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In deep tissue photoacoustic imaging, the spatial res-
olution is inherently limited by acoustic diffraction.
Moreover, as the ultrasound attenuation increases with
frequency, resolution is often traded-off for penetra-
tion depth. Here we report on super-resolution pho-
toacoustic imaging by use of multiple speckle illumina-
tion. Specifically, we show that the analysis of second-
order fluctuations of the photoacoustic images com-
bined with image deconvolution enables resolving op-
tically absorbing structures beyond the acoustic diffrac-
tion limit. A resolution increase of almost a factor 2 is
demonstrated experimentally. Our method introduces
a new framework that could potentially lead to deep
tissue photoacoustic imaging with sub-acoustic resolu-
tion.

Light scattering prevents standard optical microscopes to ob-
tain well-resolved images deep inside biological tissues. In the
past twenty years, photoacoustic (PA) imaging has been devel-
oped to overcome this limitation, by imaging optical absorption
deep inside strongly scattering tissue with the resolution of ul-
trasound [1]. PA imaging relies on the unscattered ultrasonic
waves emitted by absorbing structures under pulsed illumina-
tion via thermo-elastic stress generation. It therefore provides
images at depth in tissue with a spatial resolution limited by
acoustic diffraction. Ultimately, the ultrasound resolution for
biological soft tissue is limited by the attenuation of ultrasound,
which typically increases linearly with frequency. As a result,
the depth-to-resolution ratio of PA imaging at depth is around
200 in practice [1, 2]. As an illustration, axial resolution down to
5 µm and lateral resolution down to 10 µm have been reached
with high frequency acoustic detectors at depth up to 5 mm [3].

In this letter, we demonstrate that the conventional acoustic-
diffraction limit in PA imaging may be overcome by exploiting
PA signal fluctuations, building on the super-resolution optical
fluctuation imaging (SOFI) technique developed for fluorescence
microscopy [4]. SOFI is based on the idea that a higher-order sta-
tistical analysis of temporal fluctuations caused by fluorescence
blinking provides a way to resolve uncorrelated fluorophores

within a same diffraction spot. In this work, we introduce mul-
tiple optical speckle illumination as a source of fluctuations for
super-resolution PA imaging, inspired by the principle intro-
duced in optics with SOFI [4] or from derived approaches using
speckle illumination[5]. In PA imaging, multiple speckle illu-
mination was initially introduced by our group as a mean to
palliate limited-view or highpass-filtering artefacts [6]. Here,
we demonstrate that a second-order analysis of optical speckle-
induced PA fluctuations also provides super-resolved PA images
beyond the acoustic diffraction limit.

In this work, we consider PA images reconstructed from a
set of PA signals measured with an ultrasound array. A con-
ventional backprojection algorithm is used to reconstruct the
images, and it is assumed that the reconstructed PA quantity
A(r) may be written as a convolution:

A(r) = [µa(r)× I(r)] ∗ h(r) (1)

where h is the PSF corresponding to the conventional PA imag-
ing process, µa the distribution of optical absorption and I the
optical intensity pattern (see Supplement 1, sec. 1.A, for a de-
tailed justification of Eq. 1). Let us now consider that the region
of interest is successively illuminated by many different speckle
patterns Ik(r) with mean 〈I(r)〉 = I0. The following expression
for the mean PA image (estimated from averaging the PA images
obtained with many realizations Ik(r) of the speckle illumina-
tion)

〈A〉(r) = I0 × [µa(r) ∗ h(r)] (2)

shows that the resolution of the reconstructed image 〈A〉(r) is
dictated by the spatial frequency content of h(r). Under the as-
sumption that the optical speckle size is much smaller than that
of h(r), the variance image σ2[A](r) for uncorrelated speckles is
given by (see Supplement 1, sec. 1.B)

σ2[A](r) ∝ µ2
a(r) ∗ h2(r) (3)

The variance image appears as the convolution of the squared
object by the squared PSF, which has a higher frequency content
than the PSF itself. As a result, the variance image is expected to
have a higher resolution as compared to the mean image.
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Fig. 1. a) Experimental setup: A 5 ns laser pulse is focused on
a rotating diffuser. The resulting speckle pattern illuminates
a collection of absorbing beads, generating ultrasounds which
are detected with a linear ultrasonic array. b) Typical speckle
patterns (speckle grain size ∼30 µm). c) Typical point spread
function (PSF) of the PA imaging setup (envelope FWHM: 360±
25 µm in the transverse (x) direction and 450± 25 µm in the axial
(z) direction). Scale bars: 200 µm.

Our objective was to demonstrate experimentally that the
measurement of a two-dimensional (2-D) variance image can
provide a super-resolution PA image of the absorption distri-
bution beyond the acoustic-diffraction limit. The experimental
setup used is shown in Fig. 1.a. The beam of a nanosecond
pulsed laser (Continuum Surelite II-10, 532 nm wavelength, 5 ns
pulse duration, 10 Hz repetition rate) was focused on a ground
glass diffuser (Thorlabs, 220 grit, no significant ballistic transmis-
sion). The scattered light illuminated a 2-D absorbing sample
embedded in an agarose gel block. This phantom was located 5
cm away from the diffuser, leading to a measured speckle grain
size of ∼ 30 µm. The absorbing sample was placed in the imag-
ing plane of a linear ultrasound array (Vermon, 4 MHz center
frequency, >60% bandwidth, 128 elements, 0.33 mm pitch), con-
nected to an ultrasound scanner (Aixplorer, Supersonic Imagine,
128-channel simultaneous acquisition at 60 MS/s). A collection
of black polyethylene microspheres (Cospheric, 50 µm and 100
µm in diameter) was used to fabricate phantoms with isotropic
emitters. Estimates of the PSF h(r) were measured using isolated
50 µm diameter microspheres, while ordered patterns to be im-
aged were formed using 100 µm diameter microspheres. Fig. 1.c
shows the PSF corresponding to our imaging setup. The di-
mensions of the PSF, defined as the full width at half maximum
(FWHM) of its envelope, were 360± 25 µm in the transverse (x)
direction and 450± 25 µm in the axial (z) direction. It is worth
noting that the anisotropy and bipolarity of the PSF are singular
features of limited-view and limited-bandwidth PA imaging,
and do not have their counterpart in regular all-optical imag-
ing. The measurement and analysis of the PSF h(r) is further
described in detail in Supplement 1, sec.3.

For each sample, a set of PA images was reconstructed for 100
uncorrelated speckle patterns, obtained by rotating the diffuser.
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Fig. 2. a) Photograph of the absorbing sample: red and blue
arrows indicate respectively 50 µm and 100 µm diameter beads.
b) Mean PA image over 100 speckle realisations, mimicking
uniform illumination. c) Square root of the variance image over
100 speckle realisations. Scale bars: 500 µm.

The mean and variance images were then computed on a per-
pixel basis. As described in detail in Supplement 1, sec. 2.B,
special care was taken to reduce sources of fluctuations other
than the multiple speckle illumination between PA acquisitions.
For the image reconstruction, a time-domain backprojection
algorithm was used (see Supplement 1, sec. 2.C). Square images
of 20 mm side were reconstructed on a grid of square pixels
(25 µm side). To demonstrate the resolution enhancement of
our technique, we first designed the phantom shown in Fig. 2.a.
Pairs of 100 µm diameter beads were positioned along the z
and x axis. The distances between beads (center to center) were:
120 µm, 140 µm and 200 µm along the z direction (from top to
bottom), and 250 µm, 200 µm and 160 µm along the x direction
(from left to right).

Fig. 2.b shows the mean PA image of the sample, obtained
from averaging over the 100 speckle realizations, and which
corresponds to the PA image obtained under homogenous illu-
mination [6]. Fig. 2.c shows the square root of the variance of the
same data set to make a fair comparison with the mean image
in term of units and resolution. At this stage, no significant
resolution enhancement can be seen from the comparison of the
mean and variance images, for both of which the pairs of beads
are blurred by the convolution with either h(r) (Fig. 2.b) or h2(r)
(Fig. 2.c). To demonstrate that the variance image contains sub-
acoustic diffraction information thanks to the higher-frequency
content of h2(r) as compared to h(r), and to remove the peculiar
side lobes of the PA PSF h(r) observed in Fig. 2.b and Fig. 2.c,
image deconvolution was performed based on Eqs. 2 and 3 to re-
trieve the absorption distribution µa(r). The mean and variance
images were deconvolved respectively by h(r) and h2(r). In
an ideal noise-free situation, deconvolution of an image should
retrieve the absorbing object with no resolution limit. However,
in the presence of noise, spatial frequencies are accurately mea-
sured up to a certain limit set by the signal-to-noise ratio (SNR).
An inversion strategy that allow accounting for the presence
of noise in the measurement was therefore carried out to per-
form the deconvolution. Retrieving µ2

a(r) from measurements

of the variance image modeled as σ̂2[A](r) = h2(r) ∗ µ2
a(r) + ε

(with ε accouting for the experimental noise) was carried out
by the minimization of the following constrained least-square
functional:

J(x) := ||h2 ∗ x− σ̂2[A]||2 + α||x||2 subject to x ≥ 0 (4)

with || · || the Euclidian norm over the image space, and α ≥ 0 a
regularization parameter. The constrained minimizer x̂α pro-
vides a regularized solution to the deconvolution problem,
which in turn defines an estimation of the absorption distribu-
tion µ̂aα :=

√
x̂α. For comparison, the exact same approach was
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Fig. 3. a) Mean image deconvolved by the PSF; white dashed
lines indicates the cross-section directions. b) Square root of the
variance image deconvolved by the squared PSF. c) Horizon-
tal cross-sections, blue curve: deconvolved mean image, red
curve: square root of deconvolved variance image. d) Vertical
cross-sections, blue curve: deconvolved mean image, red curve:
square root of deconvolved variance image. Scale bars: 500 µm.

applied to retrieve an estimation of µa from the measurement of
the mean image. In practice, the minimization of the functional
above required adjusting the regularization parameter α in or-
der to obtain a fair resolution v.s. noise trade-off [7, Sec. 5.6],
and choosing Niterations in the FISTA numerical method used to
perform the minimization (see Supplement 1, sec. 1.C for further
details on the minimization approach and the corresponding
algorithm).

Deconvolved images are shown in Fig. 3. As mentioned
above, the deconvolved variance image is square rooted to re-
trieve the absorption distribution µ̂aα. The parameters of the
deconvolution algorithm were α = 105, Niterations = 800. On
the deconvolved mean image (Fig. 3.a), we observe that only
absorbers separated by the largest distance in each direction are
resolved (z direction: 200 µm, x direction: 250 µm). In compar-
ison, the absorbers appear much sharper on the deconvolved
variance image (Fig. 3.b) and almost every pair is resolved on
this image. The only exception is the upper one, for which the
beads are nearly touching. Cross-sections along both directions
are shown respectively on Fig. 3.c and d. These cross-sections
show the maximum amplitude projection of the PA image along
a±100µm band around the white dashed lines plotted in Fig. 3.a.

To further investigate the influence of the PSF anisotropy,
a second phantom was designed, in which 100 µm diameter
beads are equally spaced from each other with a center-to-center
distance of about 150 µm and distributed on a quarter circle. The
corresponding results are shown in Fig. 4. The parameters of the
deconvolution algorithm were α = 106, Niterations = 600. Not
a single bead can be resolved on the deconvolved mean image
(Fig. 4.a). In contrast, the 6 beads can easily be distinguished on
the deconvolved variance image (Fig. 4.b). The last two beads
on the right are still distinguishable but tend to smear, according
to the lower resolution in the transverse x direction. Because
of the PSF anisotropy (a consequence of the limited view), we
observe that the resolution strongly depends on the angle of the
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Fig. 4. a) Mean image deconvolved by the PSF. b) Square root
of the variance image de convolved by the squared PSF; white
dashed lines indicates the cross-section direction. c) photograph
of the absorbing sample, red and blue arrows indicate respec-
tively 50 µm and 100 µm diameter beads. d) Cross-sections, blue
curve: mean image, red curve: square root of variance image.
Scale bars: 200 µm.

beads pair with respect to the probe surface.
Speckle-induced PA fluctuation imaging is an original

method recently proposed by our group to enhance visibility
in PA imaging. In this study we demonstrated that fluctuation
imaging can also be used to overcome the ultrasound diffrac-
tion limit in PA tomography. We showed that this method can
separate small absorbers unresolved under standard uniform
illumination. This is to the best of our knowledge the first super-
resolution PA imaging method which does not require optical
focusing, and therefore is applicable beyond the ballistic regime.
Super resolution PA microscopy was reported in previous stud-
ies, but it relied on light focusing and on nonlinear absorption
mechanisms, a situation which cannot be translated to deep
tissue PA imaging [8, 9].

The common approach to obtain high resolution at depth in
PA imaging was to date to improve the acoustic detection by em-
ploying higher frequencies and increasing the detection aperture.
Here, we demonstrated that additional efforts can be deployed
towards the illumination, in order to induce fluctuations and
separate discrete absorbers below the acoustic diffraction limit.

Deconvolution was found essential to reveal the super-
resolution properties with the second-order fluctuation images.
Deconvolution has already been considered in PA imaging, as
part of the reconstruction algorithm [10] and to compensate
for smearing induced by the spatial impulse response of the
finite-size detectors [11]. However, no super-resolution was yet
demonstrated , since there were no physical mechanism extend-
ing the high spatial frequency information. Our approach goes
beyond past works by considering fluctuations in PA images as
a signal that reveal higher spatial frequencies above the noise
level. A gain in resolution was obtained in both transverse and
axial directions, with a resolution enhancement of at least 1.7 in
both directions.

The deconvolution approach was implemented with ab-
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sorbers of size similar to that of the absorbers used to measure
the point spread function. As an immediate drawback, decon-
volution was unable to restore the actual size of the absorbers,
which lead on the deconvolved image to reconstructed beads
smaller than their real size. Nonetheless, this method showed
a very good sub-acoustic resolution performance, which was
the objective of our work. Although the beads were expected to
be almost equally absorbing, a difference in the reconstructed
amplitudes was noticed. The proposed method was therefore
not shown to be quantitative, which could be attributed to the
non-linear deconvolution scheme. Further work should be car-
ried out to investigate the possibility to retrieve quantitative
absorption information.

Our proof-of-concept experiments were carried out at low
medical ultrasound frequency to simplify the controlled fabrica-
tion of absorbing samples (see Supplement 1, sec. 2.A). However,
the approach could be scaled down using high frequency de-
tectors, and could also be extended to 3D PA imaging. It must
be emphasized that speckle illumination is achievable at depth
using a seeded laser [12], whose long coherence length still pro-
vides speckle formation after several centimeters of propagation
in scattering tissue. PA fluctuations induced by speckle illu-
mination are expected to decrease as the number of speckle
grains contained in the absorbers increases [6]. Detection of
speckle-induced fluctuations would therefore be challenging
deep inside tissue where the speckle grains are on the order
of half the optical wavelength, and will require special care on
the excitation and detection stability. In the past few years, sev-
eral techniques combining shaped coherent illumination and PA
imaging have been developed. These methods aim at focusing
light inside tissue, possibly with sub-acoustic resolution, which
could also lead to super-resolved PA imaging [13–15]. However,
these methods require expensive hardware and tedious exper-
imental procedures. We proposed here a very simple imaging
technique than does not require any costly equipment and nearly
no optical alignment. For biological applications, tissue-induced
temporal decorrelation of speckle patterns could even be ex-
ploited as a source of fluctuating illumination [16]. Alternatively,
this super-resolution method can be extended to fluctuation of
the absorption induced by blinking or switchable [17] contrast
agents.
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Super-resolution photoacoustic fluctuation imaging with multiple
speckle illumination: supplementary material

This document provides supplementary information to “Super-resolution photoacoustic fluctuation imaging with multiple speckle
illumination”. The first section contains theoretical informations: the conditions are given to model the photoacoustic images
reconstruction as a convolution, the variance image is shown to result from the convolution of the squared PSF, and details on the
deconvolution algorithm used are given. The second section provides more detailed information on the experimental methods,
including samples preparation, measurements and processing of photoacoustic signals, and the backprojection algorithm used for the
photoacoustic reconstruction. The last section analyze some properties of the photoacoustic point spread function.

1. THEORY

A. Photoacoustic imaging as a convolution process
In its simplest form, the generation and propagation of photoacoustic (PA) pressure waves p(r, t), generated by a distribution µa(r) of
optical absorption illuminated by a pulsed light with intensity I(r)× f (t), may be described in a homogenous acoustic medium (with
speed of sound cs and Grüneisen coefficient Γ) by the following equation[

∂2

∂t2 − c2
s∇2

]
p(r, t) = Γµa(r)I(r)

∂ f (t)
∂t

(S1)

Eq.S1 shows that for a given temporal pulse shape f (t), the pressure field is linearly related to the distribution µa(r)× I(r) of optical
absorption times the optical intensity pattern. Various algorithms exist that aim at reconstructing µa(r) × I(r) from a set of PA
signals measured at various points located on some boundary around the sample to be imaged [S18, S19]. In the context of our work,
we consider a conventional back-projection algorithm based on summing values of the PA signals taken at appropriate retarded
times [S18]. As such, the reconstructed images remain linearly related to µa(r)× I(r). Moreover, if this linear reconstruction process
may also be considered as translation-invariant, i.e. a spatial translation of the object simply translates the reconstructed object, then
the reconstruction process may be written as a convolution as assumed by Eq. 1 of our work. Because the PA signals are measured on
some boundary around the region to be imaged, the translation invariance cannot be strictly verified. However, for a field of view
small enough such that every point that it contains is reconstructed with the same point spread function (PSF), it becomes possible to
reasonably assume that the reconstruction process is translation-invariant. In our case, this assumption was validated by measuring
PSF at four different locations in the field of view. The four PSF appeared identical (see sec. B below), and the results shown in the
manuscript were independant of the particular PSF that was used to perfom the deconvolutions, thus validating our assumption that
the reconstruction process may be written as a convolution.

B. The variance image as a convolution with h2(r)
From A(r) = [µa(r)× I(r)] ∗ h(r) (valid only for objects lying in a small enough field of view, see sec. A above), the variance image
σ2[A](r) reads

σ2[A](r) =
∫∫

C(r′, r′′)µa(r′)µa(r′′)h(r− r′)h(r− r′′)dr′dr′′

where
C(r′, r′′) = 〈I(r′) · I(r′′)〉 − 〈I(r′)〉 · 〈I(r′′)〉

is the autocovariance of the intensity fluctuation in the speckle patterns. Under the common assumption that the speckle is wide-sense
stationary [S20, p.67], the autocovariance function C is a function of only one variable r = r′ − r′′. This function C(r) is sharply peaked
around its center, and its characteristic length is by definition the speckle grain size [S20, p.72]. If the speckle grains are small enough
compared to the PSF, C(r′ − r′′) may be considered in the double integral above proportional to a delta function δ(r′ − r′′), yielding
the following convolution expression:

σ2[A](r) ∝
∫

µ2
a(r
′)h2(r− r′)dr′ = µ2

a(r) ∗ h2(r)

This expression is strictly equivalent to that found for the second-order analysis in SOFI [S4], apart from the origin of the fluctuations.

C. Deconvolution algorithm: FISTA
As introduced in the main manuscript, deconvolution of the variance image was performed by minimizing the following constrained
least-square functional:

J(x) := ||h2 ∗ x− σ̂2[A]||2 + α||x||2 subject to x ≥ 0 (S2)

From a practical viewpoint, an iterative minimization algorithm is required for the numerical evaluation of x̂α. Since J is a strictly
convex functional if α > 0, its global minimizer x̂α is asymptotically reached by any locally convergent iteration, whatever the
initial-guess of the algorithm. For this constrained optimization task, a natural candidate is the standard projected-gradient (PG)
since its computational burden is very low. The PG is however rather slow to converge and the FISTA iteration [S21] that achieves
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a faster convergence is presently considered as a popular alternative and was used in our work. In comparison to the standard
projected-gradient algorithm [S22], the FISTA method [S21] only requires the additional storage of an auxiliary component y(k). Let
x(0) be an initial-guess and y(0) = x(0), the FISTA update for k = 0, 1, · · · is:

x(k+1) = P+
(

y(k) − θg(y(k))
)

y(k+1) = x(k+1) + k−1
k+2

(
x(k+1) − x(k)

) (S3)

with θ > 0, P+ the projection operator over R+, and g the gradient of the penalized least-square functional above that reads

g(x) := 2
(

h2
)†
∗
(

h2 ∗ x− v̂
)
+ αx (S4)

where h† stands for the adjoint of the operator h. It is worth noting that all the convolution operations that appear above can be
computed efficiently in the Fourier domain via the fast Fourier transform (FFT) and appropriate boundary conditions [S23]. Finally,
the global convergence of Eq. (S3) is granted provided that the constant step-size θ is adjusted within the interval (0, θ) with

θ ≡ 1/ max
ω

(|h̃(ω)|2 + µ)

where h̃(ω) stands for the Fourier transform of h.

2. EXPERIMENTAL METHODS

A. Samples preparation

A collection of black polyethylene microspheres (Cospheric, 50 µm and 100 µm in diameter) was used to fabricate phantoms with
isotropic emitters. Estimates of the PSF h(r) were measured using 50 µm diameter microspheres, while ordered patterns to be imaged
were formed using 100 µm diameter microspheres. To precisely control the relative position of the beads, melted gel was first poured
on a mold drilled with micrometer precision (Mini Mill, Minitech). The beads were then manually placed in the molded holes of the
solidified gel.

B. Measurements and signal processing

To avoid other sources of fluctuation apart from the multiple speckle illumination, appropriate care was taken to eliminate noise
and triggering-induced temporal jitters. The intensity of the laser pulses was monitored with a photodiode to compensate for the
laser pulse-to-pulse energy fluctuations. In addition, for each speckle illumination (i.e. each diffuser position), the PA signals were
averaged over 25 laser pulses to improve the signal-to-noise ratio. The signals were then filtered between 1 MHz and 8 MHz (3rd

order butterworth filter) for noise removal outside of the array bandwidth. A set of PA images was reconstructed for 100 uncorrelated
speckle patterns. The mean and variance images of this data set were then computed on a per-pixel basis. The same procedure was
repeated with one single speckle realization (static diffuser). The resulting variance image was then subtracted from the previous
variance image (with rotating diffuser). This procedure was found to correct for systematic variance noise.

C. Backprojection algorithm

In the context of our work, we considered a conventional back-projection algorithm based on summing values of the PA signals taken
at appropriate retarded times. More specifically, the backprojection algorithm described in [S24, eq. (20)] was implemented while
keeping only the first time-derivative of the processed signal, assuming point-like detectors located in the centers of the elements of
the ultrasound array.

3. PHOTOACOUSTIC POINT SPREAD FUNCTION

A. Measurement

The PSF of the imaging setup was measured by concentrating light on a single 50 µm diameter bead located in the vicinity of the
structured 100 µm bead pattern (see Fig. 2.a). This ensured that the 50 µm microsphere was the only PA source. The diffuser was
removed from the light path during this step.

B. Translation-invariance of the point spread function across the field-of-view

Following the measurement approach described above, PSFs were reconstructed for 4 different locations in the field of view to confirm
that it can be assumed as constant, as required to model the reconstruction by a convolution process. The corresponding results are
summarized in Fig. S1. With our current ultrasonic detection and the back-projection algorithm, we showed that this approach was
at least valid for a 3 mm x 3 mm field-of-view. On the deconvolved images, a slight difference in the PSF shapes would results in
additional artefacts, for instance some rebounds around the reconstructed objects that are located far from the place where the PSF is
measured.

7



b) c)

d) e)

a)

x

z

-1 1
-0.8

0

1

0
z (mm)

f)

-0.2

0

1

10
x (mm)

g)

PA
 a

m
p
lit

u
d
e 

(a
.u

.)

PA
 a

m
p
lit

u
d
e 

(a
.u

.)

1

0

-0.6

x

z

-1

Fig. S1. a) Photograph of the absorbing sample. The red arrows indicate the locations of the 50 µm diameter beads used to measure
the PSF of the PA system. b-e) PSF of the PA imaging setup, recorded at 4 different locations: (b) Top left, (c) Top right, (d) Bottom left,
(e) Bottom right. f) Axial cross-sections of the 4 different PSFs (along z direction): top-left (blue), top-right (red), bottom-left (green),
bottom-right (yellow). g) Transverse cross-sections of the 4 different PSFs (along x direction). Scale bars: 500 µm.
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Fig. S2. a) PSF of the PA imaging system. b) Enveloppe of the PSF (modulus of the Hilbert transform). c) Squared PSF of the PA
imaging system. Scale bars: 200 µm.

C. Analysis

In Fig. S2, we display the PSF (Fig. S2.a) of the PA system and its envelope (Fig. S2.b, computed using Hilbert transform), and the
squared PSF (Fig. S2.c). The conventional resolution of the imaging system (when using uniform illumination) is given by the full
width at half maximum (FWHM) of the enveloppe of the PSF. The FWHM measured on the data shown on Fig. S2.b was 360± 25 µm
in the transverse x direction and 450± 25 µm in the axial z direction. On Fig. S2.c, we observe that the squared PSF is sharper than the
PSF itself, which is expected to lead to a higher measurable frequency content in the fluctuation image. The spatial frequency content
of the PSF and the squared PSF of the PA imaging setup are shown in Fig. S3. We observe that for a given noise level, higher spatial
frequencies are measurable with the squared PSF, hence on the variance image.
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Fig. S3. a) Two-dimensional spatial Fourier Transform (magnitude) of the PSF. b) Two-dimensional spatial Fourier Transform
(magnitude) of the squared PSF. c-d) Same as a-b) with logarithmic scale.
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