
HAL Id: hal-01634368
https://hal.science/hal-01634368v1

Submitted on 14 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Bitcoin Conflicts Through a Glimpse of
Structure

Thibaut Lajoie-Mazenc, Romaric Ludinard, Emmanuelle Anceaume

To cite this version:
Thibaut Lajoie-Mazenc, Romaric Ludinard, Emmanuelle Anceaume. Handling Bitcoin Conflicts
Through a Glimpse of Structure. Proceedings of the 32nd ACM SIGAPP Symposium On Applied
Computing, Apr 2017, Marrakesh, Morocco. �10.1145/3019612.3019657�. �hal-01634368�

https://hal.science/hal-01634368v1
https://hal.archives-ouvertes.fr

Handling Bitcoin Conflicts Through a Glimpse of Structure

Thibaut Lajoie-Mazenc
CNRS, UMR 6074

France
tlm@kth.se

Romaric Ludinard
ENSAI, UMR 9194

France
romaric.ludinard@ensail.fr

Emmanuelle Anceaume
CNRS, UMR 6074

France
anceaume@irisa.fr

ABSTRACT

Double spending and blockchain forks are two main issues
that the Bitcoin crypto-system is confronted with. The for-
mer refers to an adversary’s ability to use the very same coin
more than once while the latter reflects the occurrence of
transient inconsistencies in the history of the blockchain dis-
tributed data structure. We present a new approach to tackle
these issues: it consists in adding some local synchronization
constraints on Bitcoin’s validation operations, and in making
these constraints independent from the native blockchain
protocol. Synchronization constraints are handled by nodes
which are randomly and dynamically chosen in the Bitcoin
system. We show that with such an approach, content of the
blockchain is consistent with all validated transactions and
blocks which guarantees the absence of both double-spending
attacks and blockchain forks.

CCS CONCEPTS

•Theory of computation → Probabilistic computa-
tion; Design and analysis of algorithms;

KEYWORDS

Bitcoin; Safety; Double-spending attack; Blockchain fork

1 INTRODUCTION

In 2008, Satoshi Nakamoto proposed a scheme for a financial
system that does not rely on a central banking authority
to ensure its safety: the Bitcoin cryptocurrency system, the
first decentralized ecosystem providing users with a virtual
currency [22]. Bitcoin relies on a public distributed ledger,
the so-called blockchain, that is an ordered sequence of blocks.
Each block confirms a set of valid and recently issued trans-
actions. Since any participant can verify the validity of the
entire blockchain, that is the set of all transactions ever
confirmed in the system, it does not require them to trust
each other: each one is assumed to act selfishly. Thus, the
blockchain can be viewed as a way to create a global trusted
third-party from a network of untrusted entities. However,
the presence of the blockchain does not heal Bitcoin from two

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SAC 2017,

© 2017 ACM. 978-1-4503-4486-9/17/04. . . $15.00
DOI: 10.1145/3019612.3019657

important design issues: double-spending attacks and block-
chain forks. A double-spending attack consists for a malicious
user in issuing transactions that use the very same coin to
buy goods from different sellers. Such an attack is successful
if at least one of the sellers provides his goods and the trans-
action he is recipient of is not inserted in the blockchain [12].
A blockchain fork occurs when concurrent blocks are created,
forcing the blockchain to be split in several branches. Even if
Bitcoin eventually converges to a state with a unique branch,
stabilization may take time. For instance, the March 2013
fork [12] was only resolved after several hours. During a
fork, an attacker may repeatedly perform double-spending
attacks, inserting conflicting transactions in the conflicting
views of the blockchain to make them appear as validated by
the network. Given the high value of bitcoins, reported to be
worth from $540 to $710 between July 1st and August 31st,
2016 [1], one may expect that the abuse of the weaknesses of
Bitcoin’s design will increase along with its adoption. The
root cause of Bitcoin’s vulnerability to such attacks is the
absence of consistency between Bitcoin operations. Three
recent works [9, 11, 18] have proposed to rely exclusively on
miners to take in charge the full process of validation and
confirmation to guarantee that all the operations triggered on
the transactions and on the blockchain are atomically consis-
tent. Beyond the complexity introduced by these approaches,
all important decisions of Bitcoin are put solely under the
responsibility of (a quorum of) miners, and the membership
of the quorum is decided by the quorum members, which
magnifies the power of malicious miners [3].

Our contributions In this paper, we show that what
fundamentally needs to be done to prevent double-spending
attacks and blockchain forks is to impose synchronization
constraints on the objects to be validated. In particular,
synchronization must guarantee that the request for the
validation of the input of a transaction is granted only if
it has never been granted before. Similarly, the request for
the validation of a block must be granted only if the block
that precedes that block has never granted such a request
before. We encapsulate minimal synchronization constraints
in two conflict detection services, respectively dedicated to
transactions and blocks. Their specifications are given in
terms of safety and liveness properties. We then describe
a simple implementation of both services by enriching the
Bitcoin peer-to-peer overlay network with a graph structure.

The remainder of the paper is organized as follows. Sec-
tion ?? briefly presents the main features of Bitcoin, and
Section ?? describes the computational and system model
adopted in this work. Section 2 presents the conflict detection
services, and Section 3 exhibits a possible implementation of

SAC 2017, Marrakech, Morocco,

the network overlay it requires. A brief survey of some of the
attempts that have been made at solving Bitcoin’s issues is
presented in Section 4. Finally, Section 5 concludes.

2 BACKGROUND ON THE BITCOIN
NETWORK

The Bitcoin network [22] is a peer-to-peer payment network
that relies on distributed algorithms and cryptographic func-
tions to allow entities to pseudonymously buy goods with
digital currencies called bitcoins. Bitcoin mainly relies on
two types of objects: transactions and blocks. A transaction
consists in two sets: the inputs, the coins being spent, and
the outputs, the accounts to which these coins are sent. A
block contains a list of transactions, a reference to its parent
block (hence the blockchain), and a proof-of-work, that is a
nonce such that the hash of the block matches a given target.
This target is calibrated so that the mean generation time of
a block is equal to 10 minutes. Transactions are issued by the
users of the system and are propagated by the Bitcoin nodes
(i.e., the nodes participating to the Bitcoin peer-to-peer net-
work), as soon as they have been locally validated. Informally,
a transaction T = (I,O) is locally valid at node p if p has
received all the transactions that have credited all the inputs
in I and has never received transactions already using any of
those inputs. If there exists some transaction T ′ = (I ′, O′)
and some input i such that i ∈ I ∩ I ′ 6= ∅, then input i is said
to be in a double-spending situation. Transaction T = (I,O)
is conflict-free if none of the inputs of T is involved in a
double-spending situation and all of the transactions that
credited T ’s inputs are conflict-free. By construction, the in-
duction is finite because Bitcoin creates money only through
coinbase transactions, which are by definition conflict-free [3].
Blocks are generated by miners, a subset of the nodes in-
volved in the proof-of-work competition. The incentive to
participate to such a competition is provided by a reward
given to each successful miner, this reward consisting of a
fixed amount of coins (currently 12.5 bitcoins) and a fee asso-
ciated to each transaction contained in the newly generated
block. When a transaction T is included in a block b, it is
said confirmed by all the peers that accept that block in their
local copy of the blockchain. The level of confirmation of
transaction T is the number of blocks included in the block-
chain starting from b; by extension, a 0 confirmation level
means that the transaction has not yet been included in the
blockchain. To limit double-spending attacks, Bitcoin recom-
mends that sellers do not provide their goods in exchange of
a transaction before it becomes deeply-confirmed. Actually,
Nakamoto [22] as well as subsequent studies [13, 17, 21] have
shown that if the proportion of malicious miners µ is equal
to 10%, then with probability less than 0.1%, a transaction
can be rejected if its level of confirmation in a local copy of
the blockchain is less than 5. The level of confirmation must
increase to 8 when µ increases to µ = 15%, and to 15 when
25% of the miners are corrupted. In the following, we say
that a transaction is deeply confirmed once it reaches such a
confirmation level. Now in case of a blockchain fork, some

blocks can be invalidated and the level of confirmation of
their transactions can decrease, especially if the conflicting
branch contains a conflicting transaction. This deters the use
of Bitcoin for fast payment, as the expected time for a deep
confirmation is approximately one hour. Fast payment are
used in most everyday life situations, where the time between
buying and consuming the goods is in the order of minutes.
This impracticality motivates this work.

3 MODEL

In this section we formalize the assumptions related to the
Bitcoin system. Specifically, we assume a large, finite yet
unbounded set Π of nodes whose composition may change
over time. Each node of Π has identical networking and
computational capabilities. The communication delays be-
tween any two nodes, the time to execute a local computa-
tion step, and the drift of local clocks are assumed to be
upper-bounded, however these upper-bounds are unknown
to nodes. These temporal assumptions fit the partial syn-
chrony model [10]. The Bitcoin ecosystem being an open
and dynamic system, the presence of malicious behaviors
is unavoidable. In this paper, we assume that a bounded
proportion µ, with µ ≤ b1/(3 + ε)c for some ε > 0, of the
nodes in Π are malicious or Byzantine, that is can deviate
arbitrarily far from the specified protocol.1 Nodes do not
have access to any trusted PKI infrastructure to establish
their identities. Thus, each node must have the possibility
to create its own identities. As will be detailed later, to
prevent malicious nodes from generating large set of iden-
tities to simulate many different nodes, each node needs
to solve computationally expensive proof-of-works to create
their identities. The cryptographic primitives used in Bitcoin
(hash functions and digital signatures) are assumed to be safe
(forging signatures, and finding hash collisions or pre-image
are all provably impossible for our computationally bounded
nodes). We suppose that objects (i.e., inputs, transactions
and blocks) have unique IDs distributed uniformly at random
over a finite subset of N. The ID of object x is denoted by
h(x) regardless of the type of x, where h represents Bitcoin’s
256-bit hash (corresponding to applying twice SHA-256 on
the input). We justify the assumptions about object IDs by
the fact that Bitcoin already considers the double SHA-256
hash of blocks and transactions to uniquely identify them. We
extend it to inputs by considering the double SHA-256 hash
of the pointer to the coin being spent (from an implementa-
tion point of view, the hash of the transaction that last spent
it and the index of the output to which it was sent). The
uniform distribution holds in practice, as shown in figure ??.

1Note that as we are focusing on a financial cryptosystem, we cannot
just consider that nodes are either obedient (i.e., they follow the
prescribed algorithm) or malicious. Most of the nodes are rational that
is, strategically behave to increase their own utility function without
violating the prescribed protocols. For example, a rational miner
may in priority insert in its block all the current transactions that
provide the maximal fees while an obedient one will insert transactions
irrespective of the gain they procure. Since rational nodes do not
violate the protocol specification, in the following we consider as
correct both obedient and rational nodes.

SAC 2017, Marrakech, Morocco,

0 1 2 3 4 5 6 7 8 9 A B C D E F
5.6

5.8

6

6.2

6.4

·10−2

First hexadecimal character

F
re

q
u
en

cy

Figure 1: Distribution of transactions and inputs.

This figure depicts the frequency at which each hexadecimal
character appears as the first hexadecimal character of h(x),
for x iterating over the set of transactions contained in 100
consecutive blocks starting at height 420, 000 and all of their
inputs. Note that 19 transactions were excluded because
they were too big to be decoded by Bitcoin Core’s RPC API;
thus, this study covers 368, 327 hash results over 102, 283
transactions. The dashed line represents the mean, equal to
0.0625 as expected from a uniform distribution over 16 values.
The low standard deviation of 4.78e−4 (with Bessel’s correc-
tion) confirms the good performances of the hash. Results
are similar when considering the last hexadecimal character
instead (0.0625± 4.22e−4). Finally, we assume that all the
objects (i.e., inputs, transactions and blocks) are well-formed.
In particular a transaction can be rejected (by a correct node)
only if that transaction tries to double-spend inputs and not
e.g. because the input scripts are incorrect. In addition, we
suppose that all transactions contain transaction fees, and
those fees are sufficient to incentivize any miner to include
all the received transactions in their blocks.

4 CONFLICT DETECTION SERVICES

The present work aims at understanding which is the least
amount of synchronization that needs to be introduced in
the Bitcoin ecosystem to prevent double spending attacks
and blockchain forks through consistent conflict resolutions
for both transactions and blocks. As will be detailed in the
following, we encapsulate all the synchronization constraints
into two services, that we call transaction conflict detection
service and block conflict detection service, respectfully ded-
icated to transaction and block synchronizations. Prior to
presenting the specification of both services, we first recall the
properties currently met by the Bitcoin ecosystem, properties
specified in terms of liveness and safety properties [3]:

Safety: If a transaction T is deeply confirmed by some
correct node, then no transaction conflicting with T
will ever be deeply confirmed by any correct node.

Liveness: A conflict-free transaction will eventually
be deeply confirmed in the blockchain of all correct
nodes at the same height in the blockchain.

In the present paper, by preventing double-spending at-
tacks and blockchain forks we aim at strengthening Bitcoin’s
safety property as follows:

Strong Safety: If a transaction T is confirmed by
some correct node, then no transaction conflicting
with T will ever be confirmed by any correct node.

The strong safety property ensures that whenever a trans-
action T has been included in a block, no other block will
ever contain a transaction conflicting with T . An immediate
and important consequence of this property is the capability
for Bitcoin to safely handle fast payments. The remaining of
the paper is devoted to the implementation of this property.

In the following, notations T = (I,O) and b′ = (h(b), c(b′))
respectively denote the transaction T with input set I and
output set O, and the block b′ built on top of block b and
containing the transactions c(b′).

4.1 Specification of the CDSs

4.1.1 Transaction Conflict Detection Service. The purpose
of the transaction conflict detection service (TCDS) is to
ensure that concurrent transactions do not try to use common
inputs. If we make an analogy between transaction inputs
and objects, and an analogy between using an input and
writing an object, then we can refer to database systems, in
which exclusive access to objects is obtained by asking each
transaction to explicitly lock objects it accesses using some
single object locking mechanism. Yet, unless care is taken,
locking objects one by one may cause deadlocks. As the
application we consider involves different entities spread over
a large area, it is not advisable to rely on having all of them
conform to the same locking strategies. Moreover, from a
performance viewpoint, it may be impossible to run deadlock
detection and prevention protocols assuming independent
object locking. In the following we propose a TCDS that
provides the equivalent of an atomic locking mechanism for
all of the inputs of each issued transaction. Formally, the
TCDS offers two methods, the grantInputs method and the
Release one, that both accept a transaction T = (I,O) as
parameter. The grantInputs method returns with granted
or denied. When an invocation returns with granted, we
say that the method exclusively grants the inputs in I to T or,
in short, that T has been granted. We say that T releases
objects previously granted to it either when T invokes the
Release method, or when all the nodes that participate
in the TCDS for T have crashed or become permanently
disconnected. In the former case, T releases all its locks.
Based on this definition, we require the TCDS to provide the
following properties:

Safety: If a transaction T = (I,O) is exclusively granted
the inputs in I, then no other transaction T ′ =
(I ′, O′) is exclusively granted the inputs in I ′ with
I ∩ I ′ 6= ∅.

SAC 2017, Marrakech, Morocco,

Transaction conflict
detection service

Block conflict
detection service

Users Miners

Blockbkbk−1...

Blockchain

Figure 2: Orchestration of the CDS services.

Liveness: Each invocation of the grantInputs method
eventually returns.

Non triviality: If there exists an invocation of the
grantInputs method with T = (I,O), and no other
transaction T ′ = (I ′, O′) with I∩I ′ 6= ∅ is exclusively
granted the inputs in I ′ then T is granted exclusively
all the inputs in I.

4.1.2 Block Conflict Detection Service. The block conflict
detection service (BCDS) aims at ensuring that any validated
block has at most one valid block as immediate successor.
It offers a single method, grantBlock, that accepts a block
b′ = (h(b), c(b′)) as parameter. This method returns with
granted or denied. When an invocation returns with
granted, we say that the method validates block b′ as the
unique successor of block b. Based on this definition, we
require the block conflict detector to provide the following
properties:

Safety: If a block b′ = (h(b), c(b′)) is granted h(b),
then no other block b′′ = (h(b), c(b′′)) is granted
h(b).

Liveness: Each invocation of the grantBlock method
eventually returns.

Non triviality: If there exists an invocation of the
grantBlock method with b′ = (h(b), c(b′)), and no
invocation of grantBlock with b′′ = (h(b), c(b′′)) has
ever been granted, then block b′ is granted as the
unique successor of block b.

Transactions are confirmed once they are included in a
block that has been granted by the BCDS. Figure 1 depicts
the path of transactions from the users to the blockchain.

4.2 Orchestration of the CDSs

In order to implement the Conflict Detector Services we
introduce the notion of referees. The main idea is to associate
a randomly chosen node of the Bitcoin system to each object
o (i.e., input, transaction or block) in charge of handling
all the CDS operations on object o. This specific node is
called the referee pio of o. In the remaining of this paragraph
we assume that for each object o, its referee pio is known.
Section 3 will provide a simple way to determine the referee
of each object.

When a user creates a transaction T = (I,O), it sends T
to its referee piT so that piT can invoke TCDS with T . This
invocation consists for piT in asking an exclusive lock at the
referee pii of each input i ∈ I, in an order that corresponds
to the lexicographical order of the input IDs. If the lock
is denied for at least one of these inputs, piT releases all
previously obtained locks (by proving to each of these referees
that a conflicting transaction T ′ has already been granted).
Otherwise, after obtaining all locks, a granted status is
returned to piT .

The correctness and, in particular, the lack of deadlocks,
result from the fact that objects are always obtained in
lexicographical order. A lock can be implemented using
a combination of Test-and-Set and Reset primitives. The
referee pii that wishes to lock input i ∈ I, first checks the
value of a binary register. When this value is 0, it modifies
the register to 1 and uses the lock. Releasing a lock is done
by resetting to 0 the register value. The fact that T has
been granted the lock on each input i ∈ I is proven by pii’s
signature. Each signature is bundled with the identity of the
signer. Note that Bitcoin transactions can easily be extended
to accommodate this process: the referee piT of transaction
T = (I,O) computes a group signature S (e.g. [7]) using the
signatures of each input referee piii∈I and its own signature
and appends it, along with everything needed to verify this
group signature, to a specific validation output o added to
the set of outputs O of transaction T = (I,O). Any node can
easily verify that transaction T = (I,O) has been granted
by checking the signatures S added by referee piT .

Referees are incentivized by introducing a validation fee.
A fair and easy way to share the validation output is to
randomly pick one of the referees and give it the entire
reward. This requires seeding a random number generator in
a publicly verifiable way, and for example with an information
that can only be published after the TCDS has returned like
the hash of the block in which the transaction is included.

The process is even simpler for blocks: when a miner
creates a block b′ = (h(b), c(b′)), it sends b′ to its referee pib′

so that pib′ can invoke the BCDS with b′. This invocation
consists for pib′ in asking an exclusive lock at referee pib. If
the lock is granted, then both pib and pib′ signatures are
applied to the coinbase of b′, that is the transaction that
gives the miner the reward for generating b′. Note that the
hash used in the proof of work does not cover the referee
signatures.

5 LEVERAGING DHTS TO
IMPLEMENT THE CDSS

The fundamental principle of the above two CDSs is the link
between each Bitcoin object (i.e., transaction, input, and
block) and its referee. By doing so, each input is granted an
exclusive access to a unique transaction, and each block has
at any time at most one unique successor. The solution we
propose to implement such a link simply consists in bringing
some structure to the underlying unstructured peer-to-peer
overlay of Bitcoin. Recall that the topology of unstructured

SAC 2017, Marrakech, Morocco,

overlays conforms random graphs, i.e., relationships among
nodes are mostly set according to a random process, and
routing is not constrained. Object placement enjoy the same
absence of constraints. Any data can be placed on any node
thereby imposing flooding or random walk techniques to re-
trieve them. On the other hand, structured overlays, also
called Distributed Hash Tables (DHTs), build their topology
according to structured graphs. For most of them, the follow-
ing principles hold: the identifier space is partitioned among
all the nodes of the overlay. Nodes self-organize within the
graph according to a distance function D based on node IDs
(e.g. two nodes are neighbors if their IDs share some common
prefix), plus possibly other criteria such as geographical dis-
tance. Each application-specific object is assigned a unique
identifier selected from the same identifier space. Each node
owns a fraction of all the objects of the system. The mapping
derives from the distance function D.

Any DHT could be a valuable candidate to organize nodes
and objects in Bitcoin, as long as the chosen DHT is capable
of handling high churn [15] and the presence of colluding
Byzantine nodes. Among the possible candidates, the hyper-
cube PeerCube [4] enjoys both properties. Briefly, PeerCube
gathers nodes into clusters, so that each vertex of the hyper-
cube is composed of a cluster of nodes. All the routing and
storage operations classically devoted to each single node in
a non-clustered DHT are jointly handled by a small and con-
stant size subset of the nodes of each single cluster through
Byzantine-tolerant consensus protocols. In addition, the im-
pact of churn is handled at cluster level which minimizes the
impact on the graph structure of the DHT. Finally, PeerCube
limits the sojourn time of nodes at the same position of the
overlay (through induced churn [5, 6] to prevent the adversary
from choosing its own positions and from eclipsing correct
nodes from a given region of the overlay. Coming back to
the implementation of CDSs, a simple way to determine the
referee pio of each object o is to choose the closest vertex (i.e.
the closest cluster of nodes) to h(o), which guarantees the
robustness of this referee.

Despite these enjoyable qualities, PeerCube, and DHTs
in general, assume the presence of a trusted third-party
to act as a public key infrastructure (PKI) in charge of
assigning certified identities to each node. It turns out that
such an assumption is unrealistic in large scale and dynamic
systems, and consequently, we can only rely on nodes to
create themselves their identities. Since up to a proportion
µ of the nodes are Byzantine, there is a risk of Sybil attacks
(i.e, the creation of a considerable number of identities) if it
is profitable to own several identities. To drastically limit
the number of identities per node, we propose to leverage the
proof of work mechanism of Bitcoin: each node must solve a
computationally expensive challenge to create an identity [20],
which in expectation makes the number of identities per node
proportional to its computational power. We propose to
build an identity I as follows: identity I should comprise a
public key PKI , a timestamp tI , a nonce vI , and the hash
of the last known block h(bI) of the blockchain. The public
key authenticates messages, while the timestamp forces an

induced churn: identities have a lifetime that periodically
expires which allows correct nodes to escape poisoning attacks
by moving to a new region in the overall, and by preventing
malicious nodes from staying indefinitely long in the same
region of the overlay. Hence, node I recomputes a new
identity I′ when ∆ blocks are appended to block bI , the block
at which node I created its identity I. Finally, assuming
that I has not expired yet, an identity is considered valid if
and only if h(PKI ||tI ||vI ||h(bI)) < T , where T is a network-
specified target, and || represents the concatenation operator.

Remark that there is no strict guarantee on the actual
number of identities a given node from Π controls. This
explains why we only require that the proportion µ of Byzan-
tine nodes verifies µ ≤ 1/(3 + ε) for some ε > 0. A precise
analysis is left for future work.

Remark 1. A interesting side-effect of guaranteeing that
the k-th block is validated only if it is the first (and thus
the unique) successor of the (k − 1)-th one is that it defends
the Bitcoin ecosystem from other forms of adversarial min-
ing. The first one, called by the Bitcoin community the SPV
mining (for Simplified Payment Verification), consists for a
miner in creating a block, say the k-th one, by only waiting
for the hash of the (k − 1)-th one to be published in the sys-
tem, rather than, as prescribed by the protocol, by waiting for
the block in its entirety to be disseminated. By doing so, a
miner starts the mining process without being penalized by the
time it needs for the full block to be propagated in the system.
The second form of adversarial mining, the selfish mining,
consists for a miner in trying to eclipse the last blocks of the
blockchain with its own sequence of blocks. This is achiev-
able if the miner has very large computational resources, and
succeeds in creating a sequence of blocks whose size is larger
than the current one in the blockchain. Both undesirable ad-
versarial mining attacks are impeded by locally synchronizing
objects: the hash used to refer to a block when mining on top
of it covers the referee’s signature. Thus, it becomes pointless
to keep newly found blocks secret, and mining pools cannot
publish the hash of the blocks they find on publicly available
servers before they have been accepted by the BCDS.

6 RELATED WORK

Bitcoin [22] is seen as the pioneer of cryptocurrencies. Since
its inception, several altcoins [2] have emerged. The GHOST
protocol [23] proposes a different rule to solve blockchain
forks, based on the number of blocks contained in each block-
chain subtree (in case of consecutive forks). Recent works
have focused on Bitcoin modeling and evaluation. Authors
of [21] prove that the Bitcoin protocol achieves consensus
with high probability, while [13] show that peers participat-
ing in the Bitcoin network agree on a common prefix for
the transaction history, both in failure-free environments. In
contrast, authors of [16, 17] focused on adversarial environ-
ments. These works study the feasibility of double spending
attacks and their detection. Several studies have shown that
Bitcoin behaves quite well in failure-free environments [21]
but is vulnerable to some attacks such as the double-spending

SAC 2017, Marrakech, Morocco,

one [17]. Several attempts to fix it have been published, using
a leader [9, 11, 18], or forming local committees to run con-
sensus algorithms at the local level [20] but these proposals
encounter various scalability or security issues which make
them unusable. Specifically, Bitcoin-NG [11], PeerCensus [9],
and BizCoin [18] have proposed to rely exclusively on miners
to take in charge the full process of validation and confir-
mation to guarantee that all the operations triggered on the
transactions are atomically consistent. In all these protocols,
time is divided into epochs. An epoch ends when a miner
successfully generates a new block. This miner becomes the
leader of the subsequent epoch. Strong consistency is imple-
mented in these protocols by different means. In Bitcoin-NG,
it is achieved by delegating the validation process to the
leader of the current epoch. In PeerCensus it is implemented
by relying on Byzantine Fault Tolerant consensus protocols
(e.g. [8, 14, 19]) run by all the miners that successfully gener-
ated a block. Finally, BizCoin leverages both ideas by using
the leader and a consensus run by the last w successful min-
ers. In all these protocols, the dedicated miners are entitled
to validate and confirm issued transactions and blocks and to
disseminate them so that each peer integrates them in its lo-
cal blockchain. It has been shown in a previous paper [3] that
none of the studied solutions enhances Bitcoin’s behavior.
Beyond the complexity introduced by the consensus execu-
tions, the main issue comes from the fact that all important
decisions of Bitcoin are solely under the responsibility of (a
quorum of) miners, and the membership of the quorum is
decided by the quorum members. This magnifies the power
of malicious miners.

7 CONCLUSION

To prevent double spending attacks, Nakamoto’s analysis,
and subsequent ones [13, 17, 21] have shown that users can
safely deliver their good once their validated transaction has
been confirmed for a sufficiently long time. This fully relies on
the intuition that pools of malicious miners have no collective
incentive to aggregate their computation power in order to
prune the blockchain at almost any position in the blockchain.
In this paper we have shown that introducing a small amount
of synchronization, soon enough in the validation process,
allows a user to deliver his good as soon as the transaction has
been validated by the system. Indeed, this new transaction
validation scheme ensures that any valid transaction will
remain in the blockchain forever, which is a strong guarantee
for the user to be paid even for fast payments transactions.
The same level of local synchronization heals the Bitcoin
system from blockchain forks, SPV mining and selfish minings.
We continue our quest to make this distributed structure safe
and scalable through a deep analysis of its properties both
in terms of safety, liveness and performance.

REFERENCES
[1] 2016. Blockchain.info. https://blockchain.info. (2016). Online,

accessed September 9th.
[2] Shaikshakeel Ahamad, Madhusoodhnan Nair, and Biju Varghese.

2013. A Survey on Crypto Currencies. In Proceedings of the

International Conference on Advances in Computer Science
(AETACS).

[3] Emmanuelle Anceaume, Thibaut Lajoie-Mazenc, Romaric Lu-
dinard, and Bruno Sericola. 2016. Safety Analysis of Bitcoin
Improvement Proposals. In 15th IEEE International Symposium
on Network Computing and Applications (NCA).

[4] Emmanuelle Anceaume, Romaric Ludinard, Aina Ravoaja, and
Francisco Brasileiro. 2008. PeerCube: A Hypercube-Based P2P
Overlay Robust against Collusion and Churn. In 2nd IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing
Systems (SASO).

[5] Emmanuelle Anceaume, Romaric Ludinard, and Bruno Sericola.
2012. Performance evaluation of large-scale dynamic systems.
ACM SIGMETRICS Performance Evaluation Review 39, 4
(2012), 108–117.

[6] B. Awerbuch and C. Scheideler. 2004. Group spreading: A proto-
col for provably secure distributed name service. In Proceedings of
the 31rst International Colloquium on Au- tomata, Languages
and Programming (ICALP).

[7] Alexandra Boldyreva. 2003. Threshold Signatures, Multisigna-
tures and Blind Signatures Based on the Gap-Diffie-Hellman-
Group Signature Scheme. In 6th International Workshop on
Practice and Theory in Public Key Cryptography (2003).

[8] M. Castro and B. Liskov. 1999. Practical Byzantine Fault Toler-
ance. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI).

[9] Christian Decker, Jochen Seidel, and Roger Wattenhofer. 2016.
Bitcoin Meets Strong Consistency. In 17th International Confer-
ence on Distributed Computing and Networking (ICDCN).

[10] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Con-
sensus in the Presence of Partial Synchrony. J. ACM (1988).

[11] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert
Van Renesse. 2016. Bitcoin-NG: A scalable blockchain protocol.
In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[12] Neil Fincham. 2013. https://mineforeman.com/2013/03/14/
what-the-fork-was-that-a-forking-post-mortem/. (2013).

[13] J. A. Garay, A. Kiayias, and N. Leonardos. 2015. The Bitcoin
Backbone Protocol: Analysis and Applications. In Proceedings of
the Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques - Advances in Cryptology
(EUROCRYPT).

[14] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. 2010.
The Next 700 BFT Protocols. In Proceedings of the European
Conference on Computer Systems (EuroSys).

[15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Gold-
berg. 2015. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network.
In 24th USENIX Security Symposium.

[16] Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun. 2012.
Double-spending Fast Payments in Bitcoin. In Proceedings of
the 2012 ACM Conference on Computer and Communications
Security (CCS).

[17] Ghassan O. Karame, Elli Androulaki, Marc Roeschlin, Arthur

Gervais, and Srdjan Čapkun. 2015. Misbehavior in Bitcoin: A
Study of Double-Spending and Accountability. ACM Trans. Inf.
Syst. Secur. 18, 1 (2015).

[18] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly,
Ismail Khoffi, Linus Gasser, and Bryan Ford. 2016. Enhancing
Bitcoin Security and Performance with Strong Consistency via
Collective Signing. In 25th USENIX Security Symposium.

[19] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. 2007.
Zyzzyva: Speculative byzantine fault tolerance. In Proceedings
of the Symposium on Operating Systems Principles (SOSP).

[20] Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng,
Seth Gilbert, and Prateek Saxena. 2015. SCP: a computationally-
scalable Byzantine consensus protocol for blockchains. Technical
Report. Cryptology ePrint Archive, Report 2015/1168.

[21] Andrew Miller and Joseph J LaViola Jr. 2014. Anonymous byzan-
tine consensus from moderately-hard puzzles: A model for bitcoin.
http://bravenewcoin.com/assets/Whitepapers/. (2014).

[22] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system. (2008).

[23] Y. Sompolinsky and A. Zohar. 2013. Accelerating Bitcoin’s Trans-
action Processing. Fast Money Grows on Trees, Not Chains. IACR
Cryptology ePrint Archive 2013 (2013), 881.

https://blockchain.info
https://mineforeman.com/2013/03/14/what-the-fork-was-that-a-forking-post-mortem/
https://mineforeman.com/2013/03/14/what-the-fork-was-that-a-forking-post-mortem/
http://bravenewcoin.com/assets/Whitepapers/

	Abstract
	1 Introduction
	2 Conflict Detection Services
	2.1 Specification of the CDSs
	2.2 Orchestration of the CDSs

	3 Leveraging DHTs to Implement the CDSs
	4 Related work
	5 Conclusion
	References

