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se a novel technique for the removal of heavy metal waste from contaminated water. Our method consists in using dielectrophoresis 
p hydroxyapatite (HAP) particles of 1 �m size in water after they have adsorbed heavy metal (Pb, Zn, Cu, Co and Cr). Although HAP 
eavy metals in water and as such offers great promise as a waste-cleaning tool [1–3], one of the current challenges is the efficient 
he HAP particles once they have adsorbed the heavy metals. We show in this paper that DEP can be used to concentrate such particles 
gions, thus rendering the rest of the solution volume nearly free of contaminated particles. We present here both experimental and 
sults for suspensions at low concentrations.
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rization of the particle induced by the electric field
on-uniformity in that field. The resulting particle
was termed dielectrophoresis (DEP) by Pohl [4].
oresis is a powerful tool for the manipulation of a

e of particles, including micro- and nanosized parti-
It is well-known that when particles are suspended
chamber subjected to a non-uniform electric field,
distribution becomes non-uniform and the particles
e either near or away from the electrodes, depend-
sign of the real part of the frequency-dependent
ossotti factor given by
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d ε∗
p are the complex permittivities of the liquid and

cles, respectively. This property can be used for con-
nd then removing undesirable particles from liquids.
tially varying ac electric field, the time averaged
oretic force acting on an isolated particle is often
the point dipole approximation, which reads
a3ε0εcRe(β(ω))E · ∇E, (1)

the particle radius, ε0 the dielectric constant of the
d E is the RMS value of the electric field. Expression

mailto:Ange.Nzihou@enstimac.fr
mailto:singhp@njit.edu
mailto:aubry@njit.edu
dx.doi.org/10.1016/j.jhazmat.2006.02.057


(1) can als
case E repr

From th
the directio
dient of th
is negative
lows that w
moves the
strength is
trode surfa
when Re(β
where the
dielectroph

2. Numer

2.1. Nume

We now
and then d
We use dire
for the flui
tion or mo
based on th
the fluid flo
domain, an
to be rigid-
tipliers. Th
non-condu

Let Ω be
spherical p
domain bou
system are

ρL

(
∂u
∂t

+

∇ · u = 0

u = uL o

u = Ui + �

Here, u is
cosity of th
part of the
and angula
are solved
known init

The line
particle are

mi

dUi

dt
= F

= T

= U

= �

mi an
i and
part

on th
,i the
in t
he f
etai
com

ic pa
whe

-unif
tive
tenso

the
tion

ysica
ered
re w

e po

Ui

= X

Xi,0
ume
ave t
rder
tenti
ions,

esult

relim
rathe
re w

he co
n of
ic bo
r the
n con
o be used in the case of a dc electric field in which
esents the electric field.
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e magnitude of the electric field and when Re(β)
the force acts in the opposite direction. It fol-
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particles into the regions where the electric field
locally maximum which is normally on the elec-

ces (positive dielectrophoresis). On the other hand,
) is negative the particles move into the regions

electric field strength is locally minimum (negative
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ical simulations

rical scheme and governing equation

proceed with the numerical simulation of the system
escribe the results obtained from these simulations.
ct numerical simulation (DNS) where the equations

d and the particles are solved without any assump-
deling. It is performed using a numerical technique
e distributed Lagrange multiplier method [10], where
w equations are solved on the combined fluid–solid
d the motion inside the particle boundaries is forced
body motion using a distribution of Lagrange mul-
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cting, and the particles spherical and monodispersed.
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d Ii are the mass and moment of inertia of the ith par-
Ti are the hydrodynamic force and torque acting on

icle and FE,i = FDEP,i + FD,i is the electrostatic force
e ith particle (FDEP,i being the dielectrophoretic force
electrostatic particle–particle interaction force, esti-

his paper by the point dipole approximation) and
orce of gravity on the particle (see refs. [11,12] for
ls). In this work, the point dipole approximation is

pute both the dielectrophoretic force and the elec-
rticle–particle interactions, which leads to accurate
n the size of the particles is smaller than the scale
ormity of the electric field. If this is not the case, an
numerical scheme such as that based on the Maxwell
r and used in refs. [13,14] is needed. Also, as the
particles becomes very small (nanoscale), Brown-
may need to be accounted for [15]. In this paper,

l set-up is such that these complications need not be
. We also assume that the particles are spherical, and
e do not need to keep track of their orientations. The

sitions are obtained from the equations
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is the position of the ith particle at time t = 0. Here,
that all particles have the same density ρp, and since
he same radius, they also have the same mass, m.
to calculate the electric field E, we first solve the elec-
al problem�2φ = 0, subjected to prescribed boundary
and then calculate E = −�φ.

s of numerical simulations

inary investigation of the system indicates that neg-
r than positive) dielectrophoresis takes place and
e simulate a situation where the sign of Re(β) is nega-
mputational domain used for the simulation is only a
the experimental device, as shown in Fig. 1, to which
undary conditions are applied in the z-direction to
experimental device. The bottom y–z plane of the
tains aligned castellated electrodes.
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that the HAP particles agglomerate into larger sized

soon as they are mixed with water. The density of
s was 3000 kg/m3. The density of the suspending
1000 kg/m3 and its viscosity was 0.001 N s/m2. The
d distribution in the plane of electrodes is shown in



Fig. 1. Comp
well as the ini

Fig. 2 whil
the same p
the surface
migrate to
darker blue
between th
of the elect

Eighty p
in the expe
the domain
the particle
moving to
particles at
that the par
field.

Fig. 2. Electri
simulation.

Dielectrophoretic force lines in the plane of the electrodes from the
al sim
rectio

erim

icro

dev
or M
t NJ
vario
vice is an integrated dual-microelectrode array chamber,
utational domain showing the electrodes as blackened areas, as
tial particle positions used in the numerical simulation.

e Fig. 3 displays the dielectrophoretic force lines in
lane. The latter predict that as the particles settle on
of the device due to the force of gravity, they will

the areas of lowest electric field magnitude (i.e., the
areas in Fig. 2). Such areas are located in the “wells”

e electrodes, as well as on the top and in the middle
rodes.
articles, each representing a cluster of HAP particles

riments, are initially arranged in a periodic fashion in
as shown in Fig. 1. Once the simulations are started
s start falling due to gravity, while simultaneously

the regions of low electric field. The positions of the

Fig. 3.
numeric
in the di

3. Exp

3.1. M

The
form f
oped a
study
The de
time t = 1.0 s are shown in Fig. 4, which demonstrates
ticles have accumulated in the regions of low electric

c field distribution in the plane of the electrodes from the numerical

which was
cation tech

Fig. 4. Positio
showing strea
and bridges in
ulation. In case of negative dielectrophoresis, particles will move
n opposite to that of the arrows.

ent

fluidic devic

ice used in the experiments is the Microfluidic Plat-
anipulating Micro and Nanoscale Particles devel-

IT, previously reported in refs. [9,16] and used to
us clustering regimes of viable yeast cells [17].
designed and fabricated using standard microfabri-
niques. For the experiments reported in this paper,

ns of the particles at time t = 1.0 s from the numerical simulation,
ks of particles aligned in the z-direction on top of the electrodes
the wells in between the electrodes.



Fig. 5. Experimental electrode geometry: periodic, aligned, castellated bars of
electrodes, rep
between the e

we operate
conditions.

The ele
described b
try with a s
electrodes

3.2. Exper

The exp
solution co
microfluidi
Metallurgic
the electro
ator (BK P
and resultin
digital volt
trodes was
the electro
device was
ticles was
CCD came
PC.

AP/l
on.

repa

con
18 M

itrate
tion
trati
of th
the l
tion
HAP
HAP particles tended to agglomerate (due to their high
c surface area), thus forming particle clusters of larger

al properties of the 5:100 suspension of lead adsorbed HAP powder and
he fluid alone at various electric field frequencies

cy εs σs εc σc
resented by the blackened areas. The electrode width and spacing
lectrodes are both 100 �m.

d the device in the open-air and under static flow

ctrode geometry design used in the experiments
elow is a periodic aligned, castellated bar geome-

ymmetrical electrode width and spacing between the
of 100 �m (see Fig. 5).

imental procedure

erimental set-up is shown in Fig. 6. The liquid
ntaining the HAP particles was pipetted onto the
c device which was mounted on the stage of a Nikon
al MEC600 microscope. We applied a voltage to

des by using a variable frequency ac signal gener-
recision Model 4010A). The applied voltage signal
g current were monitored with an oscilloscope and a

meter. The maximum applied voltage across the elec-
8 V ac rms. Considering that the distance between

des was 100 �m, the electric field strength in the
estimated to be 80 kV/m. The motion of the par-

then observed and recorded using a Digital Color

Fig. 7. H
adsorpti

3.3. P

The
1 L of
lead n
centra
concen
to that
der to
adsorp
of the
1 �m
specifi
size.

Table 1
Electric
that of t

Frequen

ra mounted on the microscope and connected to a

Fig. 6. Experimental set-up.

2.62E+04
1.81E+04
1.25E+04
8.59E+03
5.92E+03
4.09E+03
2.82E+03
1.94E+03
1.34E+03
9.24E+02
6.37E+02
4.40E+02
3.03E+02
2.09E+02
1.44E+02
9.94E+01
6.86E+01

The subscript
continuous ph
conductivity σ

have been non
ead nitrate/DI water solution conductivity as a function of time of

ration of the solution

taminated water solution was prepared by diluting
� deionized laboratory grade water with 6 g of
powder (Sigma–Aldrich) resulting in a 6 g/L con-

of lead nitrate/DI water solution. A suspension of
on 5:100 (ratio of volume fraction of HAP particles
e liquid) was then obtained by adding the HAP pow-
ead water solution and stirring for 24 h to allow total
of the lead nitrate by the HAP. The mean diameter
powder was 1 �m. When added to water, the fine
4.25E+04 2.69E−03 4.63E+04 2.68E−03
6.14E+04 2.58E−03 7.24E+04 2.52E−03
8.74E+04 2.51E−03 1.05E+05 2.40E−03
1.26E+05 2.46E−03 1.48E+05 2.31E−03
1.85E+05 2.42E−03 2.05E+05 2.26E−03
2.77E+05 2.37E−03 2.85E+05 2.23E−03
4.19E+05 2.29E−03 4.04E+05 2.21E−03
6.31E+05 2.18E−03 5.86E+05 2.18E−03
9.22E+05 2.06E−03 8.65E+05 2.11E−03
1.30E+06 1.94E−03 1.24E+06 2.02E−03
1.75E+06 1.82E−03 1.75E+06 1.96E−03
2.30E+06 1.76E−03 2.45E+06 1.89E−03
3.05E+06 1.71E−03 3.32E+06 1.84E−03
4.05E+06 1.67E−03 4.44E+06 1.81E−03
5.47E+06 1.64E−03 6.03E+06 1.79E−03
7.61E+06 1.60E−03 8.52E+06 1.79E−03
1.08E+07 1.57E−03 1.23E+07 1.80E−03

‘s’ refers to the suspension while the subscript ‘c’refers to the
ase (liquid). Variables shown are the permittivity ε′ and the electric
′. Conductivity values are given in S/cm and permittivity values
-dimensionalized with the permittivity of the vacuum.
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