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Univ Lyon, MINES Saint-Étienne, CNRS, Laboratoire Hubert Curien, UMR 5516, F-42023, Saint-Étienne, France

Abstract

Multi-goal pathfinding (MGPF) is a problem of searching for a path between a start and a destination that allows a set of goals to
be satisfied along the path. In this paper, we address MGPF in the context of ubiquitous environments such as airports, commercial
centers and smart campuses that accommodate cyber, physical and social entities from smart objects, to sensors and to humans.
The availability of data and services in such environments presents new opportunities for addressing MGPF. More precisely, given
a MGPF problem in a pervasive environment, our approach exploits data from various resources, for instance, information acquired
from cyber-physical entities located in the environment and from external resources such as the Web in order to solve the problem.
In this approach, we propose a knowledge model for describing spatial structures of an environment, cyber-physical-social entities
it contains, and relationships among them as a graph, called cyber-spatial graph (CSG). Depending on the set of goals to be
satisfied, we dynamically build a graph of goal-location pairs (each goal paired with locations at which it can be satisfied), on top
of a CSG creating a multi-layer graph. We adapt A* algorithm into a multi-layer A* that is able to search on both layers. We
propose heuristics that exploit the structure and knowledge of CSG to improve the search. Our experiments show significant time
efficiency and node expansion reduction in various graph structures when employing the heuristics.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction

In this information age, from smart phones, to intelligent artificial personal assistants and to smart homes, we are
experiencing the shifting towards ubiquitous computing, Internet of Things (IoT) and artificial intelligence. Cyber-
physical entities are embedded in social environments of various scales from smart homes, to airports, to smart cities,
and the list continues. This paradigm shift supplies us with tremendous amount of useful information and services,
thus presenting opportunities to address classic problems in new, different, and potentially more efficient manners.

Multi-goal pathfinding (MGPF) is a problem of searching for a path between a start and a destination that allows a
set of goals to be satisfied along the path. In this paper, we address MGPF in the context of ubiquitous environments
accommodating cyber, physical and social (CPS) entities such as sensors, smart objects and humans. The aim of our
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approach is to solve MGPF by exploiting data acquired from CPS entities in a given environment and from external
resources such as the Web. To understand the underlying motivation of our approach, consider the following scenario.
A traveler, Bob, arrives at an airport. Bob wants to find a path to his departure gate. Bob has a set of activities (goals)
he wants to do on his way to the gate: get a trolley for his luggage, check-in, buy a takeout for lunch and find a waiting
seat near a power plug to charge his laptop. Using spatial information of the airport, we can find a path to the gate.
Information about the airport makes it possible to determine which locations allow Bob to satisfy each of his goals.
For example, restaurant is a business which prepares and serves food and drinks to customers in exchange for money.
By obtaining that piece of information from the Web, we are able to deduce that Bob can buy lunch at locations
of type restaurant. Dynamic and up-to-date information from sensors and smart objects enables us to determine the
optimal path for Bob. For instance, instead of going to a trolley area, which is at the opposite direction of his gate, it is
possible to locate an available trolley nearby that was left by other people, thanks to data from connected trolleys. We
might suggest Bob to take an escalator instead of an elevator because we know that there are too many people in the
queue waiting for the elevators or that the elevators are out of service thanks to the feeds from sensors. In addition,
information from social entities such as other travelers or personnel can be used to enhance Bob’s travel experience.
For instance, reviews by travelers (e.g. quality or availability) on restaurants enable us to choose locations that are at
Bob’s best interests and preferences. Other interesting goals can be to find a person in an airport or to look for help in
case of language difficulty, just to name a few.

Considering the aim of the approach, one might ask two challenging questions: (1) Which resources to use to solve
a MGPF problem? (2) How to deal with the dynamics, mobility and heterogeneity of CPS entities? The first question
is concerned with the discovery of resources that are relevant to a MGPF problem. We address this question via the
use of a data model to capture necessary knowledge enabling resource discovery. Regarding the second question,
there are existing works that address these issues in the context of IoT. As an example, in1, the authors propose a
multi-agent-based socio-technical network (STN) to manage the complexity of CPS entities. In this paper, our focus
is on the conceptual level, and we employ one of the existing solutions such as STN to abstract away the complexity
at the lower level. Furthermore, the state of an environment is dynamic. Referring back to the previous example, at
time t0, the elevator might be available, but at t1, it might become occupied. Such dynamics has influence on the path.
Given the fact that an action of satisfying a goal (e.g. buy lunch, check-in) takes a certain amount of time, an optimal
pre-planned path may lose its optimality over time. This necessitates en-route planning to keep refining the initial
path according to up-to-date information. In this paper, our focus is on pre-trip pathfinding. Our contributions include
a knowledge model for abstracting a ubiquitous environment integrating spatial and CPS dimensions, an ontology for
describing the model in a machine-readable and extensible manner, an abstraction model integrating goals and spatial
dimension as a multi-layer graph, knowledge-based heuristics for improving search processes and a multi-layer A*
algorithm adapted for searching over a multi-layer graph.

The rest of this paper is structured as follows. First, we provide a background on multi-goal pathfinding and
discuss related work. Second, we present an abstraction of a ubiquitous environment for MGPF, and formally define
MGPF. Third, we present our approach to solving MGPF. Fourth, we present and discuss experimental results of
the approach. Finally, we conclude the paper, and discuss the limitations of the current approach along with some
promising directions to address these limitations.

2. Background and related work

In literature, there are two common variants of MGPF. First, given a single start and multiple goals, MGPF is
defined as a problem of searching for paths for each start-goal pair, resulting in multiple paths2. Second, MGPF is
treated as a traveling salesman problem (TSP) in which the aim is to find a path from a start to a number of goals
before reaching a destination such as in3 4. The problem addressed in this paper is to some extent similar to the
second definition. However, unlike the classical TSP, we have constraints on the order of goals to satisfy. The work
in5 addresses a TSP with order constraints, called partially ordered TSP. The author proposes two algorithms to solve
the selection and ordering of points-of-interests, which are places, for indoor navigation systems. The computation of
a path is based on complete spatial knowledge of an environment, and distance is the sole criterion for path evaluation.
In this paper, we address the partially ordered TSP, but the specific property of our problem is that satisfying a goal is
not limited to passing by a place, but can be any activity carried out via a cyber, physical and/or social entity, which
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can be mobile and dynamic, in the environment. Our approach uses up-to-date and dynamic information retrieved
from various resources for path computation. We use generic criteria, not limited to distance, and quality of entities,
determined using qualitative information from resources, for path evaluation.

3. Problem domain

In this work, we assume that the topology of a real-world ubiquitous environment, denoted by E, is represented as
a grid map of atomic locations, called tiles. A search graph of an environment can be built from the grid map, defining
each tile as a node. A directed edge between two adjacent nodes n and n′ is defined if, in the given environment, the
location represented by n′ is directly accessible from that by n. We use E to denote a ubiquitous environment, and
define it as E = 〈SG,CPSE,R〉 where:

• SG is a search graph defined as SG = 〈L,C〉 where L is a finite set of locations in E, and C = {ci− j} are
connections between locations with i ∈ L being the origin location and j ∈ L the destination location.

• CPSE is a finite set of CPS entities located in E. A CPS entity is defined by cpse = 〈l, t〉 where l ∈ L is the
location at which cpse is located at time t. CPSE includes any cyber, physical and/or social entities in a given
environment. For instance, in an airport, physical entities can be gates and restaurants; cyber-physical entities
can be sensors and connected objects; social entities can be humans or agents, both software and hardware,
equipped with social capability1.

• R = {rn}, where n ∈ C ∪CPSE, is a finite set of resources providing information about a cpse or information on
how to move between locations. An example of a resource can be a website, a database, a social network or an
API to sources of data collected from various cyber-physical entities.

Spatial information is not sufficient to determine at which location a goal can be satisfied. Up-to-date and qualitative
information is also needed to find an optimal path. These reasons motivate our approach to exploit data from various
resources. This brings us to a challenging question: which resources to use to solve a MGPF problem? MGPF
consists of 2 main aspects - the goals and the path. We can then establish two different kinds of relationships: (1)
between CPSE and R - resources providing information about a CPS entity, (2) between L and R - resources providing
information on how to move between locations. However, knowledge about these kinds of relationships is non-
existent. To capture such knowledge, we propose a knowledge model, entitled cyber-spatial model, that integrates
spatial and CPS dimensions of an environment with their relationships to resources.

3.1. Knowledge model

In this model, the representation of an environment is organized as a hierarchy, denoted by HE, that can be com-
posed of more than one levels. Each level consists of a set of hierarchy entities. A hierarchy entity he ∈ HE is a
spatial division in an environment. Locations are grouped into different hierarchy entities. The model describes an en-
vironment as a multigraph, called cyber-spatial graph and denoted by CSG. Fig. 1 shows an example of such a graph.
The top layer is the spatial dimension of an environment represented as a search graph. The bottom layer consists of
resources R relevant to an environment. The middle layer, description of an environment as a CSG, integrates spatial
and CPS dimensions of an environment together, and connect them to relevant resources. It is essential to note that
there could be multiple edges between two location nodes, and each of these edges c is labeled with a resource rc ∈ R.

Our objective is to enable software agents to make use of such representations by providing them with machine-
readable descriptions of the environments upon which they may reason to discover more knowledge. These reasons
motivate us to use semantic web principles and technologies as the foundation of our knowledge model. More pre-
cisely, the model is based on RDF6 (Resource Description Framework). RDF facilitates the integration of hetero-
geneous data with different underlying schema, and is compatible for representing distributed graphs; hence, along
with the use of IRI (Internationalized Resource Identifier), CSG of an environment can be stored in different fashions
from centralized manner to widely distributed on the Web. In both case, CSG enables humans and agents to exploit
its knowledge and facilitates the integration with CSGs of other environments. To provide concepts and properties
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Fig. 1. An example of a cyber-spatial graph

necessary to describe the knowledge in our model, we design an ontology, entitled cyber-spatial ontology1, using
OWL7 (Web Ontology Language). An overview of the ontology is given in Fig. 2. Throughout this paper, we use
cso as a prefix binded to the ontology’s IRI. The main concepts defined in this ontology are CPS entity, location and
hierarchy entity.

The class cso:CPSEntity is defined as the class of CPS entities (CPSE) in an environment. The cso:isOfType
property represents a unidirectional connection that relates a CPS entity to a CPS entity type, represented by the class
cso:CPSEntityType. For instance, a CPS entity type can be sensor, mobile object or business place. Respectively,
a CPS entity can be an elevator sensor, a connected trolley or a burger shop. The cso:hasRelevantResource
property relates a CPS entity to resources that provide information about that entity. For example, a resource relevant
to a restaurant can be that restaurant’s website. A resource of an elevator sensor can be an API to a sensor data store.

The class cso:Location represents locations (L) in an environment. The cso:containsEntity property de-
scribes the relationship between a location and a CPS entity located in that location at a given point in time. Locations
are grouped into hierarchy entities. Each location is directly under a hierarchy entity (cso:HierarchyEntity). This
type of relationship is described by the cso:isUnder property. As an example, a location l ∈ L contains ten sensors,
two gates and five trolleys (cso:CPSEntity) at time t. l is directly under the coverage of terminal 1. A location can
be directly connected to other locations. The class cso:Connection represents a direct connection from a location to
another. Each connection is attributed with a finite set of resources providing information about the path between the
two locations. The property cso:hasConnectingResource relates a connection to such a resource. For instance, a
direct connection from l to l′ ∈ L is attributed with a set of resources Rl−l′ ⊂ R providing information about the path
from l to l′. An example of a location described using this ontology is shown in Fig. 3.

The class cso:HierarchyEntity represents all hierarchy entities (HE) in an environment. The cso:hasLevel
property relates a hierarchy entity to a level of hierarchy, represented by the class cso:HierarchyLevel. For exam-
ple, in a hierarchy that consists of three hierarchy levels - airport, terminal, zone, a hierarchy entity can be a terminal, a
zone or an airport. A hierarchy entity may directly contain a finite set of locations. The relationship between a hierar-
chy entity and a location directly under that entity is described by the cso:containsLocation property. A hierarchy
entity may be further divided into a finite set of hierarchy entities of a lower level. An example can be a terminal 1
consisting of zone 1, 2 and 3. To express this kind of connections, we use the property cso:containsHierarchy.
Furthermore, a hierarchy may also be directly under another hierarchy of a higher level (parent hierarchy). Taking the
preceding example, terminal 1 can be under an airport. To relate a hierarchy entity to its parent hierarchy, the property
cso:belongsTo can be used. Such relationship is non-existent if the hierarchy entity is of the highest level (i.e. root).
A hierarchy entity also contains a set of CPS entity types located under its coverage, which can be described by using
the property cso:containsEntityType. The rationale behind this is to facilitate the subgraph extraction algorithm
presented later in section 4.1. A hierarchy entity he ∈ HE may be connected to other hierarchy entities of the same

1 https://partage.mines-telecom.fr/index.php/s/5KeuwFuvFjD4RjS
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Fig. 2. An overview of the cyber-spatial ontology
Fig. 3. An example of a location description

level. To describe how he is directly connected to he′ ∈ HE where he and he′ are at the same level, we use the
class cso:ConnectingPoint. A connecting point is defined by a connected hierarchy entity he′ and a connection c,
instance of the class cso:Connection where:

• the origin of c is an exit point lexit of he where lexit ∈ L is under the coverage of he
• the destination of c is an entry point lentry ∈ L of he′ where lentry is under the coverage of he′

• a finite set of resources Rhe−he′ ⊂ R for the path from lexit to lentry

A ubiquitous environment is dynamic, so its CSG needs to be updated to take into account the dynamics. The
current state of CSG is used as an input for solving MGPF problems in the environment.

3.2. Problem formulation

We formally define multi-goal pathfinding MGPF as MGPF = 〈CSG, no, nd,G,C〉 where:

• CSG is a cyber-spatial graph, as previously defined
• no ∈ L is a node representing a start location
• nd ∈ L is a node representing a destination
• G is an ordered list of goals to satisfy. A goal g ∈ G is an activity to be satisfied, and g may be satisfied at a

number of locations Lg ⊂ L.
• C is a set of problem-specific criteria for evaluating a path. For instance, a criterion can be distance or price.

A problem is solved when an optimal path is found. A path is a list of locations through which every goal can be
satisfied in the given order. A path is optimal if it has a minimum cost evaluated based on C.

4. The approach

An overview of our approach to MGPF is shown in Fig. 4. The order in which goals G are satisfied can be
determined in two different fashions. First, the order is given explicitly as a part of the problem. An example of such
case is when a user explicitly specifies the order of goals in which they want to accomplish. Second, the order is not
explicitly specified, but needs to be determined due to the constraints of the goals. In this approach, we assume the
first case in which input goals are already in the right order.

The first step of the approach is to associate each goal to the locations at which it can be satisfied (Algo 1 - Line
2). A goal g ∈ G can be satisfied at a location l ∈ L if l contains one or more CPS entities that enable g to be
achieved. This is where the semantics comes into effect. In the knowlege model, previously described in section 3.1,
each instance of cso:CPSEntity is associated with a CPS entity type, an instance of the class cso:CPSEntityType.
To determine whether a goal can be satisfied at/using a CPS entity, the key idea is to find additional data on the Web
about the type of the CPS entity in a follow-your-nose fashion8. Though essential, this step is not in the scope of this
paper. We focus on the next three steps - subgraph extraction, goal-space graph generation, and multi-layer search.
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Fig. 4. An overview of the approach Fig. 5. An example of a goal-space graph

4.1. Subgraph extraction

The objectives of this process are, first to identify locations in CSG where one or more goals can be satisfied, and
second, to extract a subgraph from CSG, in which all the goals in G can be satisfied. The rationale behind subgraph
extraction is to reduce the size of the graph over which we execute search algorithms to that of the one containing only
relevant nodes. In addition, the extracted knowledge will also be used in heuristics of the search algorithm, which will
be discussed later in the paper. Pseudo code of the extraction algorithm is shown in Algorithm 1 and 2. Algorithm
1 takes CSG and G as inputs. First, it identifies the CPS entity types associated with each goal (Algo 1 - Line 2).
Second, it traverses the tree to extract relevant hierarchy entities. This is done by using the function search (Algo 2)
that takes as inputs the IRI of a hierarchy entity and a list of CPS entity types associated to the goals. This function
returns a list of child nodes (locations or hierarchy entities) that contain CPS entities of types specified in the list. The
output of the algorithms are (1) locations where each goal can be satisfied (goal-location pairs) and (2) a subgraph
containing locations allowing all goals to be satisfied.

4.2. Goal-space graph generation

Although the order of goals to be satisfied is known, a goal may be satisfied at multiple locations. To determine
which location is optimal for satisfying each goal, we need to take into account the following factors: the cost for
moving from the current goal’s location to the next goal’s location and the quality of CPS entities in the next goal’s
location. The quality of a CPS entity is evaluated using qualitative information from resources. Referring back
to Bob’s scenario, reviews from other customers on a restaurant can be considered as qualitative information for
evaluating restaurants according to Bob’s constraints. To represent the space of this problem, we construct a goal-
space graph by using G and the goal-location pairs extracted from the preceding step.

A goal-space graph, denoted by π, is an acyclic graph where nodes are goal-location pairs, and they are connected
according to the order of goals defined in G. This graph allows us to represent goal-location relationships in the
required order. It can be viewed as a partial plan in which there may be multiple goal-location pairs for each goal. We
use the definition of a partial plan in9, and define π = (GV,GE, L) where:

• GV is a set of nodes of an acyclic graph. Each node v ∈ GV contains a goal g ∈ G and a location l ∈ L where g
can be satisfied at l.

• GE is the edges of an acyclic graph. They represent ordering constraints on the goals in GV . We define v ≺ v′

if v , v′ and (GV,GE) contains a path from v to v′.
• L, as previously defined, is a set of locations in a given environment E

For illustration purpose, refer back to the previous scenario about Bob. Bob’s goals consist of trolley, check-in,
lunch and waiting seat near a plug. Suppose the followings are locations where Bob’s goals can be satisfied: trolley
= {l21, l32}, check-in = {l43, l64}, lunch = {l15, l61, l11} and waiting seat = {l20, l71}. We can generate a partial plan π as
shown in Fig. 5. π is an abstract graph built on top of CSG to integrate the goal dimension, creating a multi-layer
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graph. An edge of π is equivalent to a path that may consist of multiple nodes on CSG. For instance, an edge between
(lunch, l15) and (waitingseat, l20) may be equivalent to a sequence of nodes (l15, l16, l28, l18, l20) on CSG.

At this stage, we have the necessary data including a CSG, a subgraph that covers locations relevant to G, and a
goal-space graph or partial plan π. The remaining step is to determine an optimal path by using the knowledge.

Algorithm 1 extract(CSGHierarchyRoot, goals)
1: for all goal in goals do
2: entityType← goalToCPSEntityTypeMapping(goal)
3: add (entityType, goal) to entityTypeGoalMap
4: previousAreas← [ ]
5: currentAreas← [CSGHierarchyRoot]
6: currentIRIs← [CSGHierarchyRootIRI]
7: while currentAreas not empty do
8: previousAreas← currentAreas
9: currentAreas← [ ]

10: childrenIRIs← [ ]
11: for all iri in currentIRIs do
12: areas← search(iri, entityTypeGoalMap)
13: if areas not empty then
14: for all area z in areas do
15: add z to currentAreas
16: add iri of z to childrenIRIs
17: currentIRIs← childrenIRIs
18: goalToPlaces← [ ]
19: for all area z in previousAreas do
20: currentGoals← get goals of z from entityTypeGoalMap
21: for all goal g in currentGoals do
22: insert (g, z) in goalToPlaces
23: return goalToPlaces

Algorithm 2 search(iri, entityTypeGoalMap)
1: candidateAreas← [ ]
2: for all cpsEntityTypes t present at the iri do
3: if t is in entityTypeGoalMap then
4: potentialChildren← get from iri the list of children con-

taining t
5: for all child c in potentialChildren do
6: add c to candidateAreas
7: return candidateAreas

Algorithm 3 A∗π(π, nstart, ndest, CSG)
1: openList← [nstart]; closedList← []; cachedPathCost← []
2: while openList not empty do
3: n← pop-min(openList)
4: if n is the destination ndest then
5: return n
6: else
7: generate n’s successors and set their parents to n
8: for all n′ successor of n do
9: g← cachedPathCost(ln → ln′ )

10: if g is null then
11: pathn−n′ ← A∗CSG(CSG, ln, ln′ , cachedPathCost)
12: g← pathn−n′ .cost
13: g(n’)← g + n.g
14: h(n’)← hπ(n′)
15: n′.f = g(n’) + h(n’)
16: if n′ not in openList nor closedList then
17: add n′ to openList
18: else if n′ in openList and f (n′) < f (n′openlist) then
19: replace n′openlist by n′

20: else if n′ in closedList and f (n′) < f (n′closedlist) then
21: remove n′closedlist from closedList
22: add n′ to openList

Algorithm 4 A∗CSG(CSG, lstart, ldest, cachedPathCost)
1: openList← [lstart]; closedList← []
2: while openList not empty do
3: l← pop-min(openList)
4: if l is the destination ldest then
5: return l
6: else
7: generate l’s successors and set their parents to l
8: for all l′ successor of l do
9: g← request-resource rl−l′

10: add [(l→ l′), g] to cachedPathCost
11: h← hgoal(l′) + hhierarchy(l′)
12: l′.f = l.g + g + h
13: if l′ not in openList nor closedList then
14: add l′ to openList
15: else if l′ in openList and f (l′) < f (l′openlist) then
16: replace l′openlist by l′

17: else if l′ in closedList and f (l′) < f (l′closedlist) then
18: remove l′closedlist from closedList
19: add l′ to openList

4.3. Multi-layer search

A goal-space graph is an abstract graph that is constructed based on a CSG. Computing the cost of an edge between
two nodes of a goal-space graph necessitates a pathfinding between two corresponding nodes on a CSG. Therefore,
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the search space is composed of two different graphs - a goal-space graph π and its underlying CSG. We consider
each graph as a layer, making it a multi-layer graph.

4.3.1. Heuristics
Heuristics play an important role in graph search. Good heuristics lead a search process to find a path quicker and

expands less nodes. In our context, node expansion can be costly. Expanding a node requires the algorithm to compute
the cost function of every reachable neighbor. Considering it needing access to resources to retrieve information for
the computation, the number of expands has a significant impact on the overall performance of the algorithm. For
example, accessing resources might introduce latency or problems with threshold limits in accessing resources’ API.
Therefore, we propose heuristics that exploit the knowledge of each layer to improve the search process.

On the π layer, we design a heuristic hπ for evaluating each node that is computed based on the number of
goals that can be satisfied at the node’s location and the quality of CPS entities the location contains. To eval-
uate a CPS entity, we retrieve information from resources relevant to the entity, as described using the property
cso:hasRelevantResource. The rationale behind using such information is that there may be multiple locations
where each goal can be satisfied. Introducing qualitative information as a part of the cost function allows us to find
the best location for each goal.

On the CSG layer, we propose two different heuristics, namely hgoal and hhierarchy. Goal-based heuristic hgoal uses
the subgraph extracted during subgraph extraction stage. The heuristic prioritizes nodes that are in the subgraph. The
logic behind this heuristic is that the subgraph contains locations and hierarchy entities in which goals can be satisfied.
Expanding those nodes may lead to more promising paths as they are the locations or under the hierarchy entities
where at least one goal can be satisfied. Let CSGsub be an extracted subgraph, Lsub a finite set of locations in CSGsub

and HEsub a finite set of hierarchy entities in CSGsub. If a node n belongs to Lsub or n’s direct or indirect hierarchy
entity hen belongs to HEsub, we prioritize n by assigning its heuristic cost hgoal(n) = 0; Otherwise, hgoal(n) = 1.
Hierarchy-based heuristic hhierarchy prioritizes expansion of nodes that are located in a hierarchy entity closer to that of
the destination. The underlying motivation of this heuristic is that moving between two nodes in the same hierarchy is
less costly than between nodes in different hierarchies, with cost being generic (e.g. distance, time, price). In practice,
let ndest be the destination node and n be the node being evaluated. At each level of the hierarchy, if n’s hierarchy
entity is different from that of ndest, we add a 1 to n’s heuristic cost hhierarchy(n). For example, referring back to Fig.
1 and assuming that L7 is the destination node, hhierarchy(L5) = 0 because L7 and L5 share the same hierarchy entity
at every level. hhierarchy(L1) = 1 because at the second level, L1 is under a hierarchy entity Sub-space 1, while L7 is
under Sub-space 2.

4.3.2. Multi-layer search algorithm
Many algorithms have been proposed to address pathfinding problems such as Dijkstra’s algorithm, uniform-cost

search and the most well-known A* algorithm. The aim of A* is to find a minimum-cost path. It evaluates nodes by
their cost using a cost function f (n) = g(n) + h(n) where g(n) is the cost to reach n from the start node and h(n) is the
minimal estimated cost to reach a destination node from n. This property of A* allows us to use the knowledge-based
heuristics we propose for each layer of a multi-layer graph. To search over a multi-layer graph, we adapt A* algorithm
into a multi-layer A* (MLA*) to handle resource accesses and allow communication between π layer and CSG layer.

In MLA*, we combine two different versions of A*, an A∗π for searching on the π layer and an A∗CSG for the CSG
layer. A∗π (Algo 3) behaves similarly to classic A* except during node expansion. When a node n is expanded, a set
of nodes reachable from n is found. However, as the nodes are abstract, n’s location ln and each of its neighbors’
locations ln′ might not be directly connected. To compute the path between n and each of its neighbors, A∗π instantiates
an A∗CSG to search on CSG for a path between ln and ln′ . To evaluate each node, A∗π uses a cost function fπ = gπ + hπ.
The cost of movement gπ on π layer is obtained from executing an A∗CSG.

On a CSG layer, A∗CSG (Algo 4) is also based on the classic A* with a modification to communicate cached results
of pathfinding (i.e. path and costs) to A∗π so that those results might be reused. It is necessary to note that on the CSG
layer, the search space is composed of locations, while hierarchy entities are used for computing the heuristics. To
evaluate a node, A∗CSG uses a cost function fCSG = gCSG + hCSG. To compute gCSG, we use information from connecting
resources of each location, described using the property cso:hasConnectingResource. As for the heuristic cost
hCSG, we combine two heuristics, namely hgoal and hhierarchy.
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Fig. 6. Expands of A* using different heuristics on the same graph
Fig. 7. Run time of A* using different heuristics on the same graph

5. Experimental results

Our experiments were executed on a 2.4GHz Intel Core i7 laptop with 16GB of RAM. We use three different CSGs
for these experiments. Graph 1 has a 3-level depth hierarchy (1 hierarchy entity at first level, 10 at second, 100 at
third), 10000 nodes (locations) and 10000 CPS entities. Graph 2 and 3 have a 4-level depth hierarchy (1 hierarchy
entity at first level, 10 at second, 100 at third, 1000 at fourth), 10000 locations and 10000 CPS entities. The difference
between graph 2 and 3 is that in graph 2, there is only one connection between 2 locations and 1 exit point for each
hierarchy entity, while there are 3 connections and 2 exit points in graph 3. For each experiment, we used 2 types of
requests: the start and destination nodes are (1) in the same hierarchy entity, (2) in different hierarchy entities.

First, we conducted an experiment with graph 3 using 3 different heuristics, namely hgoal, hhierarchy, and both
of them combined h. We use uniform-cost algorithm as a baseline algorithm for comparison. h expands the least
reducing almost 40% of expanded nodes compared to the uniform-cost algorithm, followed by hhierarchy and then hgoal

as shown in Fig.6. We introduced latency in accessing resources, which are 1, 3 and 5 milliseconds (ms), during node
expansion. For instance, in the 3 ms case, we generate latency values between 0 to 3 ms. The time efficiency increases
in function of the latency, depicted in Fig. 7.

In the second experiment, we focused on different types of requests over the same graph (graph 1). Fig. 8 demon-
strates time efficiency (%) gained by using A* with h compared to uniform-cost. The results show that for requests of
type (1), uniform-cost is more efficient than A* even with latency. This is because when a request involves only one
hierarchy entity, hhierarchy has no effects. In addition, A* is slower because it spends time computing the heuristics.
For type (2) requests which involve multiple hierarchy entities, A* starts to overtake uniform-cost at around 2 ms of
latency.

In the third experiment, we compared A* with h to uniform-cost algorithm over 3 different graph structures, graph
1, 2 and 3, as illustrated in Fig. 9. There is a significant difference in efficiency over different graph structures. We
believe that the heuristic is more efficient in graph 3 because there are more exits and more connections between
nodes. In such case, the heuristic guides the search to choose better nodes among the options. In graph 2 and 3
however, there are not many options. From each node, only one path is possible. Comparing graph 1 and graph 2, the
heuristic works better on graph 2 because locations are more distributed. In graph 1, each 1000 locations are grouped
under the same hierarchy, so the hhierachy has a minimal effect. Uniform-cost outperforms A* when there is no latency
for graph 1 and graph 2 because the number of expands reduced cannot compensate for the time A* needs to compute
its heuristic functions. However, when there is latency, the time needed to expand each node increases, making A*
gain more time efficiency compared to uniform-cost.

Concerning the efficiency, the uniform-cost algorithm performs better in most cases when there is no latency. The
reason is the uniform-cost algorithm does not use any heuristic, while A* spends more time to compute its heuristic
function. However, A* starts to surpass uniform-cost when latency, around 1 ms, is introduced. This time efficiency
is linear to the introduced latency as shown in Fig. 9.
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Fig. 8. Run time efficiency of A* with h(goal, hierarchy) on graph 1
Fig. 9. Run time efficiency of A* with h(goal, hierarchy) compared to
uniform-cost over different graph structures

In terms of effectiveness of the approach, in all our experiments with various graph structures, requests, types
and numbers of CPS entities, we obtained the desired solutions with minimum cost. Though not a definite proof of
optimality, A* with our heuristics did provide the optimal solution as uniform-cost in all cases of our experiments.

6. Conclusion

This paper describes an approach to multi-goal pathfinding in a ubiquitous environment. The approach uses data
from cyber-physical entities in an environment as well as from external resources such as the Web to solve multi-goal
pathfinding problems. We discussed the missing knowledge about connections between spatial and CPS dimensions
of environments. We proposed a knowledge model for semantically describing such knowledge. We presented a
method to generate a goal-space graph based on a given set of goals and a CSG. A goal-space graph is an abstract
graph built on top of a CSG, making it a multi-layer graph. We proposed different heuristics for the algorithm, each of
which exploits the knowledge described in CSG. An adaptation of A* algorithm was made to address the search over
multi-layer graphs. It is worth mentioning that our knowledge model is not limited to describing a single environment.
One of our objectives is to allow representations of different environments to be compatibly integrated together, thus
rendering the representations extensible and making our approach applicable in solving MGPF problems of different
scales. In our future work, we will address the latency issue resulted from accessing resources. Our first intuition
is to parallelize the algorithm to concurrently search. In addition, information in CSG is dynamic. For instance,
cyber-physical things such as smart trolleys are mobile. Dynamically updating CSG is important for the accuracy of
solutions. Therefore, en-route pathfinding will be addressed as a part of our future work.
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