of eah realization of X. Thus, its value has to be optimized tominimize the di�erene between pX, whih is unknown, and p̂X(·; H ,S(N)).The mean integrated squared error (MISE) performane riterionMISE(H ; d, N) = E

[∫

Rd

(pX(x)− p̂X(x; H ,S(N)))2 dx

] (4)is generally onsidered to quantify suh a di�erene. Here E [·] is the mathe-matial expetation. For this riterion, it an be notied that the set S(N) israndom, whereas in the rest of this paper it is deterministi. Given su�ientregularity onditions on pX, an asymptoti approximation of this riterionan be derived. In low dimension, the value of H that minimizes this asymp-toti riterion an be expliitly alulated, but its value depends on the un-known PDF pX and its derivatives (see [10℄ for more details). Studies havetherefore been onduted to estimate these funtions (generally iteratively)from the only available information given by S(N) (see for instane [11, 5℄).However, the onvergene of these methods is rather slow in high dimension,suh that in pratie, a widely used value for H is given by the Silvermanbandwidth matrix
HSilv(d, N) := (hSilv(d, N))2




σ̂2
1 0 · · · 0

0 σ̂2
2

. . . ...... . . . . . . 0
0 · · · 0 σ̂2

d


 (5)where for all 1 ≤ i ≤ d, σ̂2

i is the empirial estimation of the variane of Xi,and where 4



hSilv(d, N) :=

(
1

N

4

(d + 2)

) 1
d+4

. (6)This expression, whih is derived from a Gaussian assumption on pX, isthought to be a good ompromise between omplexity and preision. How-ever, it is generally observed that, for �xed values of N , when the distributionof X is onentrated on an unknown subset of R
d, the more omplex anddisonneted this subset, the less relevant the value of HSilv(d, N). To faethis problem, the di�usion maps theory [14℄ an be used to bias the gener-ation of independent realizations under p̂X(·; HSilv(d, N),S(N)) and makethem loser to the ones we ould have got if they had been generated underthe true PDF pX. Indeed, di�usion maps are a very powerful mathemati-al tool to disover and haraterize sets on whih the distribution of X isonentrated, and their oupling to nonparametri statistial representationshas shown promising results, even when dealing with very high values of d[2℄. From another point of view, the likelihood L(S(N)|H) assoiated with

H an also diretly be used to identify relevant values of H . From Eq. (1),it follows that
L(S(N)|H) :=

N∏

n=1

p̂X(X(ωn); H ,S(N)) =
1

NN

N∏

n=1

N∑

m=1

φn,m(H), (7)
φn,m(H) := φ (X(ωn); X(ωm), H) , 1 ≤ n, m ≤ N. (8)The funtion L(S(N)|H) uses twie the same information (to ompute

p̂X(·; H ,S(N)) and to evaluate it). Hene, it tends to in�nity when H tendsto zero, whih an be seen as an over�tting of the available data. In order toavoid this phenomenon, it is proposed in [15℄ to onsider its "Leave-One-Out"(LOO) expression
LLOO(S(N)|H) :=

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φn,m(H) (9)instead. Given this approximate likelihood obtained from an LOO ross-validation, and an a priori density pH for H , Bayesian approahes an beused to ompute the posterior density of H [6℄:5



pH(H|S(N)) := c LLOO(S(N)|H)pH(H), H ∈M
+(d). (10)Here, c is a normalizing onstant and M

+(d) is the set of all (d×d)-dimensionalsymmetri positive de�nite matries. In partiular, the maximum likelihoodestimate of H is denoted by
HMLE(d, N) := arg max

H∈M+(d)
LLOO(S(N)|H). (11)Additionally, onsidering that the best available approximations of thetrue mean and ovariane matrix of X are given by their empirial estima-tions

µ̂X :=
1

N

N∑

n=1

X(ωn),

R̂X :=
1

N − 1

N∑

n=1

(X(ωn)− µ̂X)⊗ (X(ωn)− µ̂X),the expression given by Eq. (1) an be slightly modi�ed to ensure thatthe mean and the ovariane matrix of the G-KDE approximation of X areequal to these estimations. Following [13℄, this an be done by onsideringthe subsequent proposition. The proof is given in Appendix.Proposition 1. If the PDF of X̃ is equal to
p̃X(·; H ,S(N)) :=

1

N

N∑

n=1

φ (·; AX(ωn) + β, H) , (12)
β := (Id −A)µ̂, H := R̂X −

N − 1

N
AR̂XAT , (13)where A is any (d× d)-dimensional matrix suh that H is positive de�nite,then the mean and the ovariane matrix of X̃ are equal to µ̂ and R̂X re-spetively.Given S(N), the G-KDE of the PDF of X under onstraints on its meanand its ovariane matrix is denoted by p̃X(·; HMLE(d, N),S(N)). Here,

HMLE(d, N) is the argument that maximizes the LOO likelihood of H asso-iated with p̃X. 6



Given µ̂, R̂X, and HMLE(d, N), the generation of independent realiza-tions of X̃ ∼ p̃X(·; HMLE(d, N),S(N)) is straightforward. Indeed, forany M ≥ 1, the Algorithm 1 (de�ned below) an be used to generate a
(d×M)-dimensional matrix Z, whose olumns are independent realizationsof X̃. There, U {1, . . . , N} denotes the disrete uniform distribution over
{1, . . . , N} and N (0, 1) denotes the standard Gaussian distribution.1 Let Q(ω′

1), . . . , Q(ω′
M) be M independent realizations that are drawnfrom U {1, . . . , N} ;2 Let M be a (d×M)-dimensional matrix whose olumns are allequal to µ̂ ;3 Compute A suh that H := R̂X −

N−1
N

AR̂XAT ;4 De�ne X̄ :=
[
X(ωQ(ω′

1)
) · · · X(ωQ(ω′

M
))

] ;5 Let Ξ be a (d×M)-dimensional matrix, whose omponents are dMindependent realizations that are drawn from N (0, 1) ;6 Assemble Z = M + A(X̄ −M) + HMLE(d, N)1/2
Ξ.Algorithm 1: Generation of M independent realizations of X̃.Finally, this setion has presented the general framework to nonparamet-rially approximate the PDF of a random vetor when the maximal infor-mation is a set of N independent realizations. Some adjustments of thelassial formulation have been proposed to take into aount onstraints onthe �rst and seond statistial moments of the approximated PDF, and ithas been proposed to searh the kernel density bandwidth as the solution ofa omputationally demanding LOO likelihood maximization problem.However, from the analysis of a series of test ases, it appears that R̂X isa rather good approximation of HMLE(d, N) for the nonparametri modellingof high dimensional random vetors (d ∼ 10− 100) with limited information(N ∼ 10d for instane). From Eqs. (12) and (13), this means that we areapproximating the PDF of X as a unique Gaussian PDF, whose parametersorrespond to the empirial mean and ovariane matrix of X:

lim
H→bRX

p̃X(·; H,S(N)) = φ(·; µ̂, R̂X). (14)This ould prevent us from reovering the subset of R
d on whih X is7



atually onentrated. To fae this problem, we an be tempted to imposesmaller values for the omponents of H in the nonparametri model. If allthe omponents of X are atually dependent, there is however no reasonto do so without biasing the �nal onstruted distribution in fousing toomuh on the available data. Thus, instead of arti�ially dereasing the mostlikely value of H (aording to the available data), the next setion proposesseveral adaptations of this G-KDE formalism.3. Data-driven tensor-produt representationThis setion presents some adaptations of the lassial G-KDE to improvethe nonparametri representations of pX when the number N of availablerealizations of X is relatively small ompared to its dimension d. Following[16℄ and [17℄, we �rst suggest to pre-proess the realizations of X (from aPrinipal Component Analysis for instane) suh that X is now supposed tobe entred and unorrelated:̂
µX = 0, R̂X = Id.Here, Id is the (d× d)-dimensional identity matrix. This makes independentthe omponents of X that were only linearly dependent. Then, the idea isto identify groups of omponents of X that an reasonably be onsideredas statistially independent, if they exist. Instead of using statistial tests,we propose to searh these groups by looking for the maximum of a ross-validation likelihood quantity that is assoiated with eah blok formation.Thus, given a blok by blok deomposition of the omponents of X, the PDF

pX is approximated as the produt of the nonparametri estimations of thePDFs assoiated with eah sub-vetor of X. For instane, if the d omponentsof X are sorted in d distint groups, the approximation of pX orrespondsto the produt of the d nonparametri estimations of the marginal PDFsof X. Indeed, if the identi�ed blok deomposition is orretly adapted tothe (unknown) dependene struture of X, there are good hanes for thenonparametri representation of pX to be improved.More details about this blok deomposition are presented in the rest ofthis setion. First, we introdue the notations and the formalism on whihthis deomposition is based. Then, several algorithms are proposed for itspratial identi�ation. 8



3.1. Blok by blok deompositionFor any b in {1, . . . , d}d and for all 1 ≤ i ≤ d, bi an be used as a blokindex for the ith omponent Xi of X. This means that if bi = bj , Xi and
Xj are supposed to be dependent and have to belong to the same blok. Onthe ontrary, if bi 6= bj , Xi and Xj are supposed to be independent and theyan belong to two di�erent bloks. In order to avoid any redundany in theblok by blok parametrization of X, the following subset of {1, . . . , d}d isonsidered:

B(d) :=

{
b ∈ {1, . . . , d}d | b1 = 1, 1 ≤ bj ≤ 1 + max

1≤i≤j−1
bi, 2 ≤ j ≤ d

}
.(15)Additionally, for any b in B(d), let

• Max(b) be the maximal value of b,
• s(ℓ)(X ; b) be the random vetor that gathers all the omponents of Xwith a blok index equal to ℓ,
• dℓ be the number of elements of b that are equal to ℓ,
• Sℓ(N) be the set that gathers the N independent realizations of s(ℓ)(X; b)that have been extrated from the N independent realizations of X in
S(N).There exists a bijetion between B(d) and the set of all blok by blok de-ompositions of X. For instane, for d = 5, all the elements of {(i, j, i, k, k), 1 ≤ i 6= j 6= k ≤ 5}orrespond to the same blok deomposition of X, but only b = (1, 2, 1, 3, 3)is in B(d). We an also identify

s(1)(X; b) = (X1, X3), s(2)(X; b) = X2, s(3)(X; b) = (X4, X5), (16)Max(b) = 3, d1 = 2 d2 = 1, d3 = 2. (17)Aording to Eq. (12), for any Hℓ in M
+(dℓ), the PDF of s(ℓ)(X; b) anbe approximated by p̃s(ℓ)(X;b)(·; Hℓ,Sℓ(N)). It follows that the PDF of Xan be onstruted as the produt of these Max(b) PDFs:9



p̃X(x; H1, . . . , HMax(b),S(N), b) :=

Max(b)∏

ℓ=1

p̃s(ℓ)(X;b)(s
(ℓ)(x; b); Hℓ,S

ℓ(N)).(18)Suh a onstrution for the PDF of X means that the vetors s(ℓ)(X; b),
1 ≤ ℓ ≤ Max(b), are assumed to be independent. For any b in B(d), let
HMLE

1 (b), . . . , HMLE
d (b) be the arguments that maximize the LOO likelihoodassoiated with p̃X. Hene, for a given blok by blok deomposition of Xthat is haraterized by a given value of b, the most likely G-KDE of pX isgiven by
p̃X(x; HMLE

1 (b), . . . , HMLE
d (b),S(N), b). (19)Using Eqs. (9), (12) and (18), for any b in B(d) and any (H1, . . . , HMax(b))in M

+(d1)× · · · ×M
+(dMax(b)), this LOO likelihood is given by

LLOO(S(N)|H1 . . . , Hd, b) =

Max(b)∏

ℓ=1

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b), (20)
φ̃n,m(Hℓ, b) := φ

(
s(ℓ)(X(ωn); b); Aℓs

(ℓ)(X(ωm); b), H(ℓ)

)
, (21)

Hℓ := Idℓ
−

N − 1

N
AℓA

T
ℓ . (22)Notiing that

max
H1,...,HMax(b),b

Max(b)∏

ℓ=1

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b)

= max
b

Max(b)∏

ℓ=1

max
Hℓ

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b),

(23)
it follows that for a given blok by blok deomposition of X, the most likelyvalues of H1, . . . , HMax(b) an be omputed independently, and saved fora possible re-use for an other value of b. Indeed, if b(1) = (1, 1, 2, 2), two10



values H
(1)
1 and H

(1)
2 have to be hosen for the bandwidth matries (one foreah blok). This means that two independent LOO likelihood maximizationproblems have to be solved. In the same manner, if b(2) = (1, 1, 2, 3), threevalues H

(2)
1 , H

(2)
2 and H

(2)
3 have to be hosen. However, given the same setof realizations of X, it is lear that the most likely value of H

(1)
1 is equalto the most likely value of H

(2)
1 . Hene, the most likely value of b, whih isdenoted by bMLE, is eventually solution of

bMLE := arg max
b∈B(d)

LLOO(S(N)|HMLE
1 (b), . . . , HMLE

d (b), b). (24)There, we remind that for any b in B(d) and any 1 ≤ ℓ ≤ Max(b),
HMLE

ℓ (b) := arg max
Hℓ∈M+(dℓ)

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b). (25)Analyzing the value of bMLE an give information on the atual depen-dene struture for the omponents of X. Indeed, if bMLE = (1, . . . , 1), themost appropriate representation for the PDF of X is its lassial multidimen-sional Gaussian kernel estimation. This would mean that all the omponentsof X are likely to be dependent. On the ontrary, if bMLE = (1, 2, . . . , d),the most likely representation orresponds to the assumption that all theomponents of X are independent. Other values of bMLE an also be usedto identify groups of dependent omponents of X, whih are likely to beindependent the ones to the others.3.2. Pratial solving of the blok by blok deomposition problemThe optimization problem de�ned by Eq. (24) being very omplex, wesuggest to searh the most likely blok by blok deomposition of X usingvery simple parametrizations of the bandwidth matries. Indeed, one vetor
X has been entred and unorrelated, it is reasonable to parametrize eahbandwidth matrix Hℓ by a unique salar hℓ, suh that Hℓ = h2

ℓIdℓ
. FromEq. (22), it follows that

Aℓ =
N

N − 1

√
1− h2

ℓIdℓ
. (26)Hene, for a given preision ǫ, the omplex problem of searhing the mostlikely values of H1, . . . , HMax(b) an be redued to minimizing Max(b) nononvex but expliit funtions over the losed interval [ǫ, 1]. This an be done11



value of d 1 2 3 4 5 6 7 8 9 10value of NB(d) 1 2 5 15 52 203 877 4140 21147 115975value of Nmaxgreedy(d) 1 3 8 17 31 51 78 113 157 211Table 1: Evolution of NB(d) and Nmaxgreedy(d) with respet to d.in parallel, and eah minimization problem an be solved very e�ientlyusing a ombination of golden setion searh and suessive paraboli inter-polations (see [1℄ for further details about this method). However, solvingthe optimization problem de�ned by Eq. (24) an still be omputationallydemanding when d inreases. Indeed, as it an be seen in Table 1, the numberof admissible values of b, whih is denoted by NB(d), inreases exponentiallywith respet to d. Hene, a brute fore approah, whih would onsist intesting all the possible values of b, an not be used to identify bMLE.As an alternative, we propose to onsider a greedy algorithm, whose om-putational ost an be bounded. Starting from a on�guration where all theomponents of X are in the same blok, whih orresponds to b = (1, . . . , 1),the idea of this algorithm is to remove iteratively one element of this initialblok, and to put it in a blok that would be already built, or in a newblok where it is the only element. The Algorithm 2 provides a more de-tailed desription of this proedure. By onstrution, the number Ngreedy(d)of evaluations of b 7→ maxhLLOO(S(N)|b, h) veri�es
Ngreedy(d) ≤ Nmaxgreedy(d) := 1 +

d−2∑

i=0

(d− i)(i + 1) ≤ d3. (27)For d > 4, suh an algorithm an therefore be used to approximate bMLEat a omputational ost that is muh more a�ordable than a diret identi�-ation based on NB(d) evaluations of b 7→ maxhLLOO(S(N)|b, h).When modelling high dimensional random vetors (d ∼ 50 − 100), thevalue of Nmaxgreedy(d), whih is de�nitely muh smaller than NB(d), an alsobeome very high:
Nmaxgreedy(d = 50) = 22051, Nmaxgreedy(d = 100) = 171601. (28)To identify relevant values for b at a lower omputational ost in suha onstrained disrete set B(d), the geneti algorithms (see [7℄ for further12



1 Initialization: b∗ = (1, . . . , 1), ind.bloked = ∅ ;2 for k = 1 : d do3 L(k) = ∅, b(k) = ∅, index(k) = ∅, ℓ = 1 ;4 for i ∈ {1, . . . , d} \ind.bloked do5 for j = 2 : min(d,Max(b⋆) + 1) do6 Adapt the value of the blok index: btemp := b∗, btemp
i = j ;7 Compute: Ltemp = maxhLLOO(S(N)|btemp, h);8 Save results: L(k) {ℓ} = Ltemp, b(k) {ℓ} = btemp,index(k) {ℓ} = i ;9 Inrement: ℓ← ℓ + 1;10 end11 end12 Find the best blok index at iteration k: ℓ∗ = arg maxℓ L(k) {ℓ} ;13 Atualize: b∗ ← b(k) {ℓ∗}, ind.bloked← ind.bloked ∪ index(k) {ℓ∗};14 end15 Maximize over all iterations: (ℓgreedy, kgreedy) := arg maxℓ,k L(k) {ℓ};16 Approximate bMLE ≈ b(kgreedy) {

ℓgreedy}.Algorithm 2: Greedy searh of bMLE.

13



details) seem to be partiularly adapted. Hene, an adaptation of thesealgorithms to the ase of the identi�ation of the most likely blok by blokdeomposition of X is proposed. The fusion and the mutation proesses onwhih suh algorithms are generally based, as well as a pseudo-projetionin B(d) are therefore detailed in Appendix. In these algorithms, for any set
S (whih an be disrete or ontinuous), we denote by U(S) the uniformdistribution over S. Based on these three funtions, the Algorithm 3 showsthe geneti proedure we suggest for solving Eq. (24). The results given bythis geneti algorithm are dependent on three parameters:
• the maximum number of iterations imax,
• the probability of mutation pMut,
• the size of the population we are onsidering in the geneti algorithm

Npop.For this algorithm, the number of evaluations of b 7→ maxhLLOO(S(N)|b, h)is equal to N tot = imax ×Npop. For a given value of N tot, it is however hardto infer the optimal values for these three parameters, as it depends on d andon the optimal blok-by-blok struture of the onsidered random vetor ofinterest. However, from the analysis of a series of numerial examples, it isgenerally interesting to hoose small values for pMut to limit the number ofspontaneous mutations, and favour high values for the number of iterations
imax rather than for the population size Npop.One a satisfying value b̂

MLE of b has been identi�ed using the salarparametrization of the bandwidth matries, it is possible to enrih the parametriza-tion of the bandwidth matries to improve the nonparametri representationof the PDF of X. This amounts at solving
HMLE

ℓ (b̂
MLE

) = arg max
Hℓ∈M+(dℓ)

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b̂
MLE

) (29)for all 1 ≤ ℓ ≤ Max(b̂MLE
). In pratie, we observed on a series of testases that the interest of suh an enrihment of the bandwidth matrix wasrelatively limited. 14



1 Choose Npop ≥ 2, 0 ≤ pMut ≤ 1 and imax ≥ 1 ;2 Initialization ;3 De�ne B = ∅, L = ∅, in = 1 ;4 Choose at random Npop elements of B(d), {
b(1), . . . , b(Npop)

} ;5 for n = 1 : Npop do6 Compute: Ltemp = maxhLLOO(S(N)|b(n), h);7 Save results: L {in} = Ltemp, B {in} = b(n), in = in + 1 ;8 end9 Iteration ;10 for i = 2 : imax do11 Gather in S the Npop elements of B assoiated with the Npop highestvalues of L ;12 Choose at random Npop distint pairs of elements of S:{(
b(n,1), b(n,2)

)
, 1 ≤ n ≤ Npop} ;13 for n = 1 : Npop do14 Fusion: bFus = Fusion(b(n,1), b(n,2)) ;15 Mutation: bMut = Mutation(bFus, pMut) ;16 Compute: Ltemp = maxhLLOO(S(N)|bMut, h);17 Save results: L {in} = Ltemp, B {in} = bMut, in = in + 1 ;18 end19 end20 Maximize over all iterations: kgene = arg max1≤k≤in−1 L {k} ;21 Approximate bMLE ≈ B {kgene}.Algorithm 3: Geneti searh of bMLE. The funtions Mutation() andFusion() are presented in Appendix, and are detailed in Algorithms 4and 5.
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4. Simulation and appliation studiesThe purpose of this setion is to illustrate the interest of the orrelationonstraints and the tensorized formulation for the nonparametri represen-tation of PDFs when the maximal information is a �nite set of independentrealizations. To this end, a series of examples will be presented. The �rstexamples will be based on generated data, so that the errors an be on-trolled, whereas the last example presents an industrial appliation based onexperimental data.4.1. Monte Carlo simulation studies4.1.1. Lemnisate funtionLet U be a random value that is uniformly distributed on [−0.85π, 0.85π],
ξ = (ξ1, ξ2) be a 2-dimensional random vetor whose omponents are two in-dependent standard Gaussian variables, and XL = (XL

1 , XL
2 ) be the randomvetor so that

XL =

(
sin(U)

1 + cos(U)2
,
sin(U) cos(U)

1 + cos(U)2

)
+ 0.05ξ. (30)We assume that N = 200 independent realizations of XL have been gath-ered in S(N). Given this information, we would like to generate additionalpoints that ould sensibly be onsidered as new independent realizations of

XL. Based on the G-KDE formalism presented in Setion 2, four kinds ofgenerators are ompared in Figure 1, depending on the value of the band-width and on the onstraints on the statistial moments of XL.
• Case 1: p

X
L is approximated by p

cX
L(·; (hSilv(d, N))2Id,S(N)), whihis de�ned by Eq. (1) (no onstraints).

• Case 2: p
X

L is approximated by p
fX

L(·; (hSilv(d, N))2Id,S(N)), whihis de�ned by Eq. (12) (onstraints on the mean and the ovariane).
• Case 3: p

X
L is approximated by p

cX
L(·; (hMLE(d, N))2Id,S(N)) (no on-straints).

• Case 4: p
X

L is approximated by p
fX

L(·; (hMLE(d, N))2Id,S(N)) (on-straints on the mean and the ovariane).16



The relevane of the di�erent approximations of p
X

L an be analysedfrom a graphial point of view in Figure 1. It is instrutive to ompare theassoiated values of the LOO likelihood, whih is denoted by LLOO(S(N)|H),as the higher this value, the more likely the approximation. Hene, for thisexample, introduing onstraints on the mean and the ovariane of the G-KDE tends to slightly inrease the values of LLOO(S(N)|H). Moreover,these results are strongly improved when hoosing hMLE(d, N) instead of
hSilv(d, N). Then, for these four ases, Figure 2 ompares the evolutionof hSilv(d, N) and hMLE(d, N) with respet to N , and shows the assoiatedvalues of the LOO likelihood. For this example, it an therefore be seenthat hSilv(d, N) strongly overestimates the sattering of the distribution of
XL, for any onsidered values of N . This is not the ase when workingwith hMLE(d, N). It is also interesting to notie that for values of N lowerthan 104 (whih is very high for 2-dimensional ases), the di�erene between
hMLE(d, N) and hSilv(d, N) is always important.4.1.2. Four branhes lover-knot funtionIn the same manner than in the previous setion, let U be a random valuethat is uniformly distributed on [−π, π], ξ = (ξ1, ξ2, ξ3) be a 3-dimensionalrandom vetor whose omponents are three independent standard Gaussianvariables, and XFB be the random vetor so that

XFB = (cos(U) + 2 cos(3U), sin(U)− 2 sin(3U), 2 sin(4U)) + ξ. (31)One again, starting from a data set of N = 200 independent realizations,we would like to be able to generate additional realizations of XFB. Forthis 3-dimensional ase, as in the previous setion, Figures 3 and 4 allowus to underline the interest of onsidering G-KDE representations that areonstrained in terms of mean and ovariane, for whih the bandwidths areoptimized from the likelihood maximization point of view.4.1.3. Interest of the blok-by-blok deomposition in higher dimensionsAs explained in Setion 3, when d is high, the G-KDE of pX requiresvery high values of N to be able to identify the manifold on whih the dis-tribution of X is onentrated. In other words, if N is �xed, the higher d,the higher hMLE(d, N) and the more sattered the new realizations of X. Asan illustration of this phenomenon, let us onsider the two following randomvetors, for d ≤ 1: 17
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• Case 1: X(2D) = (XL, Ξ3, . . . , Ξd).
• Case 2: X(3D) = (XFB, Ξ4, . . . , Ξd).Here, Ξ3, . . . , Ξd denote d independent standard Gaussian random vari-ables, whereas the random vetors XL and XFB have been introdued inSetion 4.1. For these two ases, two on�gurations are ompared.
• On the �rst hand, a lassial G-KDE of the PDFs of X(2D) and X(3D)is omputed. In that ase, no blok deomposition is arried out. Theblok by blok vetors assoiated with these modelling, whih are re-spetively denoted by b(2D,1) and b(3D,1), are equal to (1, . . . , 1).
• On the seond hand, we impose b(2D,2) = (1, 1, 2, . . . , d−1) and b(3D,2) =

(1, 1, 1, 2, . . . , d− 2), and we build the assoiated tensorized versions ofthe G-KDE of the PDFs of X(2D) and X(3D).Hene, when no blok deomposition is arried out, we an verify in Fig-ure 5 that hMLE(d, N) quikly onverges to 1 when d inreases, for the two19
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d dereases when d inreases. To illustrate this phenomenon,for N = 500, Figure 6 ompares the positions of the �rst omponents of theavailable realizations of X(2D) and X(3D), and the orresponding positionsof 104 additional points generated from a G-KDE approah. Hene, just byworking on the optimization of the value of the bandwidth, it is quikly im-possible to reover the subsets of R
2 and R

3 on whih the true distributionsof XL and XFB are onentrated. On the ontrary, when the blok by blokdeompositions given by b(2D,2) and b(3D,2) are onsidered, the approxima-tion of the PDFs of the two �rst omponents of X(2D) and X(3D) is nota�eted by the presene of the additional random variables Ξ3, . . . , Ξd. As aonsequene, for eah onsidered values of d, the new generated points areonentrated on the orret subspaes, as it an be seen in Figure 6.At last, the high interest of introduing the blok by blok deompositionfor these two examples is emphasized by omparing in Figure 5 the values ofthe LOO likelihood in eah ase. 21
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value of b value of hMLE(d, N) log(LLOO(S(N)|hMLE(d, N), b))(1,1,1,1,1) 0.395 −1.21× 103(1,2,3,4,5) (0.115,0.163,0.0971,0.108, 0.118) −1.15× 103(1,2,1,2,1) (0.290,0.226) −1.19× 103(1,1,2,2,2) (0.113,0.140) −8.35 × 10
2(1,1,2,2,3) (0.113,0.119,0.118) −9.96× 102Table 2: In�uene of the hoie of b on the LOO log-likelihood of the G-KDE for themodeling of the PDF of X = (XL, XFB) with N = 200 independent realizations.In the same manner, if we de�ne X as the onatenation of XL and

XFB, whih are hosen independent, the interest of introduing the orretblok by blok deomposition of X in terms of likelihood maximization isshown in Table 2. Indeed, hoosing b = (1, 1, 2, 2, 2) instead of the twolassial a priori hoies b = (1, 1, 1, 1, 1) (all the omponents are modelledat the same time) and b = (1, 2, 3, 4, 5) (all the omponents are modelledseparately), allows us to strongly inrease the likelihood assoiated with theapproximation of the PDF of X. Reiproally, suh an example seems toon�rm the fat that maximizing LLOO(S(N)|hMLE(d, N), b) should help usto �nd the dependene struture in the omponents of X.4.1.4. E�ieny of the proposed algorithms for the blok-by-blok deompo-sitionThis setion aims at omparing the e�ieny of the proposed algorithmsfor solving the optimization problem given by Eq. (24). To this end, usingthe same notations than in Setion 3.1, we denote by X the random vetorsuh that for all 1 ≤ ℓ ≤ Max(b),
s(ℓ)(X, b) = ξ(ℓ)/

∥∥∥ξ(ℓ)
∥∥∥ + 0.15Ξ(ℓ). (32)Here ξ(ℓ) and Ξ

(ℓ) denote independent standard Gaussian random vetors,and ‖·‖ denotes the lassial Eulidean norm. By onstrution, the randomvetors s(ℓ)(X, b) are onentrated on dℓ-dimensional hyper-spheres, dℓ beingthe dimension of s(ℓ)(X, b). Thus, random vetor X presents a known blokby blok struture, and its distribution is onentrated on a subset of R
d.Then, we assume that the maximal available information is a set of N =24



Chosen values of b d NB(d) Ngreedy(d) N̂
(10,0.01)gene (d)(1,2,2,1,3,4,1) 7 877 68 (52) 32.4(1,2,2,1,3,4,1,2,4,5) 10 115975 174 (141) 25.5(1,2,2,1,3,4,1,2,4,5,5,6,3,4,7,6,8,1,2,7) 20 5.17× 1017 968 (879) 51.1Table 3: Comparison of the e�ieny of the greedy and the geneti algorithms for theidenti�ation of the blok-by-blok struture of X .

pMut \ Npop 2 5 10 20 500 ∞ 13.5 16.0 35.8 58.10.005 ∞ 15.9 19.5 39.7 77.70.01 13.4 15.7 25.5 36.0 62.90.1 22.9 44.3 41.0 64.7 78.7Table 4: In�uene of the parameters pMut and Npop on the mean number of tested valuesof b, whih is denoted by N̂
(Npop,pMut)gene (d).

500 independent realizations of X. For di�erent values of d and b, the abilityof the greedy and the geneti algorithms to �nd bak the orret blok byblok struture of X is ompared in Table 3. In this table, Npop = 10, pMut =

0.01, and we denote by N̂
(Npop,pMut)gene (d) the mean number of distint valuesof b that were tested for the geneti algorithm to identify the optimal valueof b. These values were omputed from 20 runs of the algorithm initializedin 20 di�erent initial populations hosen at random in B(d). For the greedyase, the algorithm, whih is deterministi, was run until it stopped, and weindiate in Table 3 two quantities: the total number of iterations Ngreedy(d),and, in parenthesis, the number of iterations that was atually needed toget the best value of b. Hene, for these partiular examples, the genetialgorithm was more e�ient than the greedy one.The in�uene of parameters Npop and pMut is then analysed in Table 4, for

d = 10 and b = (1, 2, 2, 1, 3, 4, 1, 2, 4, 5). A value of N̂
(Npop,pMut)gene (d) equal to∞means that the orret value was never found after 105 iterations. Therefore,this example (the same thing was observed for the other examples we tried)seem to enourage the use of small (but not zero) values of pMut, as well assmall values of Npop suh that several mutation proesses an be ahieved.25



4.2. Appliation to the generation of relevant ballast grain shapesThe mehanial behaviour of the railway trak strongly depends on thetrak superstruture and substruture omponents. In partiular, the me-hanial properties of the ballast layer are very important. Therefore, aseries of studies are in progress to better analyse the in�uene of the bal-last shape on the railway trak performane. In that prospet, the shapes of
N = 975 ballast grains have been measured very preisely. As an illustration,Figure 7 shows the sans of three ballast grains. These measurements anbe onsidered as independent realizations of a omplex random �eld. Fromthis �nite set of realizations, a Karhunen-Loève expansion (see [9, 8℄ for moredetails about this method) has been arried out to redue the statistial di-mension of this random �eld. Without entering too muh into details, weadmit in this paper that the random �eld assoiated with the varying bal-last shape an �nally be parametrized by a 117-dimensional random vetor,whih is denoted by X. As a onsequene of the Karhunen-Loève expan-sion, this random vetor is entred and its ovariane matrix is equal to the
117-dimensional identity matrix:

E [X] = 0, E[X ⊗X] = I117. (33)From the experimental data, we have aess to N = 975 independentrealizations of X, whih are gathered in S(N). Based on this maximal avail-able information, we would like to identify the PDF of X from a G-KDEapproah. The results assoiated with several modellings based on the G-KDE formalism are summarized in Table 5. In this table, we notie the highinterest of introduing orrelation onstraints. Indeed, for suh a very highdimensional problem with relatively little data, if no onstraints are intro-dued, we get very poor models assoiated with very low values of the LOOlikelihood. In that ase, assuming that all the omponents are independentleads to better results than assuming that they are all dependent. This anbe explained by the fat that if all the omponent of X are hosen indepen-dent, we impose a diagonal struture for E[X ⊗X], whih is, in that ase,very lose to imposing that E[X ⊗X] = I117.On the ontrary, muh higher values of the LOO likelihood are obtainedby adding onstraints on the mean value and the ovariane matrix of theG-KDE of the PDF of X. In both ases, it an be notied that it is worthworking on the values of the bandwidth. Indeed, passing from hSilv(d, N)to hMLE(d, N) makes a big di�erene when looking at the LOO likelihood.26



Figure 7: Three sanned ballast grains (provided by SNCF).Value of b Value of h Correlation onstraints LOO Log-likelihood
(1, . . . , 1) hSilv(d, N) no -179379
(1, . . . , 1) hMLE(d, N) no -176886
(1, . . . , d) hMLE(d, N) no -162398
(1, . . . , 1) hSilv(d, N) yes -161745
(1, . . . , 1) hMLE(d, N) yes -161262
(1, . . . , d) hMLE(d, N) yes -161775

bMLE hMLE(d, N) yes -160930Table 5: In�uene of the value of the bandwidth, of the presene of onstraints on theovariane, and of the hoie of the blok by blok deomposition for the approximationof the PDF of X.At last, introduing the tensorized representation as it is done in Setion 3,and working on the value of the blok-by-blok deomposition of X leads toanother high inrease of the LOO likelihood. For this appliation, the value of
bMLE has been approximated from the oupling of the greedy algorithm andthe geneti algorithm presented in Setion 3. The greedy algorithm was �rstlaunhed, and stopped after 30000 iterations. Then, based on these results,additional 20000 iterations were performed using the geneti algorithm with
Npop = 500 and pMut = 0.005.Finally, by working on both the orrelation onstraints and the blok byblok deomposition of X, it is possible to onstrut, for this example, veryinteresting statistial models for X. Suh models an then be used for theanalysis of the ballast statistial properties.
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5. ConlusionThis work onsiders the hallenging problem of identifying omplex PDFswhen the maximal available information is a set of independent realizations.In that prospet, the multidimensional G-KDE method plays a key role,as it presents a good ompromise between omplexity and e�ieny. Twoadaptations of this method have been presented. First, a modi�ed formalismis presented to make the mean and the ovariane matrix of the estimatedPDF equal to their empirial estimations. Then, tensorized representationsare proposed. These onstrutions are based on the identi�ation of a blokby blok dependene struture of the random vetors of interest. The interestof these two adaptations has �nally been illustrated on a series of analytialexamples and on a high-dimensional industrial example.The identi�ation of the bandwidth matries and of the blok struture isarried out in the frequeny domain. Investigating Bayesian sampling for thebandwidth matries and the blok struture seletion ould be interesting forfuture work.AppendixA1. Proof of Proposition 1We an alulate:
E

[
X̃

]
=

1

N

N∑

n=1

AX(ωn) + β = µ̂. (34)Cov(X̃) =

∫

Rd

x⊗ x p̃X(x; H ,S(N))dx− µ̂⊗ µ̂

=
1

N

N∑

n=1

H + (AX(ωn) + β)⊗ (AX(ωn) + β)− µ̂⊗ µ̂

= H +
N − 1

N
AR̂XAT

= R̂X.

(35)
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A2. Desription of three algorithms used in the geneti algorithmThis setion presents the three algorithms that are used in the genetialgorithm de�ned in Setion 3. Algorithm 4 presents the fusion funtion,Algorithm 5 desribes the mutation funtion, and Algorithm 6 shows thepseudo projetion on B(d) on whih they are based.1 Let b(1) and b(2) be two elements of B(d) ;2 Initialization: b = (0, . . . , 0), index = {1, . . . , d}, n = 1 ;3 while index is not empty do4 Choose i ∼ U({index}), j ∼ U({1, 2}), k ∼ U({1, 2}) ;5 Find u(1) = whih(b(1) == b
(1)
i ), u(2) = whih(b(2) == b

(2)
i ) ;6 if k==1 then7 De�ne v = u(j) ∩ index ;8 end9 else10 De�ne v = (u(1) ∪ u(2)) ∩ index ;11 end12 Fill b[v] = n ;13 Atualize n← n + 1, index← index\v.14 end15 Fusion(b(1), b(2)) := ΠB(d)(b).Algorithm 4: Algorithm for the fusion of two elements b(1) and b(2) of

B(d).Referenes[1℄ R. Brent. Algorithms for Minimization without Derivatives. EnglewoodCli�s N.J.: Prentie-Hall, 1973.[2℄ R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner,and S.W. Zuker. Geometri di�usions as a tool for harmoni analysisand struture de�nition of data: di�usion maps. Pro. Natl. Aad. Si.USA, 2005.[3℄ Tarn Duong, Arianna Cowling, Inge Koh, and M. P. Wand. Featuresigni�ane for multivariate kernel density estimation. ComputationalStatistis and Data Analysis, 52(9):4225�4242, 2008.29



1 Let b be an element of B(d) and 0 ≤ pMut ≤ 1 ;2 for i = 1 : d do3 Choose u ∼ U([0, 1]) ;4 if u < pMut then5 bi ∼ U({1, . . . , d})\ {bi};6 end7 end8 Mutation(b, pMut) := ΠB(d)(b).Algorithm 5: Algorithm for the mutation of an element b of B(d).
1 Let b be an element of {1, . . . , d}d, index = (1, . . . , 1), n = 1, b∗ = (0, . . . , 0) ;2 for i = 1 : d do3 if sum(index)==0 then4 break ;5 end6 else7 Find u = whih(b == bi) ;8 Fill b∗[u] = n;9 Atualize n = n + 1, index[u] = 0.10 end11 end12 ΠB(d)(b) := b∗.Algorithm 6: Pseudo-projetion ΠB(d)(b) of any element b in {1, . . . , d}don B(d).
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