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Abstract. The slip boundary conditions for the compressible Navier–Stokes equa-
tions are derived systematically from the Boltzmann equation on the basis of the Chapman–
Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adja-
cent to the boundary. The resulting formulas of the slip boundary conditions are sum-
marized with explicit values of the slip coefficients for hard-sphere molecules as well
as the Bhatnagar–Gross–Krook (BGK) model. These formulas, which can be applied
to specific problems immediately, help to prevent the use of often used slip boundary
conditions that are either incorrect or without theoretical basis.
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1 Introduction
Gases in low-density circumstances and in microscales deviate from the local equi-
librium state, so that the behavior of the gases cannot be described by the ordinary
macroscopic fluid or gas dynamics. For such gases, one should use kinetic theory of
gases [16, 23, 28, 14, 56, 57], whose fundamental equation is the celebrated Boltzmann
equation. However, the complexity of the Boltzmann equation had hindered its appli-
cation to practical gas dynamic problems. This situation was changed by the appear-
ance and development of the direct simulation Monte Carlo (DSMC) method [8, 9].
Nowadays, in addition to this stochastic and particle method, different deterministic
methods have been proposed (e.g., [11, 5, 19, 20]). Furthermore, the classical model
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Boltzmann equations, such as the Bhatnagar–Gross–Krook (BGK) [7, 68], ellipsoidal-
statistical (ES) [27], and Shakhov models [42], have been continuously used and have
shown their usefulness with new sophisticated numerical techniques [34, 66, 41]. Nev-
ertheless, it is still true that the computational load for the Boltzmann equation and its
models is much heavier than that for the macroscopic fluid-dynamic equations.

The measure of the deviation from the local equilibrium state is given by the Knud-
sen number, which is the ratio of the mean free path of the gas molecules to the charac-
teristic length of the system. When the Knudsen number is small, the system is close to
the local equilibrium. It is a common understanding that in this case, the Navier–Stokes
equations, supplemented by the slip boundary conditions, provide the correct overall
solution to the Boltzmann equation.

For time-independent problems, this problem had been investigated by Y. Sone
since 1960’s by systematic asymptotic analysis of the Boltzmann equation, and the
complete slip-flow theory, which may be called the generalized slip-flow theory, has
been established [53, 54, 59, 55, 60, 61]; the reader is referred to his two books
[56, 57]. The generalized slip-flow theory provides the appropriate combinations of
the fluid-dynamic-type equations, their boundary conditions of slip or jump type, and
the kinetic corrections near the boundary (i.e., inside the so-called Knudsen layer) de-
pending on the physical situations. It may be classified as (i) the linear theory for small
Reynolds numbers [53, 54, 55], (ii) the weakly nonlinear theory for finite Reynolds
numbers [54, 59, 55], (iii) the nonlinear theory for finite Reynolds numbers but large
temperature and density variations [60], and (iv) the fully nonlinear theory [61]. The
basic fluid-dynamic-type equations are the Stokes equations in (i), the so-called in-
compressible Navier–Stokes type in (ii), and the ghost-effect equations in (iii). In (iv),
the overall equations are of the Euler type, but its solution needs to be matched with
the solution of the equations of the viscous boundary-layer type with appropriate slip
boundary conditions. The two books by Sone [56, 57] give the summary of all these
fluid-dynamic-type systems and recipes for applications according to the physical sit-
uations under consideration. Therefore, we do not have to go back to the Boltzmann
equation and can solve the problems in the framework of macroscopic gas dynamics. It
should be noted that the extension of the generalized slip flow theory to time-dependent
problems has been discussed in Sect. 3.7 of [57], and the extension of the linear theory
has been completed recently [65, 25, 26].

In the present study, we focus our attention on the fully nonlinear setting in which
the Mach number is finite and density and temperature variations are large. This is the
most general setting and corresponds to Sone’s fully nonlinear theory [61]. This theory
is theoretically rigorous in the sense that it is a consequence of a systematic asymptotic
analysis. Since a Hilbert-type expansion is used, the overall fluid-dynamic equations
are of the Euler type. Therefore, one needs to introduce the intermediate layer, i.e.,
the viscous boundary layer, in order to match the overall Euler-type solution with the
Knudsen layer, and the slip boundary conditions are derived for the viscous boundary-
layer equations. However, this structure gives less flexibility because the theory cannot
be applied to the problems in which the viscous boundary layer does not appear, such
as flows with boundary layer separation. In addition, since steady flows are considered
in [61], the theory naturally cannot be applied to unsteady problems, in particular,
those containing moving boundaries. Furthermore, even for the problems in which
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the viscous boundary layer appears on the whole boundary, the numerical solution of
the system of fluid-dynamic equations is not straightforward because it requires the
matching between the Euler and viscous boundary layer equations. Therefore, it is
desirable to have a more flexible system composed of a single set of fluid-dynamic
equations and appropriate slip boundary conditions, applicable to more general fully
nonlinear and time dependent problems, as an alternative to [61]. This is the motivation
of the present study.

As the appropriate single set of fluid-dynamic equations, we consider the Navier–
Stokes equations for compressible fluids, the so-called compressible Navier–Stokes
equations, since it can naturally describe the situation in which the flow field is sep-
arated into bulk inviscid flow and viscous boundary layers. Therefore, we just need
the appropriate slip boundary conditions that are to be combined with the compressible
Navier–Stokes equations.

The derivation of the slip boundary conditions for the compressible Navier–Stokes
equations is a classical problem, and its outline can be found in many classical text-
books (e.g., [28, 14]). However, it has not been the subject of a separate paper except
[18]. In fact, to the best of the authors’ knowledge, it is impossible to find, in the liter-
ature, the rigorously derived formulas of the slip boundary conditions with the explicit
values of the slip coefficients that can be applied immediately to specific problems
(the result of [18], which is also restricted to the case of steady flows with stationary
boundaries, will be discussed in Sect. 5.3.4). For this reason, slip boundary conditions
that are incorrect or derived by crude arguments without rigorous analysis have been
widely used. An example is that the slip boundary conditions derived in the linear or
weakly nonlinear setting (i.e., for small Mach numbers) are sometimes misused for the
compressible Navier–Stokes equations.

Therefore, we revisit this problem, aiming at deriving the slip boundary conditions
in a precise way on the basis of the Boltzmann equation and providing the formulas for
time-dependent problems with arbitrarily moving boundaries that can be used immedi-
ately. This gives a reliable and simpler tool to analyze gas flows at small Knudsen num-
bers, since the numerical analysis of the Boltzmann and its model equations becomes
increasingly difficult as Knudsen number becomes small. We will basically follow the
procedure of the analysis of the Knudsen layer developed by Sone in his papers and
books cited above and exploit the existing numerical solutions for the Knudsen-layer
problems. Therefore, the essence of the analysis is not new. However, it requires a care-
ful and subtle analysis, and moreover the obtained results are new. It should also be
remarked that the correct slip boundary conditions for the compressible Navier–Stokes
equations have been derived and used in some specific problems [2, 3].

The paper is organized as follows. After this introduction, the problem is stated
in Sect. 2 and formulated both in dimensional and dimensionless forms in Sect. 3.
The Chapman–Enskog solution and the resulting compressible Navier–Stokes equa-
tions are summarized in Sect. 4. Section 5, which is the main part of the paper, is
devoted to the derivation of the slip boundary conditions by means of the analysis of
the Knudsen layer. The comparison of the obtained result with the existing formulas
is also contained here (Sect. 5.3.4). The derived formulas of the slip boundary condi-
tions, together with the compressible Navier–Stokes equations, are summarized in the
dimensional form in Sect. 6, and concluding remarks are given in Sect. 7.
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2 Problem and Assumptions
Let us consider a monatomic ideal gas occupying a domain in contact with solid bound-
aries of arbitrary but smooth shape. The domain may extend to infinity, and no external
force is acting on the gas. We investigate the unsteady behavior of the gas under the
following assumptions:

(i) The behavior of the gas is described by the Boltzmann equation (the BGK model
is also considered in parallel).

(ii) The boundaries do not deform and undergo a rigid-body motion, and the gas
molecules are reflected on the boundaries according to the Maxwell type diffuse-
specular reflection.

(iii) The mean free path (or the mean free time) of the gas molecules at the reference
equilibrium state at rest is sufficiently small compared to the characteristic length
(or the characteristic time) of the system.

(iv) At the initial time, the boundary is at rest and has a uniform temperature, and
the gas is in the equilibrium state at rest with the same temperature. After the
initial time, the boundary can be set into motion smoothly, and the temperature
of the boundary can change smoothly in time and position. (For the problems
including infinities, the corresponding initial state and slow variations should be
assumed at infinities.)

Assumption (iv) is to avoid the occurrence of the initial layer and that of the interac-
tion between the initial layer and the Knudsen layer during the initial stage. It is for
the purpose of theoretical rigor. However, we want to apply the resulting system of
the compressible Navier–Stokes equations and the slip boundary conditions for more
general initial conditions, admitting the inaccuracy during the initial stage with the du-
ration of the order of the mean free time. This point will be commented on at the end
of Sect. 5.2.4.

In the present manuscript, although the formulation is given with the Maxwell-type
boundary condition [assumption (ii)], the coefficients in the slip boundary conditions
will be given only for complete accommodation (diffuse reflection). We will consider
the case of the Maxwell-type boundary condition in a separate paper, restricting our-
selves to the BGK model and focusing our attention on the numerical method for the
Knudsen-layer problems.

3 Formulation of the Problem

3.1 Basic Equations
Let us denote by f (t, XXX , ξξξ ) the velocity distribution function of the gas molecules,
where t is the time variable, XXX (or Xi) is the position vector in the physical space, and
ξξξ (or ξi) is the molecular velocity. Then, the mass density ρ , flow velocity vvv (or vi),
temperature T , pressure p, stress tensor pi j, and heat-flow vector qqq (or qi), which are all
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functions of t and XXX , are expressed as appropriate moments of the velocity distribution
function, that is,

ρ =
∫

f (t,XXX ,ξξξ )dξξξ , (1a)

vi =
1
ρ

∫
ξi f (t,XXX ,ξξξ )dξξξ , (1b)

T =
1

3ρR

∫
|ξξξ − vvv|2 f (t,XXX ,ξξξ )dξξξ , (1c)

p =
1
3

∫
|ξξξ − vvv|2 f (t,XXX ,ξξξ )dξξξ = RρT, (1d)

pi j =
∫
(ξi− vi)(ξ j− v j) f (t,XXX ,ξξξ )dξξξ , (1e)

qi =
1
2

∫
(ξi− vi)|ξξξ − vvv|2 f (t,XXX ,ξξξ )dξξξ , (1f)

where R is the gas constant per unit mass (R = kB/m with the Boltzmann constant kB
and the mass m of a molecule), dξξξ = dξ1dξ2dξ3, and the domain of integration with
respect to ξξξ is its whole space.

The equation for f is the Boltzmann equation [56, 57]:

∂ f
∂ t

+ξi
∂ f
∂Xi

= J( f , f ), (2)

where J is defined with arbitrary functions g(ξξξ ) and h(ξξξ ) of ξξξ as follows:

J(g, h) =
1

2m

∫
ααα∈S2, ξξξ ∗∈R3

(g′h′∗+g′∗h
′−gh∗−g∗h)BdΩ(ααα)dξξξ ∗. (3)

Here, the usual convention, g = g(ξξξ ), g∗ = g(ξξξ ∗), g′ = g(ξξξ ′), and g′∗ = g(ξξξ ′∗) and the
same for h, is used; when a pair of molecules with velocities ξξξ and ξξξ ∗ collide, the
velocities of the respective molecules after collision, ξξξ

′ and ξξξ
′
∗, are expressed as

ξξξ
′
= ξξξ +[(ξξξ ∗−ξξξ ) ···ααα]ααα, ξξξ

′
∗ = ξξξ ∗− [(ξξξ ∗−ξξξ ) ···ααα]ααα, (4)

where ααα , which is an integration variable together with ξξξ ∗, is the unit vector in the
direction of ξξξ

′−ξξξ ; dξξξ ∗ = dξ∗1dξ∗2dξ∗3 and dΩ(ααα) is the solid-angle element around
ααα; B is the non-negative function of |ααα ··· (ξξξ ∗−ξξξ )|/|ξξξ ∗−ξξξ | and |ξξξ ∗−ξξξ |, i.e.,

B = B
(
|ααα · (ξξξ ∗−ξξξ )|
|ξξξ ∗−ξξξ |

, |ξξξ ∗−ξξξ |
)
, (5)

which depends on the intermolecular potential, and for hard-sphere molecules, B =
d2

m|ααα ··· (ξξξ ∗−ξξξ )|/2 with dm being the diameter of a molecule.
For the BGK model, the collision operator J( f , f ) in (2) is replaced by the follow-

ing JBGK( f ):

JBGK( f ) = Ac(T )ρ( fe− f ), (6)
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where fe is a local Maxwellian

fe =
ρ

(2πRT )3/2 exp
(
−|ξ

ξξ − vvv|2

2RT

)
, (7)

and ρ , vvv, and T are defined by (1a)–(1c). In (6), Ac(T ) is a function of the temperature
T such that Ac(T )ρ is the collision frequency of a molecule with velocity ξξξ . Thus, the
collision frequency is independent of ξξξ in this model. When Ac(T ) is a constant, the
model corresponds to the pseudo-Maxwell molecule.

The initial condition [cf. assumption (iv)] is given at time t = 0 by

f (0, XXX , ξξξ ) =
ρ0

(2πRT0)3/2 exp
(
− |ξ

ξξ |2

2RT0

)
, (8)

where ρ0 is the reference density, and T0 is the reference temperature.
The boundary condition [cf. assumption (ii)] is written as

f (t, XXXw, ξξξ ) = (1−α)R f (t, XXXw, ξξξ )+α
ρw

(2πRTw)3/2 exp
(
−|ξ

ξξ − vvvw|2

2RTw

)
,

for (ξξξ − vvvw) ···nnn > 0, (9a)

ρw =−
(

2π

RTw

)1/2 ∫
(ξξξ−vvvw)···nnn<0

(ξξξ − vvvw) ···nnn f (t, XXXw, ξξξ )dξξξ , (9b)

where XXXw (or Xwi) is the position of a point on the boundary, vvvw (or vwi) and Tw are
the velocity and temperature of the boundary at the point XXXw, and nnn is the unit normal
vector to the boundary, pointing into the gas, at XXXw. In general, XXXw is a function of t, vvvw
is the time derivative of XXXw, and the arguments of Tw and nnn are (t, XXXw). In accordance
with assumption (iv), vvvw = 0 and Tw = T0 at t = 0, and XXXw (thus, vvvw), Tw, and nnn are
assumed to change smoothly with t. In (9a), R is the reflection operator defined by

Rg(ξi) = g(ξi−2(ξ j− vw j)n jni), (10)

with an arbitrary function g(ξξξ ) of ξξξ , and α (0 ≤ α ≤ 1) is the so-called accommo-
dation coefficient, giving the specular reflection when α = 0 and the diffuse reflection
when α = 1. In the present paper, we assume that α = O(1), so that the case of spec-
ular or almost specular reflection is excluded. When α = 0 or α = O(ε), we need a
Knudsen-layer analysis of different type, and the resulting slip boundary conditions
are of different form from those for α = O(1) (see [58, 1, 4]). Note that the boundary
condition (9) satisfies the condition that there is no instantaneous mass flow across the
boundary, i.e., ∫

(ξξξ − vvvw) ···nnn f (t, XXXw, ξξξ )dξξξ = 0. (11)

3.2 Dimensionless Form
In this subsection we nondimensionalize our basic system shown in Sect. 3.1. Let L
be the reference length, t0 the reference time, and p0 = Rρ0T0 the reference pressure,
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where ρ0 and T0 are the reference density and temperature appeared in (8). In the
present study, we choose t0 as

t0 = L/(2RT0)
1/2. (12)

Then, we introduce the dimensionless quantities (t̂, xi, ζi, f̂ , ρ̂ , v̂i, T̂ , p̂, p̂i j, q̂i, xwi,
v̂wi, T̂w), corresponding to the dimensional quantities (t, Xi, ξi, f , ρ , vi, T , p, pi j, qi,
Xwi, vwi, Tw), by the following relations:

t̂ = t/t0, xi = Xi/L, ζi = ξi/(2RT0)
1/2,

f̂ = f/[ρ0/(2RT0)
3/2], ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)

1/2,

T̂ = T/T0, p̂ = p/p0, p̂i j = pi j/p0, q̂i = qi/p0(2RT0)
1/2,

xwi = Xwi/L, v̂wi = vwi/(2RT0)
1/2, T̂w = Tw/T0.

(13)

We also use xxx, ζζζ , v̂vv, q̂qq, xxxw, and v̂vvw for xi, ζi, v̂i, q̂i, xwi, and v̂wi, respectively.
Then, corresponding to (1), we have the following relations between the macro-

scopic quantities and the velocity distribution function:

ρ̂ =
∫

f̂ dζζζ , (14a)

v̂i =
1
ρ̂

∫
ζi f̂ dζζζ , (14b)

T̂ =
2

3ρ̂

∫
|ζζζ − v̂vv|2 f̂ dζζζ , (14c)

p̂ =
2
3

∫
|ζζζ − v̂vv|2 f̂ dζζζ = ρ̂T̂ , (14d)

p̂i j = 2
∫
(ζi− v̂i)(ζ j− v̂ j) f̂ dζζζ , (14e)

q̂i =
∫
(ζi− v̂i)|ζζζ − v̂vv|2 f̂ dζζζ , (14f)

where dζζζ = dζ1dζ2dζ3, and the domain of integration with respect to ζζζ is its whole
space. In the following, if the domain of integration is omitted, it means that the inte-
gration is over the whole space of the integration variables.

The dimensionless form of the Boltzmann equation (2) reads [56, 57]

∂ f̂
∂ t̂

+ζi
∂ f̂
∂xi

=
1
ε

Ĵ( f̂ , f̂ ), (15)

where Ĵ is defined with arbitrary functions ĝ(ζζζ ) and ĥ(ζζζ ) of ζζζ by

Ĵ(ĝ, ĥ) =
1
2

∫
ααα∈S2, ζζζ ∗∈R3

(ĝ′ĥ′∗+ ĝ′∗ĥ
′− ĝĥ∗− ĝ∗ĥ)B̂dΩ(ααα)dζζζ ∗. (16)

Here, dζζζ ∗ = dζ∗1dζ∗2dζ∗3, and the same convention as in (3) is used, i.e., ĝ = ĝ(ζζζ ),
ĝ∗ = ĝ(ζζζ ∗), ĝ′ = ĝ(ζζζ ′), ĝ′∗ = ĝ(ζζζ ′∗), etc.; the relation between (ζζζ

′
, ζζζ
′
∗) and (ζζζ , ζζζ ∗),

which corresponds to (4), is given as

ζζζ
′
= ζζζ +[(ζζζ ∗−ζζζ ) ···ααα]ααα, ζζζ

′
∗ = ζζζ ∗− [(ζζζ ∗−ζζζ ) ···ααα]ααα; (17)
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the non-negative function B̂, which is the dimensionless counterpart of B, is defined as

B̂ = B̂
(
|ααα · (ζζζ ∗−ζζζ )|
|ζζζ ∗−ζζζ |

, |ζζζ ∗−ζζζ |
)
=

1
B0

B
(
|ααα · (ξξξ ∗−ξξξ )|
|ξξξ ∗−ξξξ |

, |ξξξ ∗−ξξξ |
)
, (18a)

B0 =
1

ρ2
0

∫
f0 f0∗B

(
|ααα ··· (ξξξ ∗−ξξξ )|
|ξξξ ∗−ξξξ |

, |ξξξ ∗−ξξξ |
)

dΩ(ααα)dξξξ dξξξ ∗, (18b)

where f0(ξξξ ) is the Maxwellian for the equilibrium state at rest at density ρ0 and tem-
perature T0, i.e., f0(ξξξ ) = ρ0(2πRT0)

−3/2 exp(−|ξξξ |2/2RT0), and f0∗ = f0(ξξξ ∗); ρ0B0/m
indicates the mean collision frequency νc of the gas molecules in the equilibrium state
at rest with density ρ0 and temperature T0; the parameter ε in (15) is defined by

ε = (
√

π/2)Kn = (
√

π/2)(l0/L), (19)

where Kn = l0/L is the Knudsen number, and l0 is the mean free path of the gas
molecules defined by

l0 = (2/
√

π)(2RT0)
1/2/νc = (2/

√
π)(2RT0)

1/2(m/ρ0B0). (20)

For hard-sphere molecules, B0, B̂, and l0 become

B0 = 4
√

πd2
m(RT0)

1/2, B̂ = |ααα · (ζζζ ∗−ζζζ )|/4(2π)1/2, l0 = m/
√

2πd2
mρ0.

(21)

For an intermolecular force that extends to infinity, an appropriate cut off should be
introduced in the integral in (18b) in order that B0 takes a finite value.

For the BGK model, Ĵ( f̂ , f̂ ) in (15) is replaced by the following ĴBGK( f̂ ), which
corresponds to (6):

ĴBGK( f̂ ) = Âc(T̂ )ρ̂ ( f̂e− f̂ ), (22)

where Âc(T̂ ) = Ac(T )/Ac(T0), so that Âc(1) = 1 and Âc = 1 when Ac is a constant; f̂e
is a local Maxwellian

f̂e =
ρ̂

(πT̂ )3/2
exp
(
−|ζ

ζζ − v̂vv|2

T̂

)
, (23)

and ρ̂ , v̂i, and T̂ are defined by (14a)–(14c). In this model, since the collision frequency
of a molecule with velocity ξξξ is Acρ independent of ξξξ [cf. (6)], the mean collision
frequency νc in the equilibrium state at rest at density ρ0 and temperature T0 is νc =
Ac(T0)ρ0. Therefore, it follows from the first equality in (20) that

l0 = (2/
√

π)(2RT0)
1/2/Ac(T0)ρ0. (24)

The dimensionless form of the initial condition (8) is given by

f̂ (0, xxx, ζζζ ) = E(ζ ), (25)
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where

ζ = |ζζζ |= (ζ 2
i )

1/2, E(ζ ) = π
−3/2 exp(−ζ

2), (26)

and the dimensionless form of the boundary condition (9) reads as follows:

f̂ (t̂, xxxw, ζζζ ) = (1−α)R̂ f̂ (t̂, xxxw, ζζζ )+α
ρ̂w

(πT̂w)3/2
exp
(
−|ζ

ζζ − v̂vvw|2

T̂w

)
,

for (ζζζ − v̂vvw) ···nnn > 0, (27a)

ρ̂w =−2
(

π

T̂w

)1/2 ∫
(ζζζ−v̂vvw)···nnn<0

(ζζζ − v̂vvw) ···nnn f̂ (t̂, xxxw, ζζζ )dζζζ , (27b)

where R̂ is the dimensionless version of the reflection operator (10) that acts on any
function ĝ of ζi, i.e.,

R̂ĝ(ζi) = ĝ(ζi−2(ζ j− v̂w j)n jni). (28)

We note that v̂vvw = 0 and T̂w = 1 at t̂ = 0, and xxxw (thus v̂vvw), T̂w, and nnn are assumed
to change smoothly in t̂. Corresponding to (11), the following condition holds on the
boundary: ∫

(ζζζ − v̂vvw) ···nnn f̂ (t̂, xxxw, ζζζ )dζζζ = 0. (29)

We analyze the Boltzmann equation (15) with conditions (25) and (27) when the
Knudsen number Kn is small, that is, when ε � 1. Since our reference time is t0 =
L/(2RT0)

1/2 = 1/ενc, it is much larger than the mean free time 1/νc.

4 Chapman–Enskog Solution and the Compressible Navier–
Stokes Equations

The Chapman–Enskog expansion is a well-known technique to derive the Euler and
Navier–Stokes equations for a compressible fluid from the Boltzmann equation [16, 23,
14, 57]. In this section, we summarize the Chapman–Enskog solution and the resulting
Navier–Stokes equations. The solution is based on the assumption that its length scale
of variation is of O(1) [or O(L) in the dimensional space] and the initial and boundary
conditions are not taken into account. Therefore, it should be distinguished from the
correct solution f for the initial and boundary value problem of the Boltzmann equation
by an appropriate subscript, such as fCE. However, in order to avoid complexity of
notation, we denote it just by f in this and following sections. We basically follow the
notation of Sect. B.4 in [57].
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4.1 Linearized Collision Operator
This subsection is a preparation for the Chapman–Enskog solution. We first introduce
the linearized collision operator L ( ·):

L (ϕ) = 2Ĵ(E, Eϕ)/E

=
∫

E(ζ∗)(ϕ ′∗+ϕ
′−ϕ∗−ϕ) B̂

(
|(ζζζ ∗−ζζζ ) ···ααα|
|ζζζ ∗−ζζζ |

, |ζζζ ∗−ζζζ |
)

dΩ(ααα)dζζζ ∗, (30)

where ζ∗ = |ζζζ ∗| = (ζ 2
∗i)

1/2, E indicates the function defined by (26), ϕ(ζζζ ) is an ar-
bitrary function of ζζζ , and the same convention as in (16) is used, i.e., ϕ∗ = ϕ(ζζζ ∗),
ϕ ′ = ϕ(ζζζ

′
), etc. Then, we define the following extended linearized collision operator

La( ·):

La(ϕ) =
∫

E(ζ∗)(ϕ ′∗+ϕ
′−ϕ∗−ϕ) B̂a

(
|(ζζζ ∗−ζζζ ) ···ααα|
|ζζζ ∗−ζζζ |

, |ζζζ ∗−ζζζ |
)

dΩ(ααα)dζζζ ∗,

(31)

where

B̂a = B̂a

(
|ααα ··· (ζζζ ∗−ζζζ )|
|ζζζ ∗−ζζζ |

, |ζζζ ∗−ζζζ |
)
=

1√
a

B̂
(
|ααα ··· (ζζζ ∗−ζζζ )|
|ζζζ ∗−ζζζ |

,
√

a|ζζζ ∗−ζζζ |
)
, (32)

and a is a positive quantity independent of ζζζ . Obviously, L1(ϕ) = L (ϕ) holds, and
for hard-sphere molecules, La(ϕ) = L (ϕ) for any a.

The linearized collision operators LaBGK( ·) and LBGK( ·) for the BGK model,
which correspond to La( ·) and L ( ·), respectively, take the following forms:

LaBGK(ϕ) =
Âc(a)√

a
LBGK(ϕ), (33a)

LBGK(ϕ) =
∫ [

1+2ζζζ ···ζζζ ∗+
2
3

(
ζ

2− 3
2

)(
ζ

2
∗ −

3
2

)]
ϕ(ζζζ ∗)E(ζ∗)dζζζ ∗−ϕ(ζζζ ),

(33b)

where Âc(1) = 1 [cf. (22)], so that L1BGK(ϕ) = LBGK(ϕ).
In the Chapman–Enskog solution in Sect. 4.2, the following two functions A (ζ , a)

and B(0)(ζ , a) appear: A (ζ , a) is the solution of the integral equation

La[ζiA (ζ , a)] =−ζi

(
ζ

2− 5
2

)
, (34)

with the subsidiary condition∫
∞

0
ζ

4A (ζ , a)E(ζ )dζ = 0, (35)

and the function B(0)(ζ , a) is the solution of the integral equation

La

[(
ζiζ j−

1
3

ζ
2
δi j

)
B(0)(ζ , a)

]
=−2

(
ζiζ j−

1
3

ζ
2
δi j

)
, (36)
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where δi j is the Kronecker delta.
In [57], A (ζ , 1) is denoted by A(ζ ), and B(0)(ζ ,1) by B(ζ ):

A (ζ , 1) = A(ζ ), B(0)(ζ ,1) = B(ζ ). (37)

Thus, for hard-sphere molecules, A (ζ , a) = A(ζ ) and B(0)(ζ , a) = B(ζ ) for any a.
The numerical values of A(ζ ) and B(ζ ) for hard-sphere molecules are tabulated in
Table 3.1 of [57] (see also [40, 35]). For the BGK model, (34) [with (35)] and (36),
with La = LaBGK, give the following solutions:

A (ζ , a) =
√

a
Âc(a)

(
ζ

2− 5
2

)
, B(0)(ζ , a) = 2

√
a

Âc(a)
. (38)

4.2 Chapman–Enskog Solution and Navier–Stokes Equations
The first-order Chapman–Enskog solution can be expressed as

f̂ = f̂ (0)+ f̂ (1)ε +O(ε2). (39)

Here, the leading-order term f̂ (0) is a local Maxwellian distribution

f̂ (0) =
ρ̂

(πT̂ )3/2
exp
(
−|ζ

ζζ − v̂vv|2

T̂

)
=

ρ̂

T̂ 3/2
E(C ), (40)

and the first-order term f̂ (1) takes the following form:

f̂ (1) = f̂ (0)Ψ, (41a)

Ψ =− 1
ρ̂T̂

C jA (C , T̂ )
∂ T̂
∂x j

− 1
2ρ̂T̂ 1/2

(
C jCk−

1
3
C 2

δ jk

)
B(0)(C , T̂ )

(
∂ v̂k

∂x j
+

∂ v̂ j

∂xk

)
, (41b)

where

Ci =
ζi− v̂i

T̂ 1/2
, C = |CCC |= (C 2

j )
1/2, (42)

and A (C , T̂ ) and B(0)(C , T̂ ) are the functions appeared in Sect. 4.1.
The expansion (39) is designed in such a way that the first-order term f̂ (1), as well

as the higher-order terms, satisfies the constraint:∫
(1, ζi, ζ

2)[ε f̂ (1)+O(ε2)]dζζζ = 0, (43)

so that ρ̂ , v̂i, and T̂ contained in f̂ (0) are nothing but the density, the flow velocity, and
the temperature associated with f̂ of the expansion (39) [cf. (14)].
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With (39), the dimensionless stress tensor p̂i j and heat-flow vector q̂i become

p̂i j = p̂δi j− ε Γ1(T̂ )
(

∂ v̂i

∂x j
+

∂ v̂ j

∂xi
− 2

3
∂ v̂k

∂xk
δi j

)
+O(ε2), (44a)

q̂i =−
5
4

ε Γ2(T̂ )
∂ T̂
∂xi

+O(ε2), (44b)

where Γ1(T̂ ) and Γ2(T̂ ) are the functions of T̂ given by

Γ1(T̂ ) =
8

15
√

π
T̂ 1/2

∫
∞

0
C 6B(0)(C , T̂ )e−C 2

dC , (45a)

Γ2(T̂ ) =
16

15
√

π
T̂ 1/2

∫
∞

0
C 6A (C , T̂ )e−C 2

dC , (45b)

and are related to the viscosity µ and the thermal conductivity λ as

µ =
p0L

(2RT0)1/2 ε Γ1(T̂ ) =
√

π

2
p0l0

(2RT0)1/2 Γ1

(
T
T0

)
, (46a)

λ =
5
4

p0(2RT0)
1/2L

T0
ε Γ2(T̂ ) =

5
√

π

8
p0(2RT0)

1/2l0
T0

Γ2

(
T
T0

)
. (46b)

For hard-sphere molecules, the data of the functions A (ζ , a) = A(ζ ) and B(0)(ζ , a)
= B(ζ ) in [57, 35] enable us to compute the integrals in (45) numerically [57, 35].
As for the BGK model, we can compute the integrals analytically with the explicit
form of A (ζ , a) and B(0)(ζ , a) given by (38). As the result, we have the following
expressions of Γ1(T̂ ) and Γ2(T̂ ):

Γ1(T̂ ) = 1.270042427 T̂ 1/2, Γ2(T̂ ) = 1.922284066 T̂ 1/2 (hard sphere), (47a)

Γ1(T̂ ) = Γ2(T̂ ) = T̂/Âc(T̂ ) (BGK). (47b)

Using (21) and (47a) in (46), we have, for hard-sphere molecules,

µ = 0.17913618× mR1/2

d2
m

T 1/2, λ = 0.67783290× mR3/2

d2
m

T 1/2, (48)

which are proportional to T 1/2. It follows from (24), (46), and (47b) that, for the BGK
model,

µ =
R

Ac(T )
T, λ =

5
2

R2

Ac(T )
T, (49)

where Ac(T ) = Ac(T0)Âc(T̂ ) is used. When Ac(T ) does not depend on T , µ and λ

are proportional to T . Although (46) gives an impression that µ and λ depend on the
choice of the reference quantities ρ0 and T0, they do not, as seen from (48) and (49).

If we use (44) in the Maxwell transport equations, which are derived by integrating
(15) times (1, ζi, ζ 2) over the whole space of ζi, and neglect the terms of O(ε2), we
obtain the Navier–Stokes equations for compressible fluids, i.e.,

∂ ρ̂

∂ t̂
+

∂ ρ̂ v̂ j

∂x j
= 0, (50a)
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∂ ρ̂ v̂i

∂ t̂
+

∂ ρ̂ v̂iv̂ j

∂x j
=−1

2
∂ p̂
∂xi

+
ε

2
∂

∂x j

[
Γ1(T̂ )

(
∂ v̂i

∂x j
+

∂ v̂ j

∂xi
− 2

3
∂ v̂k

∂xk
δi j

)]
, (50b)

∂

∂ t̂

[
ρ̂

(
3
2

T̂ + v̂2
j

)]
+

∂

∂x j

[
ρ̂ v̂ j

(
5
2

T̂ + v̂2
k

)]
=

5
4

ε
∂

∂x j

[
Γ2(T̂ )

∂ T̂
∂x j

]
+ ε

∂

∂x j

[
Γ1(T̂ )v̂i

(
∂ v̂i

∂x j
+

∂ v̂ j

∂xi
− 2

3
∂ v̂k

∂xk
δi j

)]
,

(50c)

where p̂ = ρ̂T̂ [(14d)].

5 Derivation of the Slip Boundary Conditions

5.1 Introduction of the Knudsen Layer
In the first-order Chapman–Enskog solution (39), which corresponds to the Navier–
Stokes equations (50), the initial and boundary conditions (25) and (27) are not taken
into account. To be consistent with the fact that the term up to O(ε) is considered in
(39), we need to satisfy the initial and boundary conditions up to the order of ε .

Concerning the initial condition (25), if we assume

ρ̂ = 1, v̂vv = 0, T̂ = 1, at t̂ = 0, (51)

then the Chapman–Enskog solution (39) satisfies (25) up to O(ε), since ∂ v̂i/∂x j = 0
and ∂ T̂/∂xi = 0. Therefore, under assumption (iv) in Sect. 2, (51) gives the correct
initial condition for (50).

Next, we try to satisfy the boundary conditions with the Chapman–Enskog solution
(39). If we recall that the leading-order term f̂ (0) is a local Maxwellian [(40)], it can
be made to satisfy (27) by assuming that

v̂vv = v̂vvw, T̂ = T̂w, at xxx = xxxw. (52)

On the other hand, in order that the first-order term f̂ (1) satisfies (27) at the order of ε ,
we need to impose the additional constraints:

∂ v̂i

∂x j
+

∂ v̂ j

∂xi
= 0,

∂ T̂
∂xi

= 0, at xxx = xxxw. (53)

However, the constraints on the boundary, (52) and (53), are too many as the boundary
conditions for the Navier–Stokes equations (50). Therefore, this approach does not
work. But, the fact that the choice (52) works at the zeroth order in ε suggests that

v̂vv− v̂vvw = O(ε), T̂ − T̂w = O(ε), at xxx = xxxw. (54)

In order to obtain the solution satisfying the boundary condition, we need to in-
troduce the kinetic boundary layer, the so-called Knudsen layer, with thickness of the
order of ε adjacent to the boundary [57]. Let us denote the Chapman–Enskog solution
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(39) by f̂CE, the correction term inside the Knudsen layer by f̂K, and the total solution
that satisfies the boundary condition by f̂tot. Then, we write

f̂tot = f̂CE + f̂K. (55)

Correspondingly, we let the macroscopic quantities be

ĥtot = ĥCE + ĥK, (56)

where ĥ indicates any of the dimensionless macroscopic quantities, i.e., ρ̂ , v̂vv, T̂ , etc.,
appeared in Sect. 3.2, and ĥCE indicates those macroscopic quantities associated with
the Chapman–Enskog solution. Note that ρ̂ , v̂vv, T̂ , etc. appeared in Sect. 4 belong to
ĥCE although the subscript “CE” was not used there.

We assume the following properties for the correction term f̂K:

(a) f̂K is appreciable only in the Knudsen layer and vanishes rapidly away from the
boundary.

(b) f̂K has a length scale of variation of the order of ε (i.e., of the order of the mean
free path l0 in the dimensional physical space) in the direction normal to the
boundary, that is, εn j∂ f̂K/∂x j = O( f̂K).

(c) f̂K has a length scale of variation of the order of 1 (i.e., of the order of the
reference length L in the dimensional physical space) in the direction along the
boundary.

(d) f̂K has a time scale of variation of the order of 1 (i.e., of the order of t0 =
L/(2RT0)

1/2 in the dimensional time), i.e., ∂ f̂K/∂ t̂ = O( f̂K).

These assumptions are validated from the obtained results.
If we substitute (55) and (56) into (14) (with f̂ = f̂tot and ĥ = ĥtot) and use the fact

that f̂CE and ĥCE also satisfy the same (14) (cf. Sect. 4.2), we obtain the expressions
of the corrections ĥK inside the Knudsen layer in terms of f̂K and ĥCE. Further, if we
substitute (55) into (15) and take into account the fact that f̂CE is the solution of the
same (15), we obtain the equation for the Knudsen-layer correction f̂K. We also obtain
the initial and boundary conditions for f̂K by inserting (55) in (25) and (27). We will
perform these procedures in a concrete way taking into account the properties of f̂CE
and f̂K in the following subsections.

5.2 Knudsen-Layer Problem
5.2.1 Preliminaries

Since the boundary condition (27) can be satisfied by the Chapman–Enskog solution
(39) at the zeroth order by the choice (52), we assume that f̂K starts at the order of ε

and let

f̂K = f̂ (1)K ε +R f ε
2, (57)
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where R f ε2 indicates the remainder, and R f is of O(1) and has the properties (a)–(d).
Correspondingly, we put

ĥK = ĥ(1)K ε +Rhε
2, (58)

where Rhε2 is the remainder corresponding to R f ε2. In accordance with (54), we also
put

v̂vv− v̂vvw = v̌vvε, T̂ − T̂w = Ť ε, at xxx = xxxw, (59)

where v̌vv and Ť are the quantities of O(1).
Substituting (55) and (56) with (57) and (58) into (14) and picking up the terms of

O(ε), we have the following expressions of ĥ(1)K :

ρ̂
(1)
K =

∫
f̂ (1)K dζζζ , (60a)

v̂(1)Ki =
1
ρ̂

∫
(ζi− v̂i) f̂ (1)K dζζζ , (60b)

T̂ (1)
K =

2
3ρ̂

∫ (
|ζζζ − v̂vv|2− 3

2
T̂
)

f̂ (1)K dζζζ , (60c)

p̂(1)K = ρ̂T̂ (1)
K + ρ̂

(1)
K T̂ , (60d)

p̂(1)Ki j = 2
∫
(ζi− v̂i)(ζ j− v̂ j) f̂ (1)K dζζζ , (60e)

q̂(1)Ki =
∫
(ζi− v̂i)

(
|ζζζ − v̂vv|2− 5

2
T̂
)

f̂ (1)K dζζζ . (60f)

Note again that ρ̂ , v̂vv, and T̂ here are the macroscopic quantities associated with the
Chapman–Enskog solution.

If we substitute (55) with (57) into (15) and note that f̂CE is the solution of (15), we
obtain the following equation for f̂ (1)K :

ε
∂ f̂ (1)K

∂ t̂
+ εζi

∂ f̂ (1)K
∂xi

= 2Ĵ( f̂ (0), f̂ (1)K )+O(εR f ). (61)

We will elaborate on this equation below.

5.2.2 Knudsen-Layer Equation

We first express a point xxxw on the boundary as a function of coordinates χ1 and χ2 fixed
on the surface of the boundary and of time t̂, i.e.,

xxxw = xxxw(t̂, χ1, χ2). (62)

[See Fig. 1(a).] When χ1 and χ2 are fixed, the function xxxw(t̂, χ1, χ2) of t̂ gives the tra-
jectory of a fixed point on the boundary, and when t̂ is fixed, the function xxxw(t̂, χ1, χ2)
of χ1 and χ2 gives the parameter representation of the boundary surface at time t̂. The
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Figure 1: Coordinate systems. (a) Coordinate system on the boundary, (b) coordinate
system for the Knudsen layer.

velocity of the boundary v̂vvw and the unit normal vector to the boundary nnn, which are
also the functions of t̂, χ1, and χ2, are expressed as

v̂vvw(t̂, χ1, χ2) =
∂xxxw

∂ t̂
, (63a)

nnn(t̂, χ1, χ2) =±
(

∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2

)∣∣∣∣∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2

∣∣∣∣−1

, (63b)

where ××× indicates a vector product, and + sign or − sign is chosen in such a way that
nnn points into gas region.

In order to analyze the Knudsen layer, we need to introduce a new coordinate sys-
tem that is local near the boundary and appropriate to describe the rapid change of the
physical quantities in the direction normal to the boundary. Let us introduce the new
variables t̃, η , and ζζζ w by the following relations [see Fig. 1(b)]:

t̂ = t̃, (64a)
xxx = ε η nnn(t̃, χ1, χ2)+ xxxw(t̃, χ1, χ2), (64b)
ζζζ = ζζζ w + v̂vvw(t̃, χ1, χ2). (64c)

Here, η is a stretched normal coordinate, and ζζζ w is the molecular velocity relative to
the velocity of the boundary. In accordance with the properties (a)–(d) in Sect. 5.1, we
assume that f̂K is a function of (t̃, η , χ1, χ2, ζζζ w) and vanishes rapidly as η → ∞:

f̂K = f̂K(t̃, η , χ1, χ2, ζζζ w), (65a)

f̂K→ 0, as η → ∞. (65b)

Therefore, (65) also holds for f̂ (1)K and R f in (57).
We now consider (61) inside the Knudsen layer, i.e., η = O(1) or (xxx− xxxw) ··· nnn =

O(ε). The xxx-dependence of f̂ (0) is through ρ̂ , v̂vv, and T̂ , the length scale of which is
O(1). Therefore, inside the Knudsen layer, they can be Taylor expanded around xxx= xxxw,
that is,

ρ̂ = ρ̂B +O(εη), v̂vv = v̂vvB +O(εη), T̂ = T̂B +O(εη), (66)
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where the subscript B indicates the value on the boundary xxx = xxxw or η = 0. Because
v̂vvB = v̂vvw +O(ε) and T̂B = T̂w +O(ε) [(59)], we can write

ρ̂ = ρ̂B +O(εη), v̂vv = v̂vvw +O(ε(η +1)), T̂ = T̂w +O(ε(η +1)). (67)

With these expressions, f̂ (0) inside the Knudsen layer is expanded as

f̂ (0) = f̂w[1+O(ε(η +1))], (68)

where

f̂w =
ρ̂B

(πT̂w)3/2
exp
(
−|ζ

ζζ − v̂vvw|2

T̂w

)
. (69)

Therefore, the term 2Ĵ( f̂ (0), f̂ (1)K ) in (61) can be written as follows:

2Ĵ( f̂ (0), f̂ (1)K ) = 2Ĵ( f̂w, f̂ (1)K )+O(ε(η +1) f̂ (1)K ). (70)

Note that η f̂ (1)K → 0 as η → ∞ because of the rapid decay of f̂ (1)K . Next we need to
express the left-hand side of (61) in terms of the new variables (t̃, η , χ1, χ2, ζζζ w). From
(64), we have

∂

∂ t̂
=

∂ t̃
∂ t̂

∂

∂ t̃
+

∂η

∂ t̂
∂

∂η
+

∂ χ1

∂ t̂
∂

∂ χ1
+

∂ χ2

∂ t̂
∂

∂ χ2
+

∂ζwi

∂ t̂
∂

∂ζwi
,

∂

∂xi
=

∂ t̃
∂xi

∂

∂ t̃
+

∂η

∂xi

∂

∂η
+

∂ χ1

∂xi

∂

∂ χ1
+

∂ χ2

∂xi

∂

∂ χ2
+

∂ζw j

∂xi

∂

∂ζw j
.

(71)

The formula (64) gives the following expressions for the coefficients in (71) [see Ap-
pendix A]:

∂ t̃
∂ t̂

= 1,
∂η

∂ t̂
=−1

ε
v̂wini +O(1),

∂ χ1,2

∂ t̂
= O(1),

∂ζwi

∂ t̂
= O(1),

∂ t̃
∂xi

= 0,
∂η

∂xi
=

1
ε

ni +O(1),
∂ χ1,2

∂xi
= O(1),

∂ζw j

∂xi
= O(1).

(72)

If we substitute (70) and use (71) with (72) in (61), we obtain the following equation:

ζwini
∂ f̂ (1)K
∂η

= 2Ĵ( f̂w, f̂ (1)K )+O(εR), (73)

where R is a quantity of O(1) that vanishes rapidly as η → ∞ as well as |ζζζ w| → ∞.
Here, we should make the following comment. In the process of deriving (73), we

have put the derivative term ∂ f̂ (1)K /∂ζwi in O(εR) term, assuming that it is of O(1). We
will eventually neglect the O(εR) term in (73) and obtain f̂ (1)K in the following sections.
However, f̂ (1)K thus obtained has a singularity at ζwini = 0 on the boundary η = 0,
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which originates from the discontinuity between the velocity distribution function for
incident molecules and that for reflected molecules on the boundary, and the derivative
∂ f̂ (1)K /∂ζwi diverges there [17, 25, 26]. This means that we cannot neglect this term
in O(εR) in (73) at the point ζwini = 0, η = 0. However, it happens only locally at
this point, and the rate of divergence is weak (≈ ln |ζwini| for ζwini → 0−). In fact,
if we take any moment of (73) with respect to ζζζ w, the corresponding moment of the
O(εR) term remains of O(ε). Therefore, this singularity is not likely to affect the
slip boundary conditions derived through the analysis of f̂ (1)K . The rigorous proof of
this statement, which is a very hard mathematical problem, has been addressed in a
recent paper [29] for a transport equation much simpler than the linearized Boltzmann
equation.

Now, let us introduce the following CCC w, its normal component Cwn, and its magni-
tude Cw:

CCC w =
ζζζ w

T̂ 1/2
w

=
ζζζ − v̂vvw

T̂ 1/2
w

, Cwn =CCC w ···nnn, Cw = (C 2
w j)

1/2 = |CCC w|. (74)

Then, f̂w can be expressed, using the function E defined in (26), as

f̂w =
ρ̂B

T̂ 3/2
w

E(Cw). (75)

Note that ρ̂B and T̂w are functions of (t̃, χ1, χ2). If we let

f̂ (1)K (t̃, η , χ1, χ2, T̂ 1/2
w CCC w) = f̂wΦ(t̃, η , χ1, χ2,CCC w), (76)

change the velocity variable from ζζζ w to CCC w, and recall (31), then 2Ĵ( f̂w, f̂ (1)K ) in (73)
can be transformed as

2Ĵ( f̂w, f̂ (1)K ) = 2Ĵ( f̂w, f̂wΦ) =
ρ̂2

B

T̂w
E(Cw)LT̂w

(Φ)(t̃, η , χ1, χ2,CCC w), (77)

where the last parentheses indicate the independent variables of LT̂w
(Φ) explicitly. In

consequence, we have the following expression of (73):

Cwn
∂Φ

∂η
= ρ̂BLT̂w

(Φ)+O(εR/E(Cw)). (78)

In order to get rid of ρ̂B in (78), we further introduce the new normal coordinate y
in place of η ,

y = ρ̂Bη , (79)

and let

Φ(t̃, ρ̂
−1
B y, χ1, χ2,CCC w) = φ(t̃, y, χ1, χ2,CCC w). (80)
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Then, (78) reduces to

Cwn
∂φ

∂y
= LT̂w

(φ)+O(εR/E(Cw)). (81)

If we neglect the terms of O(εR/E(Cw)), we obtain the equation for φ , i.e., that for
f̂ (1)K .

If we use (75), (76), and (80) and the expansion of the Chapman–Enskog macro-
scopic quantities near the boundary (67) in (60), we can obtain the following expression
of the Knudsen-layer corrections of the macroscopic quantities:

ρ̂
(1)
K

ρ̂B
=
∫

φE(Cw)dCCC w, (82a)

v̂(1)Ki

T̂ 1/2
w

=
∫

CwiφE(Cw)dCCC w +O(ε(y+1)), (82b)

T̂ (1)
K

T̂w
=

2
3

∫ (
C 2

w−
3
2

)
φE(Cw)dCCC w +O(ε(y+1)), (82c)

p̂(1)K = ρ̂BT̂ (1)
K + ρ̂

(1)
K T̂w +O(ε(y+1)), (82d)

p̂(1)Ki j

ρ̂BT̂w
= 2

∫
CwiCw jφE(Cw)dCCC w +O(ε(y+1)), (82e)

q̂(1)Ki

ρ̂BT̂ 3/2
w

=
∫

Cwi

(
C 2

w−
5
2

)
φE(Cw)dCCC w +O(ε(y+1)). (82f)

For the BGK model, we take the same procedure as that led to (61). In this process,
we note that f̂e with f̂ = f̂tot, which we denote by ( f̂e)tot, is the f̂e with ρ̂ = ρ̂tot, v̂vv= v̂vvtot,
and T̂ = T̂tot. Therefore, by using (56) and (58), we can expand ( f̂e)tot as follows:

( f̂e)tot = ( f̂e)CE

{
1+

[
ρ̂
(1)
K
ρ̂

+2
(ζζζ − v̂vv) ··· v̂vv(1)K

T̂

+
1
T̂

(
|ζζζ − v̂vv|2

T̂
− 3

2

)
T̂ (1)

K

]
ε +O(ε2Rh)

}
, (83)

where ( f̂e)CE denotes f̂e with f̂ = f̂CE and is nothing but f̂ (0). Using this relation, we
obtain (61) with 2Ĵ( f̂ (0), f̂ (1)K ) replaced by

Âc(T̂ )ρ̂

{
f̂ (0)
[

ρ̂
(1)
K
ρ̂

+2
(ζζζ − v̂vv) ··· v̂vv(1)K

T̂
+

1
T̂

(
|ζζζ − v̂vv|2

T̂
− 3

2

)
T̂ (1)

K

]
− f̂ (1)K

}
. (84)

Then, we take the same procedure as that led to (81). That is, we use the expansions
(67) and (68) and (75), (76), and (80) as well as the necessary change of variables. As
the result, we obtain (81) with LT̂w

(φ) replaced by LT̂wBGK(φ), where LaBGK( ·) is
defined in (33). However, because Âc(a)/

√
a is factored out in the form of LaBGK( ·)
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[cf. (33a)], we can get rid of T̂w from the equation by defining y and φ as follows, in
place of (79) and (80):

y = [ρ̂BÂc(T̂w)/T̂ 1/2
w ]η ,

Φ

(
t̃, [T̂ 1/2

w /ρ̂BÂc(T̂w)]y, χ1, χ2,CCC w

)
= φ(t̃, y, χ1, χ2,CCC w). (85)

In consequence, we obtain the equation corresponding to (81), i.e.,

Cwn
∂φ

∂y
= LBGK(φ)+O(εR/E(Cw)), (86)

where LBGK( ·) is defined in (33).

5.2.3 Knudsen-Layer Boundary Condition

Now we consider the boundary condition. The total solution f̂tot [(55)] should satisfy
the boundary condition (27). If we insert (55) with f̂CE given by (39) and with f̂K given
by (57) in (27), we obtain, at η = 0 (or xxx = xxxw),

ε f̂ (1)K = (1−α)εR̂ f̂ (1)K − f̂ (0)− ε f̂ (1)

+(1−α)R̂( f̂ (0)+ ε f̂ (1))+α
ρ̂w

ρ̂B
f̂w +O(ε2), for (ζζζ − v̂vvw) ···nnn > 0, (87a)

ρ̂w =−2
(

π

T̂w

)1/2 ∫
(ζζζ−v̂vvw)···nnn<0

(ζζζ − v̂vvw) ···nnn( f̂ (0)+ ε f̂ (1)+ ε f̂ (1)K )dζζζ +O(ε2). (87b)

As shown in Appendix B, f̂ (0), f̂ (1), and ρ̂w in (87) can be expressed in the following
form:

f̂ (0) = f̂w

{
1+ ε

[
2Cw j

v̌ j

T̂ 1/2
w

+

(
C 2

w−
3
2

)
Ť
T̂w

]
+O(ε2)

}
, (88a)

f̂ (1) = f̂w[Ψw +O(ε)], (88b)

ρ̂w

ρ̂B
=1+ ε

{
−
√

π
v̌i

T̂ 1/2
w

ni +
1
2

Ť
T̂w

− 1
6
IB

1

ρ̂BT̂ 1/2
w

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

][
nin j−

1
2
(δi j−nin j)

]

− 2
ρ̂B

(
π

T̂w

)1/2 ∫
(ζζζ−v̂vvw)···nnn<0

(ζζζ − v̂vvw) ···nnn f̂ (1)K dζζζ

}
+O(ε2), (88c)

where

Ψw =− 1
ρ̂BT̂w

CwiA (Cw, T̂w)

(
∂ T̂
∂xi

)
B

− 1

2ρ̂BT̂ 1/2
w

(
CwiCw j−

1
3
C 2

wδi j

)
B(0)(Cw, T̂w)

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
,

(89a)
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IB =
∫

∞

0
C 5

wB(0)(Cw, T̂w)exp(−C 2
w)dCw. (89b)

For the new velocity variable CCC w, the reflection operator (28) should be replaced with
the following R̃:

R̃ĝ(Cwi) = ĝ(Cwi−2Cw jn jni), (90)

where ĝ(Cwi) is a function of Cwi. Note that R̃ f̂w(CCC w) = f̂w(CCC w). Then, we can write
(87) in the following intermediate form:

f̂ (1)K =(1−α)R̃ f̂ (1)K + f̂w[F̂ +O(ε)], at η = 0, for (ζζζ − v̂vvw) ···nnn > 0, (91a)

F̂ =−2[Cw j− (1−α)R̃Cw j]
v̌ j

T̂ 1/2
w

−α
√

π
v̌ j

T̂ 1/2
w

n j−α(C 2
w−2)

Ť
T̂w

−Ψw +(1−α)R̃Ψw

−α

{
1
6
IB

1

ρ̂BT̂ 1/2
w

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

][
nin j−

1
2
(δi j−nin j)

]

+
2

ρ̂B

(
π

T̂w

)1/2 ∫
(ζζζ−v̂vvw)···nnn<0

(ζζζ − v̂vvw) ···nnn f̂ (1)K dζζζ

}
. (91b)

We can simplify (91) a little more, as shown below.
If we integrate (73) over the whole space of ζζζ w noting that the both sides are the

functions of (t̃, η , χ1, χ2, ζζζ w), we have

∂

∂η

∫
ζwini f̂ (1)K dζζζ w = O

(
ε

∫
Rdζζζ w

)
, (92)

because of the property of Ĵ(·, ·). Since f̂ (1)K and R vanish rapidly as η → ∞, the inte-
gration of the above equation with respect to η from 0 to ∞ leads to

∫
ζwini f̂ (1)K dζζζ w =

O(ε) at η = 0. This implies that∫
ζwini f̂ (1)K dζζζ w = O(ε), for any η . (93)

On the other hand, the condition of no net mass flow on the boundary, (29), should be
satisfied by f̂tot of (55). Substituting (55) into (29) and taking the properties of f̂CE
into account, we have ρ̂B(v̂vvB− v̂vvw) ··· nnn+

∫
(ζζζ − v̂vvw) ··· nnn f̂K(η = 0)dζζζ = 0. Making use

of (57), (59), (64c), and (93), we can show that

ρ̂Bε v̌vv ···nnn =−
∫

ζζζ w ···nnn[ε f̂ (1)K +O(ε2R f )](η = 0)dζζζ w = O(ε2), (94)

that is,

v̌vv ···nnn = O(ε). (95)
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Next, we consider [(∂ v̂i/∂x j)B+(∂ v̂ j/∂xi)B](δi j−nin j) and [(∂ v̂i/∂x j)B+(∂ v̂ j/∂xi)B](δik−
nink)(δ jl − n jnl). Since the derivatives in these expressions are all in the tangen-
tial directions to the boundary [note that ai(δi j− nin j) = a j− (aini)n j is a tangential
vector], we can replace v̂vv inside the derivatives with v̂vvB, which is equal to v̂vvw + ε v̌vv
[(59)]. On the other hand, v̂vvw is the velocity of rigid-body motion, so that the rela-
tion ∂ v̂wi/∂x j +∂ v̂w j/∂xi = 0 holds for any i and j. Therefore, we have the following
relations:[(

∂ v̂i

∂x j

)
B
+

(
∂ v̂ j

∂xi

)
B

]
(δi j−nin j) = ε

(
∂ v̌i

∂x j
+

∂ v̌ j

∂xi

)
(δi j−nin j) = O(ε), (96a)[(

∂ v̂i

∂x j

)
B
+

(
∂ v̂ j

∂xi

)
B

]
(δik−nink)(δ jl−n jnl)

= ε

(
∂ v̌i

∂x j
+

∂ v̌ j

∂xi

)
(δik−nink)(δ jl−n jnl) = O(ε). (96b)

In consequence of (96), the following relation holds:(
CwiCw j−

1
3
C 2

wδi j

)[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
= 2

(
C 2

wn−
1
3
C 2

w

)(
∂ v̂i

∂x j

)
B

nin j

+2CwnCwlni(δ jl−n jnl)

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
+O(ε). (97)

Now we use (76) and (80) in (91) to derive the boundary condition for φ . More
specifically, we change the variable of integration from ζζζ to CCC w, using (74) and (75),
in the integral in (91b) and take into account (95) and (97) and the relations Cwi =

Cwnni +Cw j(δi j−nin j) and R̃Cwi =−Cwnni +Cw j(δi j−nin j). Then, (91) reduces to
the following form:

φ = (1−α)R̃φ −α(C 2
w−2)

Ť
T̂w
−2αCwi(δi j−nin j)

v̌ j

T̂ 1/2
w

−2α
√

π

∫
Cwn<0

CwnφE(Cw)dCCC w +(2−α)
1

ρ̂BT̂w
CwnA (Cw, T̂w)

(
∂ T̂
∂xi

)
B

ni

+α

[(
C 2

wn−
1
3
C 2

w

)
B(0)(Cw, T̂w)−

1
3
IB

]
1

ρ̂BT̂ 1/2
w

(
∂ v̂i

∂x j

)
B

nin j

+(2−α)
1

ρ̂BT̂ 1/2
w

CwnCwlni(δ jl−n jnl)B
(0)(Cw, T̂w)

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
+α

1
ρ̂BT̂w

Cwi(δi j−nin j)A (Cw, T̂w)

(
∂ T̂
∂x j

)
B
+O(ε), (y = 0, Cwn > 0).

(98)
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5.2.4 Summary and Remarks

Now we omit the terms of O(ε) in (81) and (98) and take into account (65b). Then, we
obtain the following boundary-value problem in the half space (y > 0) for φ . In order
to avoid cumbersome notations and to match the variables with those in the definition
of the linearized collision operators in (30), (31), and (33), we just change the name of
the variable from CCC w to ζζζ and denote φ as a function of (t̃, y, χ1, χ2, ζζζ ), i.e.,

CCC w→ ζζζ , φ(t̃, y, χ1, χ2,CCC w)→ φ(t̃, y, χ1, χ2, ζζζ ). (99)

Then, the problem for φ becomes as follows:

ζn
∂φ

∂y
= LT̂w

(φ), (y > 0), (100a)

φ = (1−α)R̃φ −α(ζ 2−2)
Ť
T̂w
−2αζi(δi j−nin j)

v̌ j

T̂ 1/2
w

−2α
√

π

∫
ζn<0

ζnφE(ζ )dζζζ +(2−α)
1

ρ̂BT̂w
ζnA (ζ , T̂w)

(
∂ T̂
∂xi

)
B

ni

+α

[(
ζ

2
n −

1
3

ζ
2
)

B(0)(ζ , T̂w)−
1
3
IB

]
1

ρ̂BT̂ 1/2
w

(
∂ v̂i

∂x j

)
B

nin j

+(2−α)
1

ρ̂BT̂ 1/2
w

ζnζlni(δ jl−n jnl)B
(0)(ζ , T̂w)

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
+α

1
ρ̂BT̂w

ζi(δi j−nin j)A (ζ , T̂w)

(
∂ T̂
∂x j

)
B
, (y = 0, ζn > 0), (100b)

φ → 0, (y→ ∞). (100c)

For the BGK model, (100a) is replaced by [cf. (86)]

ζn
∂φ

∂y
= LBGK(φ), (y > 0), (101)

and (79) and (80) are replaced by (85).
The Knudsen-layer problem, (100), is equivalent to the classical half-space problem

of the linearized Boltzmann equation for which the mathematical structure (including
the existence and uniqueness of the solution) was conjectured in [24] and relevant
theorems have been proved in [6, 13, 22]. In [56, 57], it is explained in detail how to
apply the theorem in [6] to the problem (100). According to [56, 57], the problem has
a unique solution only when Ť and v̌vv are related to ∂ T̂/∂x j and ∂ v̂i/∂x j appropriately.
This relation gives the desired boundary conditions for the compressible Navier–Stokes
equations (50), as we will see below.

So far no mention has been made of the initial condition for the Knudsen layer.
As mentioned in Sect. 5.1, the Chapman–Enskog solution can be made to satisfy the
kinetic initial condition (25) with the choice (51). From the form of (55) and (57), it
follows that f̂ (1)K = 0 or φ = 0 should hold at t̃ = 0. However, since (100a) does not
contain the time-derivative term, the initial condition cannot be imposed on φ . In other
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words, the time variable t̃ is just a parameter in the system (100). At t̃ = 0 (i.e., t̂ = 0),
because of the uniform initial state (51), Ť and v̌i as well as the terms with subscript
B in (100b) vanish. Therefore, the system (100) gives the trivial solution φ = 0. In
this way, one can see that the requirement imposed on φ at t̃ = 0 is fulfilled under
assumption (iv) in Sect. 2.

If the initial state does not satisfy assumption (iv), we have to change the initial
condition (8) or (25), that is,

f (0, XXX , ξξξ ) = fini(XXX , ξξξ ), f̂ (0, xxx, ζζζ ) = f̂ini(xxx, ζζζ ), (102)

where fini is an arbitrary function of XXX and ξξξ , and f̂ini is its dimensionless version.
In this case, the Chapman–Enskog solution, in general, cannot be made to satisfy this
condition, and the solution of the dimensionless Boltzmann equation (15) undergoes a
rapid change described by the fast time variable, say t ′ = t̂/ε = νct, in the time interval
0 < t ′ < O(1) (the so-called initial layer). Moreover, in the vicinity of the boundary,
the initial layer interacts with the Knudsen layer. This interaction is an open problem,
which is beyond the scope of the present paper. However, with the density ρ̂ini, flow
velocity v̂vvini, and temperature T̂ini calculated from f̂ini with the help of (14a)–(14c), we
can set the initial condition

ρ̂ = ρ̂ini(xxx), v̂vv = v̂vvini(xxx), T̂ = T̂ini(xxx), at t̂ = 0, (103)

for the compressible Navier–Stokes equations (50) in place of (51). Then, the system
composed of (50), the initial condition (103), and the slip boundary conditions (118)
derived later seems to be formally well posed. Of course, this system cannot describe
the initial rapid change contained in the solution of the original Boltzmann system,
and this initial discrepancy may propagate at later times. However, in the problems in
which the flow field is controlled by the slow motion of the boundary or slow variation
of the boundary temperature in the time variable t̂ that takes place continuously after
t̂ = 0, the initial discrepancy may not propagate at later time. Therefore, the solution
of the system consisting of (50), (103), and (118) should give the correct approximate
solution [with the error of O(ε2)] of the original Boltzmann system except in the initial
stage and except in the Knudsen layer.

5.3 Slip Boundary Conditions
5.3.1 Decomposition of the Knudsen-Layer Problem

If we let the four terms containing the boundary values of the derivatives (∂ T̂/∂xi)B
and (∂ v̂i/∂x j)B in (100b) be zero, then the problem (100) has a trivial solution φ = 0,
Ť = 0, and v̌i = 0, which is unique according to [6]. In this sense, it is a homogeneous
problem. When the boundary condition at y = 0 has inhomogeneous terms as in the
case of (100b), the solution φ as well as Ť and v̌i is determined depending on the
inhomogeneous terms. Since the problem is linear, we can decompose the problem
(100) in accordance with the form of the inhomogeneous terms.

Let us denote by ttt and sss two unit vectors on the plane tangent to the boundary,
which are orthogonal to each other and fixed to the boundary, i.e., nnn ··· ttt = 0, nnn ··· sss = 0,
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and ttt ··· sss = 0. Then, δi j−nin j = tit j + sis j holds. From the form of the inhomogeneous
terms in (100b), we seek the solution in the following form:

φ(t̃, y, χ1, χ2, ζζζ ) =
1

ρ̂BT̂ 1/2
w

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
ζlni(δ jl−n jnl)φ

I
v (y, ζn, ζ )

+
1

ρ̂BT̂w

(
∂ T̂
∂x j

)
B

ζi(δi j−nin j)φ
I
T (y, ζn, ζ )

+
1

ρ̂BT̂ 1/2
w

(
∂ v̂i

∂x j

)
B

nin j φ
II
v (y, ζn, ζ )

+
1

ρ̂BT̂w

(
∂ T̂
∂xi

)
B

niφ
II
T (y, ζn, ζ ), (104)

and

v̌i

T̂ 1/2
w

ti = cI
v

1

ρ̂BT̂ 1/2
w

[(
∂ v̂i

∂x j

)
B
+

(
∂ v̂ j

∂xi

)
B

]
nit j + cI

T
1

ρ̂BT̂w

(
∂ T̂
∂xi

)
B

ti, (105a)

Ť
T̂w

= cII
v

1

ρ̂BT̂ 1/2
w

(
∂ v̂i

∂x j

)
B

nin j + cII
T

1
ρ̂BT̂w

(
∂ T̂
∂xi

)
B

ni, (105b)

where cI
v, cI

T , cII
v , and cII

T are undetermined quantities, which are determined together
with the solutions φ I

v , φ I
T , φ II

v , and φ II
T . Since the direction of ttt is arbitrary, we do not

need the expression for sss corresponding to (105a). As we will see below, cI
v, cI

T , cII
v ,

and cII
T as well as φ I

v , φ I
T , φ II

v , and φ II
T , in general, depend on T̂w. The assumption that

φ I
v , φ I

T , φ II
v , and φ II

T are all functions of y, ζn, and ζ only will turn out to be consistent.
The substitution of (104) and (105) into (100) leads to the four problems for φ I

v , φ I
T ,

φ II
v , and φ II

T . That is,

• Problem for φ I
v :

ζn
∂φ I

v

∂y
= L S

T̂w
(φ I

v ), (y > 0), (106a)

φ
I
v = (1−α)R̃φ

I
v −2αcI

v +(2−α)ζn B(0)(ζ , T̂w), (y = 0, ζn > 0),
(106b)

φ
I
v → 0, (y→ ∞). (106c)

• Problem for φ I
T :

ζn
∂φ I

T
∂y

= L S
T̂w
(φ I

T ), (y > 0), (107a)

φ
I
T = (1−α)R̃φ

I
T −2αcI

T +α A (ζ , T̂w), (y = 0, ζn > 0), (107b)

φ
I
T → 0, (y→ ∞). (107c)
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• Problem for φ II
v :

ζn
∂φ II

v

∂y
= LT̂w

(φ II
v ), (y > 0), (108a)

φ
II
v = (1−α)R̃φ

II
v −2α

√
π

∫
ζn<0

ζnφ
II
v E(ζ )dζζζ −α(ζ 2−2)cII

v

+α

[(
ζ

2
n −

1
3

ζ
2
)

B(0)(ζ , T̂w)−
1
3
IB

]
, (y = 0, ζn > 0),

(108b)

φ
II
v → 0, (y→ ∞). (108c)

• Problem for φ II
T :

ζn
∂φ II

T
∂y

= LT̂w
(φ II

T ), (y > 0), (109a)

φ
II
T = (1−α)R̃φ

II
T −2α

√
π

∫
ζn<0

ζnφ
II
T E(ζ )dζζζ −α(ζ 2−2)cII

T

+(2−α)ζnA (ζ , T̂w), (y = 0, ζn > 0), (109b)

φ
II
T → 0, (y→ ∞). (109c)

In (106a) and (107a), L S
T̂w
( ·) is a linear operator defined as follows: It is well known

[57] that for any function ϕ(ζn, ζ ) of ζn and ζ , the relation LT̂w
[ζ jt jϕ(ζn, ζ )] = ζ jt j×

(a function of ζn and ζ ) holds; L S
T̂w
( ·) is defined by this resulting function of ζn and

ζ , namely,

LT̂w
[ζ jt jϕ(ζn, ζ )] = ζ jt jL

S
T̂w
[ϕ(ζn, ζ )](ζn, ζ ), (110)

where the last parentheses show the independent variables of L S
T̂w
(ϕ).

For the BGK model, the right-hand side of (106a) and that of (107a) are replaced
with L S

BGK(φ
I
v ) and L S

BGK(φ
I
T ), respectively, and the right-hand side of (108a) and that

of (109a) are replaced with LBGK(φ
II
v ) and LBGK(φ

II
T ), respectively. Here, L S

BGK( ·)
is defined in the same way as (110), that is, it is given by

L S
BGK[ϕ(ζn, ζ )] =

∫
(ζ 2
∗ −ζ

2
∗n)ϕ(ζ∗n, ζ∗)E(ζ∗)dζζζ ∗−ϕ(ζn, ζ ). (111)

5.3.2 Solutions to Decomposed Half-Space Problems

Since LT̂w
, L S

T̂w
, A , and B(0) generally depend on T̂w, the solutions φ I

v , φ I
T , φ II

v , and

φ II
T as well as the undetermined quantities cI

v, cI
T , cII

v , and cII
T , in general, depend on T̂w.

As we have remarked in Sects. 4.1 and 4.2, for hard-sphere molecules, LT̂w
, A , and

B(0) are independent of T̂w, i.e.,

LT̂w
( ·) = L ( ·), A (ζ , T̂w) = A(ζ ), B(0)(ζ , T̂w) = B(ζ ), (112)
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hold, so that L S
T̂w
( ·) is also independent of T̂w and may be denoted by L S( ·). There-

fore, the solutions φ I
v , φ I

T , φ II
v , and φ II

T as well as the undetermined quantities cI
v, cI

T , cII
v ,

and cII
T are independent of T̂w. On the other hand, for the BGK model, though LBGK

and L S
BGK are independent of T̂w, A and B(0) depend on it. More specifically, from

(38) and (89b), we have

A (ζ , T̂w) =
T̂ 1/2

w

Âc(T̂w)

(
ζ

2− 5
2

)
, B(0)(ζ , T̂w) =

2T̂ 1/2
w

Âc(T̂w)
, IB =

2T̂ 1/2
w

Âc(T̂w)
.

(113)

In the following, we discuss each of these problems, putting the problem for φ II
v at

the end.

• Problem for φ I
v

If T̂w = 1, the problem for φ I
v , (106), is the same as the classical shear-slip

problem (the so-called Kramers problem; see, e.g., [12, 50, 36, 32]). Let us
first restrict ourselves to the case of diffuse reflection (α = 1). For hard-sphere
molecules, the latter problem was solved numerically in [36]. Since the prob-
lem (106) does not depend on T̂w for hard-sphere molecules, its solution is im-
mediately given by the result in [36], that is, (y, ζini, ζiti, ζisi, φ I

v , cI
v) (here) =

[x1, ζ1, ζ2, ζ3, (ζ
2
2 + ζ 2

3 )
−1/2ΦA,βA] (in [36]) and cI

v (here) = −k0 (in [57]; see
Sect. 3.1.5 in [57]). It should be noted that a more accurate value of cI

v has
been obtained in a recent paper [25]: cI

v (here) = b(1)1 (in [25]; see also the
supplementary note on the Kyoto University Research Information Repository,
http://hdl.handle.net/2433/199811). For the BGK model, an accurate numerical
solution for the shear-slip problem is contained in [64]. Because of the form
(113), if we let (φ I

v , cI
v) = [T̂ 1/2

w /Âc(T̂w)] (φ̂
I
v , ĉI

v), then (φ̂ I
v , ĉI

v) are given by the
latter reference. More specifically, we have cI

v (here) = [T̂ 1/2
w /Âc(T̂w)]× [− k0

(in [64, 57])]. In summary, we have the following result for the diffuse reflection:

cI
v = 1.25395 (hard sphere) [25], cI

v = 1.01619
T̂ 1/2

w

Âc(T̂w)
(BGK) [57]. (114)

The shear-slip problem has also been solved numerically for the Maxwell-type
condition with 0 < α ≤ 1. The reader is referred to, e.g., [33, 67, 45] for hard-
sphere molecules and [38] for the BGK model (see also [44]).

• Problem for φ I
T

When T̂w = 1, the problem for φ I
T , (107), is the same as the classical thermal-

creep problem (see, e.g., [52, 36, 30]). We consider the case of diffuse reflection
(α = 1). For hard-sphere molecules, the problem was solved numerically in
[36]. Since the problem (107) does not depend on T̂w in this case, its solution is
immediately given by the result in [36], that is, (y, ζini, ζiti, ζisi, φ I

T , cI
T ) (here) =
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[x1, ζ1, ζ2, ζ3, (ζ
2
2 +ζ 2

3 )
−1/2ΦB,βB] (in [36]) and cI

T (here) = −K1 (in [57]; see
Sect. 3.1.5 in [57]). We note that a more accurate value of cI

T has been obtained
in [25]: cI

T (here) = b(1)2 (in [25]). For the BGK model, an accurate numerical
solution for the thermal-creep problem is contained in [64], and for the same
reason as in the problem for φ I

v , if we let (φ I
T , cI

T ) = [T̂ 1/2
w /Âc(T̂w)] (φ̂

I
T , ĉI

T ),
then (φ̂ I

T , ĉI
T ) are given by the result in [64]. More specifically, cI

T (here) =

[T̂ 1/2
w /Âc(T̂w)] × [−K1 (in [64, 57])]. In summary, we have the following result

for the diffuse reflection:

cI
T = 0.64642 (hard sphere) [25], cI

T = 0.38316
T̂ 1/2

w

Âc(T̂w)
(BGK) [57].

(115)

The thermal-creep problem has also been solved numerically for the Maxwell-
type condition with 0 < α ≤ 1. The reader is referred to, e.g., [45] for hard-
sphere molecules and [37] for the BGK model (see also [44]).

• Problem for φ II
T

If T̂w = 1, the problem for φ II
T , (109), is identical to the classical temperature-

jump problem (see, e.g., [68, 51, 31, 63, 49, 62, 30]). We consider the case of
diffuse reflection (α = 1). For hard-sphere molecules, the problem was solved
numerically in [62] (see also [35]). Since the problem (109) does not depend on
T̂w in this case, its solution is immediately obtained from the result in [62], that is,
(y, ζini, ζiti, ζisi, φ II

T , cII
T ) (here) = (x1, ζ1, ζ2, ζ3, ΦK,β ) (in [62]) = (η , ζ1, ζ2, ζ3, Φ1, b)

(in [35]) and cII
T (here) = d1 (in [57]; see Sect. 3.1.5 in [57]). We should note

that a more accurate value of cII
T has been obtained in [25]: cII

T (here) = c(0)1 (in
[25]). As for the BGK model, an accurate numerical solution for the temperature-
jump problem is contained in [63, 64]. As in the problems for φ I

v and φ I
T , if

we let (φ II
T , cII

T ) = [T̂ 1/2
w /Âc(T̂w)] (φ̂

II
T , ĉII

T ), then (φ̂ II
T , ĉII

T ) are given by the lat-
ter references. Concerning the coefficient cII

T , therefore, we have cII
T (here) =

[T̂ 1/2
w /Âc(T̂w)]× [d1 (in [63, 64, 57])]. In summary, we have the following result

for the diffuse reflection:

cII
T = 2.40014 (hard sphere) [25], cII

T = 1.30272
T̂ 1/2

w

Âc(T̂w)
(BGK) [57].

(116)

The temperature-jump problem has also been solved numerically for the Maxwell-
type condition with 0 < α ≤ 1. The reader is referred to, e.g., [46] for hard-
sphere molecules and [39] for the BGK model (see also [44]).

• Problem for φ II
v

Unlike the other three problems, the problem for φ II
v , (108), has been studied

rarely because it does not correspond to a specific half-space problem of physical
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interest. This problem with T̂w = 1 has appeared only in the generalized slip flow
theory (linear theory) with evaporation and condensation on the boundary [64,
57] (BGK model) and that with solid boundary for time-dependent problems [65,
25, 26] (hard-sphere molecules). The comparison of (108) with these references
gives the following relationship: (y, ζn, ζ , φ II

v , cII
v ) (here) = (η , µζ , ζ , φ5,c

(0)
5 )

(in [25]) for hard-sphere molecules, and cII
v (here) = (4/3)[T̂ 1/2

w /Âc(T̂w)] × [d6
(in [64, 57])] for the BGK model. To summarize, we have the following result
of cII

v for the diffuse reflection:

cII
v = 0.45957 (hard sphere) [25], cII

v = 0.44045
T̂ 1/2

w

Âc(T̂w)
(BGK) [57].

(117)

5.3.3 Summary of the Slip Boundary Conditions

From (59), (95), and (105), we can immediately write down the slip boundary condi-
tions for the compressible Navier–Stokes equations, (50) with (47), in the following
form:

(v̂i− v̂wi)ni = 0, (118a)

(v̂i− v̂wi)ti = εcI
v

1
ρ̂

(
∂ v̂i

∂x j
+

∂ v̂ j

∂xi

)
nit j + εcI

T
1

ρ̂T̂ 1/2
w

∂ T̂
∂xi

ti, (118b)

T̂ − T̂w = εcII
v

T̂ 1/2
w

ρ̂

∂ v̂i

∂x j
nin j + εcII

T
1
ρ̂

∂ T̂
∂xi

ni, (118c)

where the quantities ρ̂ , v̂i, and T̂ , which belong to the Chapman–Enskog solution, as
well as their derivatives are all evaluated on the boundary. Recall that the so-called slip
coefficients cI

v, cI
T , cII

v , and cII
T , in general, depend on T̂w. Their explicit expressions for

the hard-sphere molecules as well as for the BGK model under the diffuse-reflection
condition are summarized in (114), (115), (117), and (116).

At a glance, the slip boundary conditions (118) seem to be the same as the ones
derived in Sone’s generalized slip flow theory (linear theory), e.g., the uppermost lines
of (3.60a)–(3.60c) in [56]. However, there are important differences. Unlike (3.60) in
[56], the slip conditions (118) are nonlinear because of the factor 1/ρ̂ , which does not
occur in (3.60) in [56], and the slip coefficients cI

v, cI
T , cII

v , and cII
T are in general not

constant but dependent on T̂w. In addition, the term containing cII
v does not appear in

(3.60) in [56] because it becomes higher order in ε for flows with small Mach numbers.
For the compressible Navier–Stokes equations, these effects are important and should
be taken into account precisely. The relation between (118) and the slip boundary
conditions appearing in Sone’s generalized slip flow theory, including (3.60) in [56],
will be discussed in Sect. 5.3.4.

From the process of its derivation, one might think that the slip boundary condition
(118) should be applied to points fixed on the boundary, following their trajectories.
However, in the Knudsen-layer problem (100), the time variable t̃ (or t̂) is contained

29



only as a parameter, that is, the time-derivative term is not contained. Therefore, the
solution φ as well as the resulting slip-boundary conditions do not depend on the tra-
jectory of the boundary point xxxw(t̂, χ1, χ2) in the past. In other words, we do not
need to follow the trajectories of the boundary points. The conditions (118) form two-
dimensional fields on the boundary at each time. For example, when we consider a
time-independent problem in which the boundary is moving in its surface (e.g., cylin-
drical Couette flow between two coaxial circular cylinders rotating at different angular
speeds), we can impose the conditions (118) at each point on the boundary that is fixed
in the coordinate system, not at the point moving with the boundary, as is usually done.

Incidentally, the initial condition for (50) is given by (51) or (103) (see the discus-
sion in the last two paragraphs of Sect. 5.2.4).

As we have seen in Sect. 5.1, if we assume the no-slip condition (52), the first-
order Chapman–Enskog solution f̂ (0)+ f̂ (1)ε satisfies the kinetic boundary condition
(27) only at the zeroth-order in ε . This is not consistent with the first-order Chapman–
Enskog solution, in which the terms of O(ε) are taken into account. In other words,
the no-slip boundary condition is not consistent with the compressible Navier–Stokes
equations that correspond to the first-order Chapman–Enskog solution. In order to be
consistent, we have to combine the slip boundary conditions (118), not the no-slip
condition (52), with the compressible Navier–Stokes equations (50) for any small ε .

As shown in Sects. 5.3.1 and 5.3.2, the problem of deriving the slip boundary con-
ditions in the fully nonlinear setting is reduced to the fundamental half-space problems
of the linearized Boltzmann equation. In particular, the problems of obtaining cI

v, cI
T ,

and cII
T are the classical problems, and nowadays their numerical solutions under other

types of kinetic boundary conditions, such as the Cercignani–Lampis condition [15],
are also available (e.g., [48, 43, 47, 21]). Since the same reduction should hold for
the Cercignani–Lampis condition, one can in principle extend (118) to this condition
by exploiting the available results for the problems in which the term containing cII

v
becomes higher order in ε , e.g., Taylor–Couette problem [2].

5.3.4 Additional Remarks on the Slip Boundary Conditions

First, we briefly discuss the relation of the slip boundary conditions (118) with those
appearing in Sone’s generalized slip flow theory [56, 57]. For clearness, we restrict
ourselves to steady problems and refer to [56] for comparison below. In the Chapman–
Enskog expansion, on which our analysis is based, the macroscopic quantities are not
expanded in ε , whereas in the analysis in [56, 57], in which Hilbelt-type expansions
are used, they are expansed in ε . Therefore, in order to compare the results, we need to
re-expand the macroscopic quantities. However, the appropriate re-expansion depends
on the physical situation, so that we make the comparison separately below.

Let us start with the case where the deviation from the reference equilibrium state
at rest is small. Then, we can express v̂wi and T̂w as v̂wi = 0+ uwi and T̂w = 1+ τw
with small deviations uwi and τw. Accordingly, ρ̂ , v̂i, T̂ , and p̂ can be expressed as
ρ̂ = 1+ω , v̂i = 0+ui, T̂ = 1+ τ , and p̂ = 1+P with small deviations ω , ui, τ , and P,
which will be represented by h̃ below (h̃ = ω,ui,τ , and P).

(i) Linear problems: When the deviations uwi, τw, and thus h̃ are much smaller than
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ε (we assume that uwi and τw are independent of ε), we can first linearize the
Navier–Stokes equations (50) and the slip boundary conditions (118) by neglect-
ing the product terms of the deviations. Then, we expand h̃ as h̃ = h̃0 + h̃1ε + · · ·
(note that h̃0 and h̃1 are much smaller than ε). If we insert these expansions in
the linearized Navier–Stokes equations, we obtain (3.18) and (3.19) (with m = 0
and 1) in [56], which are the Stokes system of equations (note that ε here is
the same as k in [56] and ignore the subscript G in the result of [56]). If we
use the expansions in the linearized slip boundary conditions, we obtain (3.59a)
with uwi0 = uwi and (3.59b) with τw0 = τw (the no-slip conditions) and the upper-
most lines of (3.60a)–(3.60c) with uwi1 = τw1 = 0 (the linearized slip boundary
conditions) in [56]. Here, one should note that the term (∂ui0/∂x j)nin j, origi-
nating from the term (T̂ 1/2

w /ρ̂)(∂ v̂i/∂x j)nin j in (118c), vanishes because of the
relation nin j = δi j− (tit j + sis j), the continuity equations (3.19a) (with m = 0)
in [56], and the fact that (∂ui0/∂x j)(tit j + sis j) = (∂uwi0/∂x j)(tit j + sis j) =
(1/2)(∂uwi0/∂x j +∂uw j0/∂xi)(tit j + sis j) = 0 (rigid-body motion). In this way,
the Stokes set of equations and its first-order slip boundary conditions of the lin-
ear theory of [56] is recovered from (50) and (118) by the linearization and an
appropriate re-expansion.

(ii) Weakly nonlinear problems: When the deviations uwi, τw, and thus h̃ are of
the order of ε , we should set uwi = uwi1ε and τw = τw1ε (we assume that uwi1
and τw1 are independent of ε) and expand h̃ as h̃ = h̃1ε + h̃2ε2 + · · · [note that
the expansions start from O(ε) and that h̃1 and h̃2 are of O(1)]. If we substitute
these expansions into the Navier–Stokes equations (50), we obtain (4.30), (4.31),
(4.32a), (4.32c), and (4.32b) with γ3 = 0 in [56] (ignore the subscript S in the
result of [56]). Equations (4.31a) and (4.31b) are the so-called incompressible
Navier–Stokes equations. On the other hand, the slip boundary conditions (118)
with the above expansions give (4.61a) and (4.61b) (the no-slip conditions) and
the uppermost lines of (4.62a)–(4.62c) with uwi2 = τw2 = 0 (the slip boundary
conditions) in [56]. The term originating from the cII

v term in (118c) becomes of
higher order in ε for the same reason as in (i). In this way, the weakly nonlinear
theory of [56] is recovered from (50) and (118) by a suitable expansion except
the fact that the term containing γ3 in (4.32b) in [56] does not appear. This term,
which originates from the thermal stress, only modifies the ε3-order pressure
field P3 (PS3 in [56]).

Next we consider fully nonlinear problems in which v̂wi, T̂w, ρ̂ , v̂i, T̂ , and p̂ are all
of O(1).

(iii) Fully nonlinear problems: Let us consider the situation in which the viscous
boundary layer appears on the whole boundary. According to [61, 56, 57],
the appropriate expansion parameter is

√
ε . Therefore, we expand ĥ as ĥ =

ĥ0 + ĥ1
√

ε + · · · , where ĥ stands for ρ̂ , v̂i, T̂ , and p̂ (cf. Sect. 5.1) [note that
ε (here) = k ([56]) and

√
ε (here) = ε ([56])]. If we substitute these expansions

into (50), we obtain (6.21)–(6.26) in [56] (ignore the subscript h in the result of
[56]), which are the (compressible) Euler set of equations re-expanded in

√
ε .
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The fact that the expansion parameter should be
√

ε is closely related to the ap-
pearance of the viscous boundary layer whose thickness (in the dimensionless xxx
space) is of the order of

√
ε . Once the viscous boundary layer with thickness

of the order of
√

ε appears, we have to introduce a normal coordinate, say z,
with the length scale of

√
ε , i.e., xi =

√
εzni + xwi in place of (64b), in order to

describe the behavior inside the layer. Then, similar to (71) and (72), we have
∂/∂xi = (1/

√
ε)ni∂/∂ z+O(1). With the re-expansion of (50), we should obtain

(6.52), (6.53), (6.58), and (6.60) with (6.57) for ρ̂0, v̂i0, T̂0, and p̂0 and (6.57),
(6.59), (6.69), and (6.71) with (6.68) for ρ̂1, v̂i1, T̂1, and p̂1 in [56] (ignore the
subscript V there) because it is proved in [61] that the non-Navier–Stokes terms
do not appear up to this order. [Because of the general curvilinear coordinate
system used in [61, 56, 57], the re-expansion is extremely complicated. We
must say that we have confirmed only the leading-order equations (6.52), (6.53),
(6.58), and (6.60) with (6.57) in [56] by the direct re-expansion]. These are the
(compressible) viscous boundary-layer equations re-expanded in

√
ε that should

be matched with the Euler set of equations in the bulk of the gas (note that z
here is the same as y in [56]). If we use the expansions in the slip boundary
conditions (118) and take the terms of O(1) and O(

√
ε), we obtain the no-slip

condition (6.50) and the slip boundary condition (6.99) in [56], which are for
the viscous boundary-layer equations. Here, we should note that a part of the
term containing cI

v in (118b) and the term containing cII
T in (118c) are upgraded

to the terms of O(
√

ε) because of the relation ∂/∂xi = (1/
√

ε)ni∂/∂ z+O(1);
more specifically, ε(∂ v̂ j0/∂xi)nit j = ε[∂ (v̂ j0t j)/∂xi]ni =

√
ε∂ (v̂ j0t j)/∂ z+O(ε)

and ε (∂ T̂0/∂xi)ni =
√

ε(∂ T̂0/∂ z)+O(ε). The term containing cII
v , which also

contains the derivative (∂/∂xi)ni, remains to be of O(ε) because v̂i0ni = 0 [or
v̂ini = O(

√
ε)] inside the viscous boundary layer. In this way, these upgraded

terms in the boundary conditions give rise to the velocity and temperature fields
of O(

√
ε). This is the reason why the expansion parameter is

√
ε , not ε itself.

On the other hand, the Navier–Stokes equations (50) automatically transform
into the boundary-layer equations near the boundary in the situation where the
viscous boundary layer appears. In summary, the present system composed of
the Navier–Stokes equations (50) and the slip boundary conditions (118) should
cover the situation considered in [61, 56, 57] correctly.

Finally we make short remarks on the slip boundary conditions for the compressible
Navier–Stokes equations derived by Coron [18]. In this reference, the slip boundary
conditions are first derived for a gas between two plates (steady plane Couette flow
with a temperature difference) by the correct and precise analysis, and then the math-
ematical properties of the solution of the compressible Navier–Stokes equations with
the slip boundary conditions are discussed. As for the boundary of arbitrary shape,
only a brief outline of the analysis is shown. In addition, the analysis is restricted
to the time-independent case with stationary boundaries. Since the boundary is at
rest, (∂ v̂i/∂x j)nit j in (118b) becomes of O(ε), and the term containing cI

v reduces
to εcI

v(1/ρ̂)(∂ v̂ jt j/∂xi)ni. In fact, the slip boundary condition in [18] [(3.22)] contains
this term. Therefore, if one carelessly apply the slip boundary conditions in [18] to
the problems where the boundary has a tangential velocity, such as cylindrical Couette
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flow, the result is incorrect. Compared with (118c), the formula (3.23) in [18] contains
an additional term proportional to ε∂ (ûi− û jn jni)/∂xi in the notation of the present pa-
per. However, this term can be shown to be of O(ε2), so that there is no need to include
this term. We should also emphasize that the numerical values of the slip coefficients,
i.e., cI

v, cI
T , cII

v , and cII
T , are not included in [18]. This means that it is not possible to

apply the result in [18] to the practical problems immediately.

5.3.5 Macroscopic Quantities Inside the Knudsen Layer

From (93) and (75), (76), and (80), we have∫
CwnφE(Cw)dCCC w = O(ε). (119)

By the similar procedure, or by integrating (81) multiplied by CwiE(Cw) and C 2
wE(Cw)

over the whole space of CCC w and taking into account the fact that φ → 0 as y→ ∞, we
obtain∫

CwiCwnφE(Cw)dCCC w = O(ε),
∫

C 2
wCwnφE(Cw)dCCC w = O(ε). (120)

From (82b), (82e), and (82f), the relations (119) and (120) indicate that v̂(1)Ki ni, p̂(1)Ki jn j,

and q̂(1)Ki ni are all of O(ε). Other components of ĥ(1)K are obtained by substituting (104)
into (82). We summarize the result of the Knudsen-layer correction of the macroscopic
quantities ĥK = ĥ(1)K ε +O(ε2) [(58)] neglecting the terms of O(ε2), that is,

v̂Kini = 0, (121a)

v̂Kiti = εYv(y)
1
ρ̂

(
∂ v̂i

∂x j
+

∂ v̂ j

∂xi

)
nit j + εYT (y)

1

ρ̂T̂ 1/2
w

∂ T̂
∂xi

ti, (121b)

ρ̂K = εΩv(y)
1

T̂ 1/2
w

∂ v̂i

∂x j
nin j + εΩT (y)

1
T̂w

∂ T̂
∂xi

ni, (121c)

T̂K = εΘv(y)
T̂ 1/2

w

ρ̂

∂ v̂i

∂x j
nin j + εΘT (y)

1
ρ̂

∂ T̂
∂xi

ni, (121d)

p̂Ki jn j = 0, (121e)

p̂Ki jt j = εΠv(y)T̂
1/2

w
∂ v̂ j

∂xk
n jnkti + εΠT (y)

∂ T̂
∂x j

n jti, (121f)

q̂Kini = 0, (121g)

q̂Kiti = εHv(y)T̂w

(
∂ v̂i

∂x j
+

∂ v̂ j

∂xi

)
nit j + εHT (y)T̂

1/2
w

∂ T̂
∂xi

ti, (121h)

where

Yγ(y) =
1
2

∫
(C 2

w−C 2
wn)φ

I
γ E(Cw)dCCC w, (γ = v, T ), (122a)
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Ωγ(y) =
∫

φ
II
γ E(Cw)dCCC w, (γ = v, T ), (122b)

Θγ(y) =
2
3

∫ (
C 2

w−
3
2

)
φ

II
γ E(Cw)dCCC w, (γ = v, T ), (122c)

Πγ(y) =
3
2
[Ωγ(y)+Θγ(y)], (γ = v, T ), (122d)

Hγ(y) =
1
2

∫
(C 2

w−C 2
wn)

(
C 2

w−
5
2

)
φ

I
γ E(Cw)dCCC w, (γ = v, T ). (122e)

In (121), ρ̂ , v̂i, and T̂ , which belong to the Chapman–Enskog solution, and their deriva-
tives are all evaluated on the boundary.

For hard-sphere molecules and the diffuse reflection, [y, Yv(y), YT (y), Hv(y),
HT (y)] (here) = [x1, S(x1), C(x1), HA(x1), HB(x1)] (in [36]) = [η ,−Y0(η), −(1/2)Y1(η),
HA(η), HB(η)] (in [57]; see Table 3.2 in [57]); [y, Ωv(y), Θv(y)] (here) = [η , Ω

(0)
5 (η),

Θ
(0)
5 (η)] (in [25]); [y, ΩT (y), ΘT (y)] (here) = [x1, Ω(x1), Θ(x1)] (in [62]) = [η ,

Ω1(η), Θ1(η)] (in [57]; see Table 3.2 in [57]).
For the BGK model and the diffuse reflection, y (here) = η (in [57]) and [Yv(y), YT (y), Ωv(y), Θv(y), ΩT (y), ΘT (y), Hv(y), HT (y)]

(here) = [T̂ 1/2
w /Âc(T̂w)]×[−Y0(η),−(1/2)Y1(η), (4/3)Ω6(η), (4/3)Θ6(η), Ω1(η), Θ1(η), HA(η), HB(η)]

(in [57]; see Table 3.3 in [57]).

6 Navier–Stokes Equations and Slip Boundary Condi-
tions in Dimensional Form

In this section, we rewrite the compressible Navier–Stokes equations (50) and the slip
boundary conditions (118) in the original dimensional form.

With the help of (12), (13), and (46), (50) can be transformed to the following
dimensional Navier–Stokes equations:

∂ρ

∂ t
+

∂ρv j

∂X j
= 0, (123a)

∂ρvi

∂ t
+

∂ρviv j

∂X j
=− ∂ p

∂Xi
+

∂

∂X j

[
µ(T )

(
∂vi

∂X j
+

∂v j

∂Xi
− 2

3
∂vk

∂Xk
δi j

)]
, (123b)

∂

∂ t

[
ρ

(
3
2

RT +
1
2

v2
j

)]
+

∂

∂X j

[
ρv j

(
5
2

RT +
1
2

v2
k

)]
=

∂

∂X j

[
λ (T )

∂T
∂X j

]
+

∂

∂X j

[
µ(T )vi

(
∂vi

∂X j
+

∂v j

∂Xi
− 2

3
∂vk

∂Xk
δi j

)]
, (123c)

where p = RρT [(1d)].
Using (12) and (13) and eliminating ε with the help of (46), we can transform (118)

to the following dimensional slip boundary conditions:

(vi− vwi)ni = 0, (124a)

(vi− vwi)ti =

√
2

R1/2 aI
v

µ(Tw)

ρT 1/2
w

(
∂vi

∂X j
+

∂v j

∂Xi

)
nit j +

4
5R

aI
T

λ (Tw)

ρTw

∂T
∂Xi

ti, (124b)
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T −Tw =
1
R

aII
v

µ(Tw)

ρ

∂vi

∂X j
nin j +

2
√

2
5R3/2 aII

T
λ (Tw)

ρT 1/2
w

∂T
∂Xi

ni, (124c)

where µ(Tw) and λ (Tw) are the viscosity and thermal conductivity at temperature Tw,
respectively [cf. (46), (48), and (49)], and aI

v, aI
T , aII

v , and aII
T are defined by

aI
v =

(
Tw

T0

)1/2 cI
v

Γ1(Tw/T0)
, aI

T =

(
Tw

T0

)1/2 cI
T

Γ2(Tw/T0)
, (125a)

aII
v =

(
Tw

T0

)1/2 cII
v

Γ1(Tw/T0)
, aII

T =

(
Tw

T0

)1/2 cII
T

Γ2(Tw/T0)
. (125b)

In (124), the quantities ρ , vi, T , and their derivatives are all evaluated on the boundary.
The coefficients aI

v, aI
T , aII

v , and aII
T , which seemingly depend on Tw and T0, should be

constants. In fact, from (47) and (114)–(117), we have the following expressions of
these coefficients in the case of diffuse reflection:

• For hard-sphere molecules

aI
v = 0.98733, aI

T = 0.33628, aII
v = 0.36185, aII

T = 1.24859.
(126)

• For the BGK model

aI
v = 1.01619, aI

T = 0.38316, aII
v = 0.44045, aII

T = 1.30272.
(127)

As we can see from (126) and (127), the coefficients do not differ much between these
completely different collision models.

The initial condition for (123) is given by

ρ = ρ0, vvv = 0, T = T0, at t = 0, (128)

corresponding to (51), under assumption (iv) in Sect. 2, or

ρ = ρini(XXX), vvv = vvvini(XXX), T = Tini(XXX), at t = 0, (129)

corresponding to (103), in more general case without assumption (iv), where ρini, vvvini,
and Tini are the density, flow velocity, and temperature obtained from the initial distri-
bution fini with the help of (1a)–(1c). (See the comments in the last two paragraphs of
Sect. 5.2.4.)

7 Concluding Remarks
In the present study, we considered a fully nonlinear setting, which corresponds to the
case of finite Mach numbers. We started with the first-order Chapman–Enskog solu-
tion as an ansatz for the compressible Navier–Stokes equations and derived their slip
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boundary conditions by the analysis of the Knudsen layer. This setting is the same as
that in the nonlinear asymptotic theory by Sone et al. [61] though the analysis there
is restricted to the time-independent problems. In this reference, a systematic asymp-
totic expansion, based on the Hilbert-type expansion with

√
ε (not ε) as the expan-

sion parameter, is carried out, and the fluid-dynamic equations and their slip boundary
conditions, together with the corrections inside the Knudsen layer, are obtained. The
fluid-dynamic equations are split into two types: The Euler equations in the bulk of
the gas, and the viscous boundary-layer equations near the boundary. As we have seen
in Sect. 5.3.4, the fact that the expansion parameter should be

√
ε is closely related to

the appearance of the viscous boundary layer whose thickness (in the dimensionless xxx
space) is of the order of

√
ε .

The asymptotic theory in [61] is perfect theoretically. However, in addition to its
restriction to the time-independent flows, its application to numerical computation of
practical problems is not straightforward because of the matching process between the
Euler and viscous boundary layer equations. In addition, the theory is not applicable to
problems in which the viscous boundary layer is not formed on the whole boundary. On
the other hand, the theory guarantees that the Navier–Stokes equations with the correct
slip boundary conditions provide correct overall solution up to the order of

√
ε . From

these facts, we were motivated to use the single set of the Navier-Stokes equations with
the slip boundary conditions in order to establish a more flexible system.

The analysis of the present paper is based on the method of Knudsen layers estab-
lished by Sone [53, 54, 59, 55, 60, 61, 56, 57], and its contents are the revisit to the
work by Coron [18] for the same problem. The difference between [18] and the present
paper, which has been discussed in Sect. 5.3.4, is summarized as follows: (i) In [18],
steady flows are considered and the boundaries are assumed to be at rest, whereas time-
dependent problems with arbitrarily moving boundaries are considered in the present
study. The formulas of the slip boundary conditions presented in [18] are seemingly
different from (118). However, taking into account the fact that the boundary is at rest
in [18] and that some terms in the slip boundary conditions in [18] can be estimated
as of the order higher than ε , we can show that the slip condition in [18] can be re-
covered from (118). (ii) The reference [18] does not give the explicit values of the
coefficients (the so-called slip coefficients) in the formulas of the slip boundary condi-
tions, so that it is hard to apply the formulas immediately to numerical computation of
practical problems.

In the present paper, we derived the slip boundary conditions for the Navier–Stokes
equations in a clear way and give their formulas with explicit numerical values for hard-
sphere molecules and for the BGK model under the diffuse reflection boundary con-
ditions. These formulas should facilitate the correct application of the Navier–Stokes
equations to the practical problems with moving boundaries of arbitrary shape in the
slip-flow regime. Since the process of analysis, in particular, the reduction of the orig-
inally nonlinear problem to the linearized Knudsen-layer problems, has been shown
explicitly, its extension to different intermolecular potentials and boundary conditions
is a straightforward task.

Finally, we comment on the order of the slip boundary conditions. The first-order
slip boundary conditions (118) are consistent with the compressible Navier–Stokes
equations (50) because they are constructed in such a way that the Boltzmann equa-
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tion and its boundary condition are satisfied up to the order of ε . If we try to derive
the second-order slip boundary conditions, we have to satisfy the Boltzmann equation
as well as its boundary condition up to the order of ε2. For this purpose, we first need
the higher-order correction to the first-order Chapman–Enskog solution. If we take
the second-order Chapman–Enskog solution, however, it leads to the Burnett equations
[16], which have unfavorable properties [10] and contain higher-order derivatives. This
is the reason why we considered in this paper the overall solution as the sum of the first-
order Chapman–Enskog solution and the remainder without touching the higher order
solution. One of the potential approaches to proceed to the ε2-order would be to con-
struct the overall solution as the sum of the first-order Chapman–Enskog solution and
its correction of the order of ε2 and derive the fluid-dynamic equations and the second-
order slip boundary conditions for the correction part by a similar analysis as in the
present paper.
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A Derivation of (72): Outline
Let us define the following column vectors aaa and bbb of seven components:

aaa = t(t̂, x1, x2, x3, ζ1, ζ2, ζ3), bbb = t(t̃, η , χ1, χ2, ζw1, ζw2, ζw3), (130)

where t indicates the transpose operation. Then, the Jacobian matrix of the trans-
formation from (t̂, xxx, ζζζ ) to (t̃, η , χ1, χ2, ζζζ w), which we denote by A = [Ai j], can be
expressed as

A=
∂ (t̃, η , χ1, χ2, ζw1, ζw2, ζw3)

∂ (t̂, x1, x2, x3, ζ1, ζ2, ζ3)
=

[
∂bbb
∂ t̂

,
∂bbb
∂x1

,
∂bbb
∂x2

,
∂bbb
∂x3

,
∂bbb
∂ζ1

,
∂bbb
∂ζ2

,
∂bbb
∂ζ3

]
,

(131)

and that of the inverse transformation, which we denote by B= [Bi j], as

B=
∂ (t̂, x1, x2, x3, ζ1, ζ2, ζ3)

∂ (t̃, η , χ1, χ2, ζw1, ζw2, ζw3)
=

[
∂aaa
∂ t̃

,
∂aaa
∂η

,
∂aaa
∂ χ1

,
∂aaa
∂ χ2

,
∂aaa

∂ζw1
,

∂aaa
∂ζw2

,
∂aaa

∂ζw3

]
.

(132)

In order to obtain (72), we need to calculate some components of A, which is not
straightforward from (64). Therefore, we calculate them indirectly using the fact that
A = B−1. Because each component of the matrix B can be calculated immediately

37



from (64):

∂ t̂
∂ t̃

= 1,
∂ t̂
∂η

=
∂ t̂

∂ χ1
=

∂ t̂
∂ χ2

=
∂ t̂

∂ζwi
= 0,

∂xi

∂ t̃
= v̂wi + εη

∂ni

∂ t̃
,

∂xi

∂η
= εni,

∂xi

∂ χ1
=

∂xwi

∂ χ1
+ εη

∂ni

∂ χ1
,

∂xi

∂ χ2
=

∂xwi

∂ χ2
+ εη

∂ni

∂ χ2
,

∂xi

∂ζw j
= 0,

∂ζi

∂ t̃
=

∂ v̂wi

∂ t̃
,

∂ζi

∂η
= 0,

∂ζi

∂ χ1
=

∂ v̂wi

∂ χ1
,

∂ζi

∂ χ2
=

∂ v̂wi

∂ χ2
,

∂ζi

∂ζw j
= δi j,

(133)

each component of the matrix A can be calculated, in principle, by the usual formula of
the inverse matrix. Here, we should note that, because of (133), many components of
B vanishes, so that the determinant of B, denoted by detB, can be obtained in a simple
form. That is, if we interpret xxx, xxxw, and nnn in the matrix representation as the column
vectors xxx = t(x1, x2, x3), xxxw = t(xw1, xw2, xw3), and nnn = t(n1, n2, n3), then we have

detB= det
[

∂xxx
∂η

,
∂xxx

∂ χ1
,

∂xxx
∂ χ2

]
= det

[
εnnn,

∂xxxw

∂ χ1
+ εη

∂nnn
∂ χ1

,
∂xxxw

∂ χ2
+ εη

∂nnn
∂ χ2

]
= εdet

[
nnn,

∂xxxw

∂ χ1
,

∂xxxw

∂ χ2

]
+O(ε2)

= εnnn ···
(

∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2

)
+O(ε2). (134)

Here, we note from (63) that

∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2
= δ

∣∣∣∣∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2

∣∣∣∣nnn, (135)

where δ = 1 when (∂xxxw/∂ χ1)××× (∂xxxw/∂ χ2) and nnn are in the same direction, and δ =
−1 when they are in the opposite direction.

Let us calculate ∂η/∂ t̂, which is the (2, 1) component of A. If we denote by Cm,n
the (m,n) cofactor of B and interpret v̂vvw in the matrix representation as the column
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vector v̂vvw = t(v̂w1, v̂w2, v̂w3), then we obtain, with the help of (134) and (135),

∂η

∂ t̂
=C1,2(detB)−1

=−det
[

∂xxx
∂ t̃

,
∂xxx

∂ χ1
,

∂xxx
∂ χ2

]
(detB)−1

=−det
[

v̂vvw + εη
∂nnn
∂ t̃

,
∂xxxw

∂ χ1
+ εη

∂nnn
∂ χ1

,
∂xxxw

∂ χ2
+ εη

∂nnn
∂ χ2

]
(detB)−1

=

{
−det

[
v̂vvw,

∂xxxw

∂ χ1
,

∂xxxw

∂ χ2

]
+O(ε)

}
(detB)−1

=

[
−v̂vvw ···

(
∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2

)
+O(ε)

]
(detB)−1

=−1
ε

v̂vvw ···nnn+O(1). (136)

Similarly, ∂η/∂xi, which is the (2, i+1) component of A, can be calculated as follows:

∂η

∂xi
=Ci+1,2(detB)−1

=

(
∂xxx

∂ χ1
××× ∂xxx

∂ χ2

)
i
(detB)−1

=

[(
∂xxxw

∂ χ1
××× ∂xxxw

∂ χ2

)
i
+O(ε)

]
(detB)−1

=
1
ε

ni +O(1). (137)

We omit the calculation for the other quantities in (72) that turn out to be of O(1).

B Derivation of (88): Outline
Since v̂vvB = v̂vvw + ε v̌vv and T̂B = T̂w + εŤ [(59)], f̂ (0) on the boundary is expressed as

f̂ (0)B =
ρ̂B

[π(T̂w + εŤ )]3/2
exp
(
−|ζ

ζζ − v̂vvw− ε v̌vv|2

T̂w + εŤ

)
. (138)

Expanding this expression in ε , retaining the terms of O(ε), and using CCC w of (74), we
obtain (88a).

If we take into account that f̂ (0)B = f̂w[1+O(ε)] and ΨB = Ψw +O(ε) for f̂ (1) =
f̂ (0)Ψ on the boundary, we immediately get (88b).

By using (88a) with (75), the term containing f̂ (0) in (87b) can be calculated as
follows:

−2
(

π

T̂w

)1/2 ∫
(ζζζ−v̂vvw)···nnn<0

(ζζζ − v̂vvw) ···nnn f̂ (0)dζζζ
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=−2
√

πρ̂B

∫
Cwn<0

Cwn

{
1+ ε

[
2Cwi

v̌i

T̂ 1/2
w

+

(
C 2

w−
3
2

)
Ť
T̂w

]}
E(Cw)dCCC w +O(ε2)

= ρ̂B

[
1+ ε

(
−
√

π
v̌i

T̂ 1/2
w

ni +
1
2

Ť
T̂w

)]
+O(ε2). (139)

Making use of (88b) with (75) and (89a) and taking (35) into account, we can transform
the term containing f̂ (1) in (87b) as

−2
(

π

T̂w

)1/2 ∫
(ζζζ−v̂vvw)···nnn<0

(ζζζ − v̂vvw) ···nnn f̂ (1)dζζζ

=
√

π
1

T̂ 1/2
w

[(
∂ v̂ j

∂xi

)
B
+

(
∂ v̂i

∂x j

)
B

]
×
∫

Cwn<0
Cwn

(
CwiCw j−

1
3
C 2

wδi j

)
B(0)(Cw, T̂w)E(Cw)dCCC w +O(ε).

(140)

Here, we introduce, as at the beginning of the second paragraph in Sect. 5.3.1, two
unit vectors ttt and sss on the plane tangent to the boundary, which are orthogonal to
each other and fixed to the boundary, i.e., nnn ··· ttt = 0, nnn ··· sss = 0, and ttt ··· sss = 0. Then,
δi j−nin j = tit j + sis j holds, and Cwi can be expressed as Cwi = Cwnni +Cwtti +Cwssi,
where Cwt =CCC w ··· ttt and Cws =CCC w ··· sss. With these expressions, the integral in the right-
hand side of (140) can be calculated as∫

Cwn<0
Cwn

(
CwiCw j−

1
3
C 2

wδi j

)
B(0)(Cw, T̂w)E(Cw)dCCC w

= nin j

∫
Cwn<0

C 3
wnB

(0)(Cw, T̂w)E(Cw)dCCC w

+(tit j + sis j)
∫

Cwn<0
CwnC

2
wtB

(0)(Cw, T̂w)E(Cw)dCCC w

− 1
3

δi j

∫
Cwn<0

CwnC
2
wB(0)(Cw, T̂w)E(Cw)dCCC w

=− 1
6
√

π
IB

[
nin j−

1
2
(δi j−nin j)

]
, (141)

where IB is defined in (89b). If use is made of (139) and (140) with (141) in (87b),
(88c) follows.
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