
HAL Id: hal-01634353
https://hal.science/hal-01634353

Submitted on 14 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight Metric Computation for Distributed
Massive Data Streams

Emmanuelle Anceaume, Yann Busnel

To cite this version:
Emmanuelle Anceaume, Yann Busnel. Lightweight Metric Computation for Distributed Massive Data
Streams. Transactions on Large-Scale Data- and Knowledge-Centered Systems, 2017, 10430 (33),
pp.1–39. �10.1007/978-3-662-55696-2_1�. �hal-01634353�

https://hal.science/hal-01634353
https://hal.archives-ouvertes.fr

Lightweight Metric Computation for Distributed
Massive Data Streams

Emmanuelle Anceaume1 and Yann Busnel2?

1 IRISA / CNRS Rennes (France), emmanuelle.anceaume@irisa.fr
2 IMT Atlantique, Rennes (France), yann.busnel@imt-atlantique.fr

Abstract. The real time analysis of massive data streams is of utmost
importance in data intensive applications that need to detect as fast
as possible and as efficiently as possible (in terms of computation and
memory space) any correlation between its inputs or any deviance from
some expected nominal behavior. The IoT infrastructure can be used
for monitoring any events or changes in structural conditions that can
compromise safety and increase risk. It is thus a recurrent and crucial
issue to determine whether huge data streams, received at monitored de-
vices, are correlated or not as it may reveal the presence of attacks. We
propose a metric, called codeviation, that allows to evaluate the correla-
tion between distributed massive streams. This metric is inspired from
classical metric in statistics and probability theory, and as such enables
to understand how observed quantities change together, and in which
proportion. We then propose to estimate the codeviation in the data
stream model. In this model, functions are estimated on a huge sequence
of data items, in an online fashion, and with a very small amount of
memory with respect to both the size of the input stream and the values
domain from which data items are drawn. We then generalize our ap-
proach by presenting a new metric, the Sketch-? metric, which allows us
to define a distance between updatable summaries of large data streams.
An important feature of the Sketch-? metric is that, given a measure on
the entire initial data streams, the Sketch-? metric preserves the axioms
of the latter measure on the sketch. We finally present results obtained
during extensive experiments conducted on both synthetic traces and
real data sets allowing us to validate the robustness and accuracy of our
metrics.

Keywords: Data stream model; correlation metric; statistical metric; distributed
approximation algorithm

1 Introduction

Performance of many complex monitoring applications, including Internet mon-
itoring applications, and data mining, or massively distributed infrastructures

? This work has been partially funded by the French ANR project SocioPlug (ANR-13-
INFR-0003) and by the DeSceNt project granted by the Labex CominLabs excellence
laboratory (ANR-10-LABX-07-01)

2 Emmanuelle Anceaume, Yann Busnel

such as sensor networks, and the Internet of Things (IoT) depend on the detec-
tion of correlated events. For instance, detecting correlated network anomalies
should drastically reduce the number of false positive or negative alerts that net-
works operators have to currently face when using network management tools
such as SNMP or NetFlow. Indeed, to cope with the complexity and the amount
of raw data, current network management tools analyze their input streams in
isolation [1,2]. Diagnosing flooding attacks through the detection of correlated
flows should improve intrusion detection tools [3,4,5], while analyzing the effect
of multivariate correlation should help for an early detection of Distributed De-
nial of Service (DDoS) [6]. Finally, the sustainable development of smart cities is
expected to handle large amounts of data generated from large number of sensors
with the consequent necessity for quick aggregation of the data, which could be
exploited to detect correlated events. Among possible applications, smart build-
ing management systems rely on service-oriented continuous queries over sensor
data streams in case of energy consumption monitoring [7], air pollution moni-
toring applications heavily rely on sensors to detect threshold crossings [8]. More
generally, Stankovic [9] argues that the real time analysis of large and distributed
data streams is of utmost importance to tackle issues related to creative knowl-
edge, robustness, privacy, and security.

The point is that, in all these contexts, data streams arrive at nodes in a
very high rate and may contain up to several billions of data items per day.
Thus computing statistics with traditional methods is unpractical due to con-
straints on both available processing capacity and memory. Actually, two main
approaches exist to monitor in real time massive data streams. The first one
consists in regularly sampling the input streams so that only a limited amount
of data items is locally kept. This allows for an exact computation of functions
on these samples. However, accuracy of this computation with respect to the
stream in its entirety fully depends on the volume of data items that has been
sampled and their order in the stream. Furthermore, an adversary may easily
take advantage of the sampling policy to hide its attacks among data items that
are not sampled, or in a way that prevents its “malicious” data items from being
correlated [10]. In contrast, the streaming approach consists in scanning, on the
fly, each piece of data of the input stream, and in locally keeping only compact
synopses or sketches that contain the most important information about these
data. This approach enables the derivation of some data streams statistics with
guaranteed error bounds without making any assumptions on the order in which
data items are received at nodes.

Work on data stream analysis mainly focuses on efficient methods (data-
structures and algorithms) to answer different kind of queries over massive data
streams, as for example the computation of the number of different data items
in a given stream [11,12,13]. Mostly, these methods consist in deriving statistic
estimators over the data stream, in creating summary representations of streams
(to build histograms, wavelets, and quantiles), and in comparing data streams.
Regarding the construction of estimators, a seminal work is due to Alon et
al. [14]. The authors have proposed estimators of the frequency moments Fk of

Lightweight Metric Computation for Distributed Massive Data Streams 3

a stream, which are important statistical tools that allow to quantify specifici-
ties of a data stream. Subsequently, a lot of attention has been devoted to the
strongly related notion of the entropy [15] of a stream [16,17,18], and all notions
based on entropy as the quantification of the amount of randomness of a stream
(e.g, [17,19,20,21]). The construction of synopses or sketches of the data stream
have been proposed for different applications (e.g, [22,23,24,25]). Actually in [26],
the authors propose a characterization of the information divergences that are
not sketchable, and prove that any distance that has not “norm-like” properties
is not sketchable.

On the other hand, very few works have tackled the distributed streaming
model, also called the functional monitoring problem [27], which combines fea-
tures of both the streaming model and communication complexity models. As in
the streaming model, the input data is read on the fly, and processed with a min-
imum workspace and time. In the communication complexity model, each node
receives an input data stream, performs some local computation, and communi-
cates only with a coordinator who wishes to continuously compute or estimate a
given function of the union of all the input streams. The challenging issue in this
model is for the coordinator to compute the given function by minimizing the
number of communicated bits [27,28,29]. Cormode et al. [27] pioneer the formal
study of functions in this model by focusing on the estimation of the first three
frequency moments F0, F1 and F2 [14]. Arackaparambil et al. [28] consider the
empirical entropy estimation [14] and improve the work of Cormode by provid-
ing lower bounds on the frequency moments, and finally distributed algorithms
for counting at any time t the number of items that have been received by a set
of nodes from the inception of their streams have been proposed in [30,31].

We go a step further by studying the dispersion matrix of distributed streams.
Specifically, we propose a novel metric that allows us to approximate in real time
the correlation between distributed and massive streams. This metric, called the
sketch codeviation, allows us to quantify how observed data items change to-
gether, and in which proportion. As shown in [32], such a network-wide traffic
monitoring tool should allow monitoring applications to get significant infor-
mation on the traffic behavior changes to subsequently inform more detailed
detection tools on where DDoS attacks are currently active. We provide a dis-
tributed algorithm that additively approximates the codeviation among n data
streams σ1, . . . , σn by using a sublinear number of bits of space for each of the
n nodes, sublinear in the domain size from which items values are drawn, and
in the largest size of these data streams.

We then generalize our approach by proposing a novel metric, named Sketch-
? metric in the following, that reflects the relationships between any two massive
data streams. Actually, the problem of detecting changes or outliers in a data
stream is similar to the problem of identifying patterns that do not conform to an
expected behavior, which has been an active area of research for many decades.
To accurately analyze streams of data, a panel of information-theoretic measures
and distances have been proposed as key measures in statistical inference and
data processing problems [33]. There exist two broad classes of measures, namely

4 Emmanuelle Anceaume, Yann Busnel

the f -divergences, introduced by Csiszar, Morimoto and Ali & Silvey [34,35,36],
and the Bregman divergences, which are very important to quantify the amount
of information that separates two distributions. Among them, the most com-
monly used are the Kullback-Leibler (KL) divergence [37], the Jensen-Shannon
divergence and the Battacharyya distance [38]. More details can be found in the
comprehensive survey of Basseville [33].

Unfortunately, computing information theoretic measures of distances in the
data stream model is challenging essentially because one needs to process a huge
amount of data sequentially, on the fly, and by using very little storage with
respect to the size of the stream. In addition the analysis must be robust over
time to detect any sudden change in the observed streams.

We tackle this issue with the Sketch-? metric. This metric allows us to effi-
ciently and accurately estimate a broad class of distance measures between any
two large data streams. Such an estimation is achieved by computing these dis-
tances only on compact synopses or sketches of streams. The Sketch-? metric is
distribution-free and makes no assumption about the underlying data volume. It
is thus capable of comparing any two data streams, identifying their correlation
if any, and more generally, it allows us to acquire a deep understanding of the
structure of the input streams. Formalization of this metric is one of the contri-
butions of this paper. We present an approximation algorithm that constructs
a sketch of the stream from which the Sketch-? metric is computed. As for the
codeviation, this algorithm is a one-pass algorithm. It uses very basic computa-
tions, little storage space (i.e., logarithmic in the size of the input stream and
the number of items in the stream), and does not need any information on the
structure of the input stream.

Road Map of the Paper. In Section 2, we present the computational model
under which we analyze our algorithms and derive bounds, and recall some
mathematical background that will be needed in the remaining of the paper.

We present in Section 3 the sketch codeviation that allows us to approx-
imate in real time the correlation between distributed and massive streams.
We give upper and lower bounds on the quality of this approximated metric
with respect to the codeviation in Section 3.2. As in [6], we use the codevi-
ation analysis method, which is a statistical-based method that does not rely
upon any knowledge of the nominal packet distribution. We then provide in
Section 3.3 the algorithm that computes the sketch codeviation between any
two data streams. We extend this algorithm to handle distributed streams. Sec-
tion 3.4 presents our distributed algorithm additively approximates the codevia-
tion among n data streams σ1, . . . , σn by usingO ((1/ε) log(1/δ) (logN + logm))
bits of space for each of the n nodes, where N is the domain size from which
items values are drawn, and m is the largest size of these data streams (more
formally, m = maxi∈[n] ‖Xσi‖1 where Xσi is the fingerprint vector representing
the items frequency in stream σi). We guarantee that for any 0 < δ < 1, the
maximal error of our estimation is bounded by εm/N , as shown by performance
evaluation results presented in Section 3.5.

Lightweight Metric Computation for Distributed Massive Data Streams 5

The Sketch-? metric, which allows us to efficiently estimate a broad class
of distances measures between any two large data streams by computing these
distances only using compact synopses or sketches of the streams is introduced
in Section 4. Formalization of the Sketch-? metric is presented in Section 4.2.
The description of the algorithm that approximates the Sketch-? metric in one
pass appears in Section 4.3. This algorithm uses very basic computations, little
storage space (i.e., O(t(logN+k logm)) where k and t are precision parameters,
and m and N are respectively the size of the input stream and the domain size
from which items values are drawn), and does not need any information on the
structure of the input stream. Finally, the robustness of our approach is validated
with a detailed experimentation study based on both synthetic traces that range
from stable streams to highly skewed ones, and real data sets.

2 Data Stream Model

2.1 Model

We present the computation model under which we analyze our algorithms and
derive lower and upper bounds. We consider a set of n nodes S1, . . . , Sn such
that each node Si receives a large sequence σSi of data items or symbols. We
assume that streams σS1 , . . . , σSn do not necessarily have the same size, i.e.,
some of the items present in one stream do not necessarily appear in others
or their occurrence number may differ from one stream to another one. We
also suppose that node Si (1 ≤ i ≤ n) does not know the length of its input
stream. Items arrive regularly and quickly, and due to memory constraints (i.e.,
nodes can locally store only a small amount of information with respect to the
size of their input stream and perform simple operations on them), need to
be processed sequentially and in an online manner. Nodes cannot communicate
among each other. On the other hand, there exists a specific node, called the
coordinator in the following, with which each node may communicate [27]. We
assume that communication is instantaneous. We refer the reader to [39] for
a detailed description of data streaming models and algorithms. Note that in
the IoT context, it may not be reasonnable to rely on a central entity. We could
extend our distributed solution to a fully decentralized version by organizing sites
in such a way that each one could locally aggregate the information provided by
its neighbours, as done in [40].

2.2 Preliminaries

We first present notations and background that make this paper self-contained.
Let σ be a stream of data items that arrive sequentially. Each data item i is
drawn from the universe Ω = {1, 2, . . . , N}, where N is very large. A natural
approach to study a data stream σ of length m is to model it as a fingerprint
vector over the universe Ω, given by X = (x1, x2, . . . , xN) where xi represents the
number of occurrences of data item i in σ. Note that in the following by abusing

6 Emmanuelle Anceaume, Yann Busnel

the notation, we denote this “|Ω|-point distribution” by “Ω-point distribution”,
also known as the item frequency vector of σ. Note also that 0 ≤ xi ≤ m.
We have ‖X‖1 =

∑
i∈Ω xi, i.e., ‖X‖1 is the norm of X. Thus m = ‖X‖1. A

natural approach to study a data stream σ is to model it as an empirical data
distribution over the universe Ω, given by (p1, p2, . . . , pN) with pi = xi/m.

2-universal Hash Functions In the following, we use hash functions randomly
picked from a 2-universal hash family. A collection H of hash functions h :
{1, . . . ,M} → {0, . . . ,M ′} is said to be 2-universal if for every h ∈ H and for
every two different items x, y ∈ [M], P{h(x) = h(y)} ≤ 1

M ′ , which is exactly the
probability of collision obtained if the hash function assigns truly random values
to any x ∈ [M].

Randomized (ε, δ)-additively-approximation Algorithm A randomized
algorithm A is said to be an (ε, δ)-additively-approximation of a function φ on

σ if, for any sequence of items in the input stream σ, A outputs φ̂ such that
P{|φ̂− φ| > ε} < δ, where ε, δ > 0 are given as parameters of the algorithm.

3 Correlation estimation using Codeviation

3.1 Codeviation

In this paper, we focus on the computation of the deviation between any two
streams using a space efficient algorithm with some error guarantee. The ex-
tension to a distributed environment σ1, . . . , σn is studied in Section 3.4. We
propose a metric over Ω-point distributions of items, which is inspired from the
classical covariance metric in statistics. Such a metric allows us to qualify the
dependance or correlation between two quantities by comparing their variations.
As will be shown in Section 3.5, this metric captures shifts in the network-wide
traffic behavior when a DDoS attack is active. The codeviation between any two
Ω-point distributions X = (x1, x2, . . . , xN), and Y = (y1, y2, . . . , yN) is the real
number denoted cod(X,Y) defined by

cod(X,Y) =
1

N

∑
i∈Ω

(xi − x)(yi − y) =
1

N

∑
i∈Ω

xiyi − x y (1)

where x =
1

N

∑
i∈Ω

xi and y =
1

N

∑
i∈Ω

yi.

3.2 Sketch codeviation

As presented in the Introduction, we propose a statistic tool, named the sketch
codeviation, which allows to approximate the codeviation between any two data
streams using compact synopses or sketches. We then give bounds on the quality
of this tool with respect to the computation of the codeviation applied on full
streams.

Lightweight Metric Computation for Distributed Massive Data Streams 7

Definition 1 (Sketch codeviation). Let X and Y be any two Ω-point dis-
tributions of items, such that X = (x1, . . . , xN) and Y = (y1, . . . , yN). Given a
precision parameter k, we define the sketch codeviation between X and Y as

ĉodk(X,Y) = min
ρ∈Pk(Ω)

cod
(
X̂ρ, Ŷρ

)
= min
ρ∈Pk(Ω)

(
1

N

∑
a∈ρ

X̂ρ(a)Ŷρ(a)−

(
1

N

∑
a∈ρ

X̂ρ(a)

)(
1

N

∑
a∈ρ

Ŷρ(a)

))

where ∀a ∈ ρ, X̂ρ(a) =
∑
i∈a

xi, and Pk(Ω) is a k-cell partition of Ω, i.e., the set

of all the partitions of the set Ω into exactly k nonempty and mutually disjoint
sets (or cells).

Lemma 1. Let X = (x1, . . . , xN), and Y = (y1, . . . , yN) be any two Ω-point
distributions. We have

ĉodN (X,Y) = cod(X,Y)

Proof. It exists a unique partition ρN of N into exactly N nonempty and mutu-
ally disjoint sets, such that ρN is made ofN singletons: ρN = {{1}, {2}, . . . , {N}}.
Thus for any cell a ∈ ρN , there exists a unique i ∈ Ω such that X̂ρ(a) = xi.

Thus, X̂ρ = X and Ŷρ = Y . ut

Note that for k > N , it does not exist a partition of N into k nonempty

parts. By convention, for k > N , ĉodk(X,Y) = ĉodN (X,Y).

Proposition 1. The sketch codeviation is a function of the codeviation. We
have

ĉodk(X,Y) = cod(X,Y) + Ek(X,Y)

where Ek(X,Y) = min
ρ∈Pk(Ω)

1

N

∑
a∈ρ

∑
i∈a

∑
j∈ar{i}

xiyj .

Proof. From Relation (1), we have

ĉodk(X,Y) = min
ρ∈Pk(Ω)

((
1

N

∑
a∈ρ

X̂ρ(a)Ŷρ(a)

)
−

(
1

N

∑
a∈ρ

X̂ρ(a)

)(
1

N

∑
a∈ρ

Ŷρ(a)

))

= min
ρ∈Pk(Ω)

(1

N

∑
a∈ρ

(∑
i∈a

xi

)(∑
i∈a

yi

))
−

(
1

N

∑
i∈Ω

xi

) 1

N

∑
j∈Ω

yj


= min
ρ∈Pk(Ω)

 1

N

∑
a∈ρ

∑
i∈a

∑
j∈a

xiyj

− xy


= cod(X,Y) + min
ρ∈Pk(Ω)

1

N

∑
a∈ρ

∑
i∈a

∑
j∈ar{i}

xiyj .

8 Emmanuelle Anceaume, Yann Busnel

which concludes the proof. ut

The value Ek(X,Y) (which corresponds to the minimum sums over any par-
tition ρ in Pk(Ω)) represents the overestimation factor of the sketch codeviation
with respect to the codeviation.

Derivation of Lower Bounds on Ek(X,Y) We first show that if k is large
enough, then the overestimation factor Ek(X,Y) is null, that is, the sketch code-
viation matches exactly the codeviation.

Theorem 1 (Accuracy of the sketch codeviation). Let X and Y be any two
Ω-point distributions of items, such that X = (x1, . . . , xN) and Y = (y1, . . . , yN).
If k ≥ | supp(X) ∩ supp(Y)|+ 1supp(X)rsupp(Y) + 1supp(Y)rsupp(X) then

ĉodk(X,Y) = cod(X,Y),

where supp(X), respectively supp(Y), represents the support of distribution X,
respectively Y (i.e., the set of items in Ω that have a non null frequency xi 6= 0,
respectively yi 6= 0, for 1 ≤ i ≤ N), and notation 1A denotes the indicator
function which is equal to 1 if the set A is not empty and 0 otherwise.

Proof. Two cases are examined.

– Case 1:
Let k = | supp(X) ∩ supp(Y)| + 1supp(X)rsupp(Y) + 1supp(Y)rsupp(X). We
consider a partition ρ ∈ Pk(Ω) defined as follows

∀` ∈ supp(X) ∩ supp(Y), {`} ∈ ρ
supp(X) r supp(Y) ∈ ρ
supp(X){ ∈ ρ

(2)

Then from Relation (2) we have
∀` ∈ supp(X) ∩ supp(Y),

∑
i∈{`}

∑
j∈{`}r{i}

xiyj = 0

∀` ∈ supp(X) r supp(Y), y` = 0

∀` ∈ supp(X){, x` = 0.

Thus,
∑
a∈ρ

∑
i∈a
∑
j∈ar{i} xiyj = 0. From Proposition (1), we get that

ĉodk(X,Y) = cod(X,Y).
– Case 2:

For k > | supp(X) ∩ supp(Y)| + 1supp(X)rsupp(Y) + 1supp(Y)rsupp(X) (and
k < N), it is always possible to split one of the two last cells of ρ as defined
in Relation (2) with a singleton {`} such that x` = 0 or y` = 0.

Both cases complete the proof. ut

Lightweight Metric Computation for Distributed Massive Data Streams 9

Derivation of Upper Bounds on Ek(X,Y) We have shown with The-
orem 1 that the sketch codeviation matches exactly the codeviation if k ≥
| supp(X) ∩ supp(Y)| + 1supp(X)rsupp(Y) + 1supp(Y)rsupp(X). In this section, we
characterize the upper bound of the overestimation factor, i.e., the error made
with respect to the codeviation, when k is strictly less than this bound. To pre-
vent problems of measurability, we restrict the classes of Ω-point distribution
under consideration. Specifically, given mX and mY any positive integers, we de-
fine the two classes X and Y as X = {X = (x1, . . . , xN) such that ||X||1 = mX }
and Y = {Y = (y1, . . . , yN) such that ||Y ||1 = mY}. The following theorem
derives the maximum value of the overestimation factor.

Theorem 2 (Upper bound of Ek(X,Y)). Let k ≥ 1 be the precision param-
eter of the sketch codeviation. For any two Ω-point distributions X ∈ X and
Y ∈ Y, let Ek be the maximum value of the overestimation factor Ek(X,Y).
Then, the following relation holds.

Ek = max
X∈X ,Y ∈Y

Ek(X,Y) =


mXmY
N

if k = 1,

mXmY
N

(
1

k
− 1

N

)
if k > 1.

Proof. For readability reason, the proof of this theorem is presented in Ap-
pendix A. ut

Theorem 2 shows that for any k ≥ 1, the maximum value Ek of the overesti-
mation factor of the sketch codeviation is less than or equal to mXmY/N . We
now demonstrate that, given X and Y , the overestimation factor Ek(X,Y) is a
decreasing function in k.

Lemma 2. Let X and Y be any two Ω-point distributions. We have:

E1(X,Y) ≥ E2(X,Y) ≥ . . . ≥ Ek(X,Y) ≥ . . . ≥ EN (X,Y).

Proof.

– Case k = 1. By assumption, |P1(Ω)| = 1, i.e., there exists a single partition
which is the set Ω itself. Thus we directly have

E1(X,Y) =
1

N

∑
i∈Ω

∑
j∈Ωr{i}

xiyj . (3)

10 Emmanuelle Anceaume, Yann Busnel

– Case k = 2. For any partition {a1, a2} ∈ P2(Ω), we have

E1(X,Y) =
1

N

∑
i∈a1

∑
j∈a1r{i}

xiyj +
∑
i∈a1

∑
j∈a2

xiyj

+
∑
i∈a2

∑
j∈a1

xiyj +
∑
i∈a2

∑
j∈a2r{i}

xiyj


= Eρ2 (X,Y) +

1

N

∑
i∈a1

∑
j∈a2

xiyj +
∑
i∈a2

∑
j∈a1

xiyj


≥ E2(X,Y).

– Case 2 < k < N. Let ρ = argminρ∈Pk(Ω) E
ρ
k (X,Y), i.e., partition ρ mini-

mizes the overestimation factor for a given k. Then, there exists a partition
ρ′ ∈ Pk+1(Ω) that can be obtained by splitting a cell of ρ in two cells, and
constructed as follows{

∃a0 ∈ ρ, ∃a1, a2 ∈ ρ′, such that a0 = a1 ∪ a2
∀a ∈ ρ, a 6= a0 ⇒ ∃a′ ∈ ρ′, such that a = a′.

By using an argument similar to the previous one, we have

Ek(X,Y) = Eρ
′

k+1(X,Y) +
1

N

∑
i∈a1

∑
j∈a2

xiyj +
∑
i∈a2

∑
j∈a1

xiyj


≥ Ek+1(X,Y).

Lemma 1 concludes the proof. ut

3.3 Approximation Algorithm

In this section, we propose a one-pass algorithm that computes the sketch code-
viation between any two large input streams. By definition of the metric (cf.
Definition 1), we need to generate all the possible k-cell partitions. The num-
ber of these partitions follows the Stirling numbers of the second kind, which is
equal to S(N, k) = 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jN . Therefore, S(N, k) grows exponen-

tially with N . We show in the following that generating t = dlog(1/δ)e random
k-cell partitions, where δ is the probability of error of our randomized algorithm,
is sufficient to guarantee good overall performance of the sketch codeviation met-
ric.

Our algorithm is inspired from the Count-Min Sketch algorithm proposed
by Cormode and Muthukrishnan [41]. Specifically, the Count-Min algorithm is
an (ε, δ)-approximation algorithm that solves the frequency-estimation problem.
For any item v in the input stream σ, the algorithm outputs an estimation x̂v

Lightweight Metric Computation for Distributed Massive Data Streams 11

Algorithm 1: Sketch codeviation algorithm

Input: Two input streams σ1 and σ2; δ and ε precision settings;

Output: The sketch codeviation ĉodk(σ1, σ2) between σ1 and σ2

1 t← dln 1
δ
e; k ← d e

ε
e;

2 Choose t functions h : Ω → [k], each from a 2-universal hash function family;
3 Cσ1 [1..t][1..k]← 0;
4 Cσ2 [1..t][1..k]← 0;
5 for i ∈ σ1 do
6 for ` = 1 to t do
7 Cσ1 [`][h`(i)]← Cσ1 [`][h`(i)] + 1;

8 for j ∈ σ2 do
9 for ` = 1 to t do

10 Cσ2 [`][h`(j)]← Cσ2 [`][h`(j)] + 1;

11 On query ĉod(σ1, σ2) return min1≤`≤t cod(Cσ1 [`][−], Cσ2 [`][−])

of v such that P{|x̂v − xv| > ε(||X||1 − xv)} < δ, where ε, δ > 0 are given as
parameters of the algorithm. The estimation is computed by constructing a two-
dimensional array C of t × k counters through a collection of 2-universal hash
functions {h`}1≤`≤t, where k = e/ε and t = dlog(1/δ)e. Each time an item v is
read from the input stream, this causes one counter per line to be incremented,
i.e., C[`][h`(v)] is incremented for all ` ∈ [t].

To compute the sketch codeviation of any two streams σ1 and σ2, two sketches
σ̂1 and σ̂2 of these streams are constructed according to the above description
(i.e., construction of two arrays Cσ1 and Cσ1 of t × k counters through t 2-
universal hash functions {h`}1≤`≤t). Note that there is no particular assumption
on the length of both streams σ1 and σ2 (their respective length m1 and m2 are
finite but unknown). By properties of the 2-universal hash functions {h`}1≤`≤t,
each line ` of Cσ1

and Cσ2
corresponds to the same partition ρ` of Ω, and each

entry a of line ` corresponds to X̂ρ`(a) (cf. Definition 1). Therefore, when a query

is issued to compute the sketch codeviation ĉod between these two streams, the
codeviation value between the `th line of Cσ1

and Cσ2
for each ` = 1 . . . t is

computed, and the minimum value among these t ones is returned. Figure 1
presents the pseudo-code of our algorithm.

Theorem 3. The sketch codeviation ĉod(X,Y) returned by Algorithm 1 satis-

fies, with Ecod = ĉod(X,Y)− cod(X,Y),

Ecod ≥ 0 and P
{
|Ecod| ≥

ε

N
(‖X‖1‖Y ‖1 − ‖XY ‖1)

}
≤ δ.

12 Emmanuelle Anceaume, Yann Busnel

Proof. The first relation holds by Proposition 1. Regarding the second one, let
us first consider the `-th line of both Cσ1

and Cσ2
. We have

ĉod[`](X,Y) = cod(Cσ1 [`][−], Cσ2 [`][−])

=
1

N

k∑
a=1

Cσ1 [`][a]Cσ2 [`][a]−

(
1

N

k∑
a=1

Cσ1 [`][a]

)(
1

N

k∑
a=1

Cσ1 [`][a]

)
.

By construction of Algorithm 1, ∀1 ≤ ` ≤ t, ∀i, j ∈ σ1 such that h`(i) = h`(j) =
a, we have

Cσ1
[`][a] = xi +

∑
j 6= i

xj .

Similarly, ∀1 ≤ ` ≤ t,∀i, j ∈ σ2 such that h`(i) = h`(j) = a, we have

Cσ2
[`][a] = yi +

∑
j 6= i

yj .

Thus,

ĉod[`](X,Y) =
1

N

k∑
a=1


N∑
i = 1

h`(i) = a

xi




N∑
i = 1

h`(i) = a

yi



− 1

N

k∑
a=1


N∑
i = 1

h`(i) = a

xi

 1

N

k∑
a=1


N∑
i = 1

h`(i) = a

yi


=

1

N

N∑
i=1

xiyi +
1

N

∑
i 6= j

h`(i) = h`(j)

xiyj −

(
1

N

N∑
i=1

xi

)(
1

N

N∑
i=1

yi

)

= cod(X,Y) +
1

N

∑
i 6= j

h`(i) = h`(j)

xiyj

We have

E
[
ĉod[`](X,Y)

]
= E [cod(X,Y)] +

1

N

∑
i 6=j

xiyjP{h`(i) = h`(j)}.

By linearity of the expectation, we get

E
[
ĉod[`](X,Y)− cod(X,Y)

]
=

1

N

∑
i6=j

xiyjP{h`(i) = h`(j)}.

Lightweight Metric Computation for Distributed Massive Data Streams 13

By definition of 2-universal hash functions, we have P{h`(i) = h`(j)} ≤ 1
k .

Therefore,

E
[
ĉod[`](X,Y)− cod(X,Y)

]
≤ 1

Nk

∑
i 6=j

xiyj =
1

Nk
(‖X‖1‖Y ‖1 − ‖XY ‖1) .

By definition of k (cf. Algorithm 1), we have

E
[
ĉod[`](X,Y)− cod(X,Y)

]
≤ ε

eN
(‖X‖1‖Y ‖1 − ‖XY ‖1)

Using the Markov inequality, we obtain

P
{
|ĉod[`](X,Y)− cod(X,Y)| ≥ ε

N
(‖X‖1‖Y ‖1 − ‖XY ‖1)

}
≤ 1

e

By construction ĉod(X,Y) = min1≤`≤t ĉod[`](X,Y). Thus, by definition of t (cf.
Algorithm 1) we obtain

P
{
|ĉod(X,Y)− cod(X,Y)| ≥ ε

N
(‖X‖1‖Y ‖1 − ‖XY ‖1)

}
≤
(

1

e

)t
= δ

that concludes the proof. ut

Lemma 3. Algorithm 1 uses O
(
(1
ε) log 1

δ (logN + logm)
)

bits of space to give
an approximation of the sketch codeviation, where m = max(‖X‖1, ‖Y ‖1).

Proof. Both matrices Cσi for i ∈ {1, 2} are composed of t × k counters, where
each counter uses O (logm) bits of space. With a suitable choice of hash family,
we can store each of the t hash functions above in O(logN) space. This gives an
overall space bound of O (t logN + tk logm), which proves the lemma with the
chosen values of k and t. ut

3.4 Distributed codeviation Approximation Algorithm

In this section, we propose an algorithm that computes the codeviation between
a set of n distributed data streams, so that the number of bits communicated
between the n sites and the coordinator is minimized. This amounts for the
coordinator to compute an approximation of the codeviation matrix Σ, which is
the dispersion matrix of the n data streams. As previously evoked in Section 2, it
is possible to have a fully decentralized version of our algorithm, by for example,
organizing the sites along a distributed hash table (DHT) and by taking profit
of the additive property of the Count-Min data structure to allow each site
to aggregate their schetch so have to progressively obtain a global view of the
system. Such a possible solution appears in [40]. In the following we present
the coordinator-based version for clarity of the analysis. Note however that the
distributed version would have a non negligeable impact on the communication
cost. This issue is left for future work.

14 Emmanuelle Anceaume, Yann Busnel

Specifically, let X = {X1, X2, . . . , Xn} be the set of Ω-point distributions
X1, . . . , Xn describing respectively the streams σ1, . . . , σn. We have

Σ̂ =
[
ĉod(Xi, Xj)

]
1≤i≤n,1≤j≤n

.

The algorithm proceeds in rounds until all the data streams have been read

in their entirety. In the following, we denote by σ
(r)
i the substream of σi received

by Si during the round r, and by dr the number of data items in this substream.

In a bootstrap phase corresponding to round r = 1 of the algorithm, each
site Si computes a single sketch Cσi of the received data stream σi as described
in lines 5–7 of Algorithm 1. Once node Si has received d1 data items (where d1
should typically be set to 100 [28]), then node Si sends C

σ
(1)
i

to the coordinator,

keeps a copy of C
σ
(1)
i

, and starts a new round r = 2. Upon receipt of C
σ
(1)
i

from

any Si, the coordinator asks all the n−1 other nodes Sj to send their own sketch
C
σ
(1)
j

.

Once the coordinator has received all C
σ
(1)
i

, for 1 ≤ i ≤ n, it sets ∀i ∈
[n], Cσi ← C

σ
(1)
i

. The coordinator builds the sketch codeviation matrix Σ̂ =[
ĉod(Xi, Xj)

]
1≤i≤n,1≤j≤n

such that the element in position i, j is the sketch

codeviation between streams σi and σj . As the codeviation is symmetric, the
codeviation matrix is a symmetric matrix, and thus only the upper-triangle and
the diagonal need to be computed.

At round r > 1, each node Si computes a new sketch C
σ
(r)
i

with the sequence

of data streams received since the beginning of round r. Let dr = 2dr−1 be an
upper bound on the number of received items during round r. When node Si
has received at least dr−1/2 data items, it starts to compute the sketch codevi-
ation between C

σ
(r−1)
i

and C
σ
(r)
i

as in line 11 of Algorithm 1. Once node Si has

received dr data items since the beginning of round r, then it sends its current
sketch C

σ
(r)
i

to the coordinator and starts a new round r + 1. Note that during

round r, Si regularly computes cod
(
σ
(r−1)
i , σ

(r)
i

)
to detect whether significant

variations in the stream have occurred before having received dr items. This al-
lows to inform the coordinator as quickly as possible that some attack might be
undergoing. Si might then send its current sketch C

σ
(r)
i

to the coordinator once

cod
(
σ
(r−1)
i , σ

(r)
i

)
has reached a sufficiently small value. An interesting ques-

tion left for future work is the study of such a value. Upon receipt of the first
C
σ
(r)
i

from any Si, the coordinator asks all the n − 1 other nodes Sj to send it

their own sketch C
σ
(r)
j

. The coordinator locally updates the n sketches such as

Cσi ← Cσi + C
σ
(r)
i

and updates the codeviation matrix Σ̂ on every couple of

sketches.

Lightweight Metric Computation for Distributed Massive Data Streams 15

Theorem 4. The approximated codeviation matrix Σ̂ returned by the distributed
sketch codeviation algorithm satisfies Σ̂ ≥ Σ and

P
{∣∣∣Σ̂ −Σ∣∣∣ ≥ ε

N
max
i,j∈[n]

(‖Xi‖1‖Xj‖1 − ‖XiXj‖1)

}
≤ δ.

Proof. The statement is derived from Theorem 3 and the fact that the expec-
tation of a matrix is defined as the matrix of expected values. ut

Lemma 4 (Space complexity). The distributed sketch codeviation algorithm
gives an approximation of matrix Σ, using O ((1/ε) log(1/δ) (logN + logm)) bits
of space for each n nodes, and O (n logm (1/ε log(1/δ) + n)) bits of space for the
coordinator, where m is the maximum size among all the streams, i.e., m =
maxi∈[n] ‖Xi‖1.

Proof. From the algorithm definition, each node maintains two sketches with
space describes in Lemma 3. The coordinator maintains n matrices of t × k
counters and the n× n codeviation matrix which takes O(n2 logm) bits, where
m = maxi∈[n] ‖Xi‖1. One can note that the coordinator does not need to main-
tain the t hash functions. ut

Lemma 5 (Communication complexity). The distributed sketch codevia-
tion algorithm gives an approximation of matrix Σ using a communication com-
plexity of O (rn(1 + (1/ε) log(m/2) log(1/δ))) bits, where r is the number of the
last round and m is the maximum size of the streams.

Proof. Suppose that the number of rounds of the algorithm is equal to r. At each
round, the size of the substream on each node is at most doubled, and then lower

or equal to ‖Xi‖12 . An upper bound of number of bits sent by any node during a
round r is trivially given by (1/ε) log(m/2) log(1/δ) where m = maxi∈[n] ‖Xi‖1.
Finally, at each end of round, the coordinator sends 1 bit to at most n−1 nodes.

ut

Lemma 6 (Time complexity). The time complexity of sketch codeviation is
O(log 1/δ) per update in the reading phase of the stream, and O (1/ε log 1/δ) per
query.

Proof. Based on the pseudo-code provided in Algorithm 1, an update requires
to hash the item, then retrieve and increase a cell for each row, thus the update
time complexity is O(log 1/δ). On the other hand, a query requires to sum the
scalar product of each row, by retrieving each cell of the both data structure.
The query time complexity is then O(1/ε log 1/δ). ut

3.5 Performance Evaluation

We have implemented the distributed sketch codeviation algorithm and have
conducted a series of experiments on different types of streams and for different

16 Emmanuelle Anceaume, Yann Busnel

Table 1. Statistics of the five real data traces.

Data trace Trace # items (m) # distinct (n) max. freq.

NASA (July) 0 1,891,715 81,983 17,572

NASA (August) 1 1,569,898 75,058 6,530

ClarkNet (August) 2 1,654,929 90,516 6,075

ClarkNet (September) 3 1,673,794 94,787 7,239

Saskatchewan 4 2,408,625 162,523 52,695

parameters settings. We have fed our algorithm with both real-world data sets
and synthetic traces. Real data give a realistic representation of some existing
monitoring applications, while the latter ones allow to capture phenomenons
which may be difficult to obtain from real-world traces, and thus allow to check
the robustness of our metric. Synthetic traces of streams have been generated
from 13 distributions showing very different shapes, that is the Uniform distri-
bution (referred to as distribution 0 in the following), the Zipfian or power law
one with parameter α from 1 to 5 (referred to as distributions 1, . . . , 5), the Pois-
son distribution with parameter λ from N/21 to N/25 (distributions 6, . . . , 11),
and the Binomial and the Negative Binomial ones (distributions 12 and 13). All
the streams generated from these distributions have a length of around 100, 000
items, and contain no more than 1, 000 distinct items. Real data have been down-
loaded from the repository of Internet network traffic [42]. We have used 5 large
traces among the available ones. Two of them represent two weeks logs of HTTP
requests to the Internet service provider ClarkNet WWW server – ClarkNet is a
full Internet access provider for the Metro Baltimore-Washington DC area – the
other two ones contain two months of HTTP requests to the NASA Kennedy
Space Center WWW server, and the last one represents seven months of HTTP
requests to the WWW server of the University of Saskatchewan, Canada. In the
following these data sets will be respectively referred to as ClarkNet, NASA, and
Saskatchewan traces. We have used as data items the source hosts of the HTTP
requests. Table 1 presents some statistics of these five data traces, in term of
stream size (cf. “# items”), number of distinct items in each stream (cf. “#
distinct”) and the number of occurrences of the most frequent item (cf. “max.
freq.”). Note that all these benchmarks share a Zipfian behavior, with a lower α
for the University of Saskatchewan.

Experimental evaluation of the Sketch codeviation Figures 1 and 2 sum-
marize the results obtained by feeding our distributed codeviation algorithm
with respectively synthetics traces and real datasets. The isopeths on the left of
respectively Figures 1 and 2 represent the n × n codeviation matrix computed
by storing in memory the streams in their entirety. The isopeths on the right of
respectively Figures 1 and 2 correspond to the n× n sketch codeviation matrix
returned by the distributed algorithm based on sketches of size k = logN . Both
the x-axis and the y-axis represent the 13 synthetic streams on Figure 1, and

Lightweight Metric Computation for Distributed Massive Data Streams 17

 0 1 2 3 4 5 6 7 8 9 10 11 12 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Exact codeviation

-1.0E+05

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

 0 1 2 3 4 5 6 7 8 9 10 11 12 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Sketch codeviation - with k = log N

-1.0E+06
0.0E+00
1.0E+06
2.0E+06
3.0E+06
4.0E+06
5.0E+06
6.0E+06
7.0E+06
8.0E+06
9.0E+06

Fig. 1. Synthetic traces – The isopleth on the left has been computed with all the items
in memory, while the one on the right has been computed by the distributed algorithm
from sketches of length k = logN .

 0
 1

 2
 3

 4 0

 1

 2

 3

 4

Exact codeviation

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

1.8E+04

 0
 1

 2
 3

 4 0

 1

 2

 3

 4

Sketch codeviation - with k = log N

-1.0E+06

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

Fig. 2. Real datasets – The isopleth on the left has been computed with all the items
in memory, while the one on the right has been computed by the distributed algorithm
from sketches of length k = logN .

the 5 real data sets on Figure 2, while the z-axis represents the value of each cell
matrix in both figures.

These results clearly show that our distributed algorithm is capable of effi-
ciently and accurately quantifying how observed data streams change together
and in which proportion whatever the shape of the input streams. Indeed, by
using sketches of size k = logN , one obtains isopeths very similar to the ones
computed with all the items stored in memory. Note that the order of magni-
tude exhibited by the sketch codeviation matrix is due to the overestimation
factor and remains proportional to the exact one. Both results from synthetic
traces and real datasets lead to the same conclusions. The following experimental
results focus on the detection of attacks.

18 Emmanuelle Anceaume, Yann Busnel

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100

D
is

ta
n

c
e
 b

e
tw

e
e
n

 C
o

d
e
v
ia

n
c
e
 M

a
tr

ix
 a

n
d

 M
e
a
n
 M

a
tr

ix

Time (rounds)

Exact codeviation
Sketch codeviation with k = 50
Sketch codeviation with k = 10
Sketch codeviation with k = 5

(a) With E(ΣN) computed on “normal” traffic behavior

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100

D
is

ta
n
c
e
 b

e
tw

e
e
n

 C
o
d
e
v

ia
n
c
e
 M

a
tr

ix
 a

n
d
 M

e
a
n

 M
a
tr

ix

Time (rounds)

Exact codeviation
Sketch codeviation with k = 50
Sketch codeviation with k = 10
Sketch codeviation with k = 5

(b) With E(Σr) computed on “historical” traffic behavior

Fig. 3. Distance between the codeviation matrix and the mean of the past ones when
all the 10 synthetic traces follow different distributions as a function of the rounds of
the protocol, with δ = 10−5.

Lightweight Metric Computation for Distributed Massive Data Streams 19

Detection of different profiles of attacks Figure 3 shows how efficiently
our approximation distributed algorithm detects different scenarii of attacks in
real time. Specifically, we compute at each round of the distributed protocol,
the distance between the codeviance matrix Σ constructed from the streams
under investigation and the mean of covariance matrices E(ΣN) computed under
normal situations. This distance has been proposed in [6]. Specifically, given two
square matrices M and M ′ of size n, consider the distance as follows:

‖M −M ′‖ =

√√√√ n∑
i=1

n∑
j=1

(Mi,j −M ′i,j)2.

We evaluate at each round r, the variable dr defined by

dr = ‖Σr − E(ΣN)‖.

Interestingly, Jin and Yeung [6] propose to detect abnormal behaviors with re-
spect to normal ones as follows. First they analyze normal traffic-wide behaviors,
and estimate at the end of analysis, a point c and a constant a for dr satisfying
|dr − c| < a, ∀r ∈ N∗. The constant a is selected as the upper threshold of the
i.i.d |dr − c|. Then when investigating the potential presence of DDoS attacks
over the network, they consider as abnormal any traffic pattern that shows for
any r, |dr−c| > a. Because we think that it is not tractable to characterize what
is a normal network-wide traffic a priori, we adapt this definition by considering
the past behavior of the traffic under investigation. Specifically, at any round
r > 1, the distance is computed between the current codeviance matrix Σr and
the mean one E(Σr) corresponding to previous rounds 1, . . . , r − 1, r. That is
E(Σr) = ((r − 1)E(Σr−1) + Σr)/r. As shown in Figure 3(b), this distance pro-
vides better results than the ones obtained with the original distance [6], which
is depicted in Figure 3(a).

Based on these distances, we have fed our distributed algorithm with dif-
ferent patterns of traffic. Specifically, Figure 3 shows the distance between the
codeviance matrix and the mean ones (respectively based on normal ones for
Figure 3(a) and on past ones for Figure 3(b)). These distances are depicted,
as a function of time, when the codeviance is exactly computed and when it is
estimated with our distributed algorithm with different values of k. What can
be seen is that, albeit there are up to two orders of magnitude between the exact
codeviance matrix and the estimated one, the shape of the codeviance variations
are for most of them similar, especially in Figure 3(b). Different attack scenarii
are simulated. From round 0 to 10, all the 10 synthetic traces follow the same
nominal distribution (e.g., a Poisson distribution). Then from round 10 to 20 a
targeted attack is launched by flooding a single node (i.e., one among the ten
traces follows a Zipfian distribution with α = 4). This gives rise to a drastic
and abrupt increase of the distance. As can be shown, the estimated covariance
exactly follows the exact one, which is a very good result. Then after coming
back to a “normal” traffic, half of the traces are replaced by Zipfian ones (from
round 30 to 40), representing a flooding attack toward a group of nodes. As for

20 Emmanuelle Anceaume, Yann Busnel

the previous attack, the covariance matrices are highly impacted by this attack.
From round 50 to 60, traces follow a Zipfian distribution with α = 1 which rep-
resents unbalanced network traffic but should not be completely representative
of attacks. On the other hand, in the fourth and fifth attack periods, all the
traces follow a Zipfian distribution with different values of α ≥ 2, which clearly
shows a flooding attack toward a group of targeted nodes.

From these experiments, one could extract the value of the upper threshold
a. For instance, a should be set to 1, 000 for the exact codeviation and for the
sketch codeviation with k = 50, which lead to detect all the DDoS attacks.
Considering the sketch codeviation with k = 10 (respectively k = 5), a should
be set to 10, 000 (respectively 50, 000) in order to detect all these attacks.

The main lesson drawn from these results is the good performance of our
distributed algorithm whatever the pattern of the attack.

4 Sketch-? metric

We generalize the above approach by proposing the Sketch-? metric that reflects
the relationships between any two discrete probability distributions in the con-
text of massive data streams. To accurately analyze streams of data, a panel
of information-theoretic measures and distances have been proposed to answer
the specificities of the analyses. Among them, the most commonly used are the
Kullback-Leibler (KL) divergence [37], or more generically, the f -divergences, in-
troduced by Csiszar, Morimoto and Ali & Silvey [34,35,36], the Jensen-Shannon
divergence and the Battacharyya distance [38]. After having recalled the formal
definitions of these metrics, we introduce the Sketch-? metric specification, and
then present a space and computation-efficient algorithm to compute any gener-
alized metric φ between the summaries of any two stream σ1 and σ2, such that
this computation preserves all the properties of φ computed on σ1 and σ2. We
finally show the robustness of our approach through extensive simulations.

4.1 Metrics and divergences

This section is devoted to the description of a collection of metrics.

Metric definitions The classical definition of a metric is based on a set of four
axioms.

Definition 2 (Metric). Given a set X, a metric is a function d : X ×X → R
such that, for any x, y, z ∈ X, we have:

Non-negativity: d(x, y) ≥ 0 (4)

Identity of indiscernibles: d(x, y) = 0⇔ x = y (5)

Symmetry: d(x, y) = d(y, x) (6)

Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) (7)

Lightweight Metric Computation for Distributed Massive Data Streams 21

In the context of information divergence, usual distance functions are not
precisely metric. Indeed, most of divergence functions do not verify the 4 axioms,
but only a subset of them. For instance, a pseudometric is a function that verifies
the axioms of a metric with the exception of the identity of indiscernible, while
a premetric is a pseudometric that relax both the symmetry and the triangle
inequality axioms.

Definition 3 (Pseudometric). Given a set X, a pseudometric is a func-
tion that verifies the axioms of a metric with the exception of the identity of
indiscernible, which is replaced by

∀x ∈ X, d(x, x) = 0.

Note that this definition allows that d(x, y) = 0 for some x 6= y in X.

Definition 4 (Quasimetric). Given a set X, a quasimetric is a function
that verifies all the axioms of a metric with the exception of the symmetry (cf.
Relation 6).

Definition 5 (Semimetric). Given a set X, a semimetric is a function that
verifies all the axioms of a metric with the exception of the triangle inequality
(cf. Relation 7).

Definition 6 (Premetric). Given a set X, a premetric is a pseudometric
that relax both the symmetry and triangle inequality axioms.

Definition 7 (Pseudoquasimetric). Given a set X, a pseudoquasimetric
is a function that relax both the identity of indiscernible and the symmetry
axioms.

Note that the latter definition simply corresponds to a premetric satisfying
the triangle inequality. Remark also that all the generalized metrics preserve the
non-negativity axiom.

Two classes of generalized metrics, usually denoted as divergences, that allow
to measure the separation of distributions have been proposed, namely the class
of f -divergences and the class of Bregman divergences.

f-divergence The class of f -divergences provides a set of relations that is used
to measure the “distance” between two distributions p and q. Mostly used in
the context of statistics and probability theory, a f -divergence Df is a premetric
that guarantees monotonicity and convexity.

Definition 8 (f-divergence). Let p and q be two Ω-point distributions. Given
a convex function f : (0,∞)→ R such that f(1) = 0, the f -divergence of q from
p is

Df (p||q) =
∑
i∈Ω

qif

(
pi
qi

)
,

where by convention, we assume that 0f(0
0) = 0, af(0

a) = a limu→0 f(u), and
0f(a0) = a limu→∞ f(u)/u if these limits exist.

22 Emmanuelle Anceaume, Yann Busnel

Property 1 (Monotonicity). Given κ an arbitrary transition probability that re-
spectively transforms two Ω-point distributions p and q into pκ and qκ, we have:

Df (p||q) ≥ Df (pκ||qκ).

Property 2 (Convexity). Let p1, p2, q1 and q2 be four Ω-point distributions.
Given any λ ∈ [0, 1], we have:

Df (λp1 + (1− λ)p2||λq1 + (1− λ)q2) ≤ λDf (p1||q1) + (1− λ)Df (p2||q2).

Bregman divergence Initially proposed in [43], the Bregman divergences are a
generalization of the notion of distance between points. This class of generalized
metrics always satisfies the non-negativity and identity of indecernibles. However
they do not always satisfy the triangle inequality and their symmetry depends
on the choice of the differentiable convex function F . Specifically,

Definition 9 (Bregman divergence (BD)). Given a continuously-differentiable
and strictly convex function F defined on a closed convex set C, the Bregman
divergence of p from q is

BF (p||q) = F (p)− F (q)− 〈∇F (q), (p− q)〉 .

where the operator 〈·, ·〉 denotes the inner product, and ∇F (q) is the gradient of
F at q.

In the context of data stream, it is possible to reformulate this definition as
follows. Specifically,

Definition 10 (Decomposable BD).
Let p and q be any two Ω-point distributions. Given a strictly convex function
F : (0, 1]→ R, the Bregman divergence of q from p is defined as

BF (p||q) =
∑
i∈Ω

(F (pi)− F (qi)− (pi − qi)F ′(qi)) .

The Bregman divergence verifies non-negativity and convexity properties in
its first argument, but not necessarily in the second argument. Another interest-
ing property is given by thinking of the Bregman divergence as an operator of
the function F .

Property 3 (Linearity). Let F1 and F2 be any two strictly convex and differen-
tiable functions. Given any λ ∈ [0, 1], we have that

BF1+λF2
(p||q) = BF1

(p||q) + λBF2
(p||q).

Classical metrics Based on these definitions, we present several commonly
used metrics in Ω-point distribution context. These specific metrics are used in
the evaluation part presented in Section 4.4.

Lightweight Metric Computation for Distributed Massive Data Streams 23

Kullback-Leibler divergence The Kullback-Leibler (KL) divergence [37], also
called the relative entropy, is a robust metric for measuring the statistical dif-
ference between two data streams. The KL divergence owns the special feature
that it is both a f -divergence and a Bregman one (with f(t) = F (t) = t log t).

Given p and q two Ω-point distributions, the Kullback-Leibler divergence is
defined as

DKL(p||q) =
∑
i∈Ω

pi log
pi
qi
. (8)

Jensen-Shannon divergence The Jensen-Shannon divergence (JS) is a symmetrized
version of the Kullback-Leibler divergence. Also known as information radius
(IRad) or total divergence to the average, it is defined as

DJS(p||q) =
1

2
DKL(p||`) +

1

2
DKL(q||`), (9)

where ` = 1
2 (p+ q). Note that the square root of this divergence is a metric.

Bhattacharyya distance The Bhattacharyya distance is derived from his pro-
posed measure of similarity between two multinomial distributions, also known
as the Bhattacharya coefficient (BC) [38]. It is a semimetric as it does not verify
the triangle inequality. It is defined as

DB(p||q) = − log(BC(p, q)) where BC(p, q) =
∑
i∈Ω

√
piqi.

Note that the famous Hellinger distance [44] is equal to
√

1−BC(p, q) ver-
ifies it.

4.2 Sketch-? metric

We now present a method to sketch two input data streams σ1 and σ2, and to
compute any generalized metric φ between these sketches such that this compu-
tation preserves all the properties of φ computed on σ1 and σ2.

Definition 11 (Sketch-? metric). Let p and q be any two Ω-point distribu-
tions. Given a precision parameter k, and any generalized metric φ on the set of
all Ω-point distributions, there exists a Sketch-? metric φ̂k defined as follows

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ).

We recall that, again, ∀a ∈ ρ, p̂ρ(a) =
∑
i∈a pi and where Pk(Ω) is the set

of all partitions of Ω into exactly k nonempty and mutually exclusive cells.

Remark 1. Note that for k > N , it does not exist a partition of Ω into k
nonempty parts. By convention, we consider that φ̂k(p||q) = φ(p||q) in this
specific context.

In this section, we focus on the preservation of axioms and properties of a
generalized metric φ by the corresponding Sketch-? metric φ̂k.

24 Emmanuelle Anceaume, Yann Busnel

Axioms preserving

Theorem 5. Given any generalized metric φ then, for any k ∈ N, the corre-
sponding Sketch-? metric φ̂k preserves all the axioms of φ.

Proof. The proof is directly derived from Lemmata 7, 8, 9 and 10. ut

Lemma 7 (Non-negativity). Given any generalized metric φ verifying the

Non-negativity axiom then, for any k ∈ N, the corresponding Sketch-? metric φ̂k
preserves the Non-negativity axiom.

Proof. Let p and q be any two Ω-point distributions. By definition,

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

As for any two k-point distributions, φ is positive we have φ̂k(p||q) ≥ 0 that
concludes the proof. ut

Lemma 8 (Identity of indiscernible). Given any generalized metric φ veri-
fying the Identity of indiscernible axiom then, for any k ∈ N, the corresponding
Sketch-? metric φ̂k preserves the Identity of indiscernible axiom.

Proof. Let p be any Ω-point distribution. We have

φ̂k(p||p) = max
ρ∈Pk(Ω)

φ(p̂ρ||p̂ρ) = 0,

due to the Identity of indiscernible axiom on φ.
Consider now two Ω-point distributions p and q such that φ̂k(p||q) = 0. Met-

ric φ verifies both the non-negativity axiom (by construction) and the Identity
of indiscernible axiom (by assumption). Thus we have ∀ρ ∈ Pk(Ω), p̂ρ = q̂ρ,
leading to

∀ρ ∈ Pk(Ω),∀a ∈ ρ,
∑
i∈a

p(i) =
∑
i∈a

q(i). (10)

Moreover, for any i ∈ Ω, there exists a partition ρ ∈ Pk(Ω) such that {i} ∈ ρ.
By Equation 10, ∀i ∈ Ω, p(i) = q(i), and so p = q.

Combining the two parts of the proof leads to φ̂k(p||q) = 0⇐⇒ p = q, which
concludes the proof of the Lemma. ut

Lemma 9 (Symmetry). Given any generalized metric φ verifying the Symme-

try axiom then, for any k ∈ N, the corresponding Sketch-? metric φ̂k preserves
the Symmetry axiom.

Proof. Let p and q be any two Ω-point distributions. We have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ).

Lightweight Metric Computation for Distributed Massive Data Streams 25

Let ρ ∈ Pk(Ω) be a k-cell partition such that φ(p̂ρ||q̂ρ) = maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ).
We get

φ̂k(p||q) = φ(p̂ρ||q̂ρ) = φ(q̂ρ||p̂ρ) ≤ φ̂k(q||p).

By symmetry, considering ρ ∈ Pk(Ω) such that φ(q̂ρ||p̂ρ) = maxρ∈Pk(Ω) φ(q̂ρ||p̂ρ),
we also have φ̂k(q||p) ≤ φ̂k(p||q), which concludes the proof. ut

Lemma 10 (Triangle inequality). Given any generalized metric φ verifying
the Triangle inequality axiom then, for any k ∈ N, the corresponding Sketch-?
metric φ̂k preserves the Triangle inequality axiom.

Proof. Let p, q and r be any three Ω-point distributions. Let ρ ∈ Pk(Ω) be a
k-cell partition such that φ(p̂ρ||q̂ρ) = maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ). We have

φ̂k(p||q) = φ(p̂ρ||q̂ρ)
≤ φ(p̂ρ||r̂ρ) + φ(r̂ρ||q̂ρ)
≤ max
ρ∈Pk(Ω)

φ(p̂ρ||r̂ρ) + max
ρ∈Pk(Ω)

φ(r̂ρ||q̂ρ)

= φ̂k(p||r) + φ̂k(r||q)

that concludes the proof. ut

Properties preserving

Theorem 6. Given a f -divergence φ then, for any k ∈ N, the corresponding
Sketch-? metric φ̂k is also a f -divergence.

Proof. From Theorem 5, φ̂k preserves the axioms of the generalized metric.
Thus, φ̂k and φ are in the same equivalence class. Moreover, from Lemma 11,
φ̂k verifies the monotonicity property. Thus, as the f -divergence is the only
class of decomposable information monotonic divergences (cf. [35]), φ̂k is also a
f -divergence. ut

Theorem 7. Given a Bregman divergence φ then, for any k ∈ N, the corre-
sponding Sketch-? metric φ̂k is also a Bregman divergence.

Proof. From Theorem 5, φ̂k preserves the axioms of the generalized metric. Thus,
φ̂k and φ are in the same equivalence class. Moreover, the Bregman divergence is
characterized by the property of transitivity (cf. [45]) defined as follows. Given
p, q and r three Ω-point distributions such that q = Π(L|r) and p ∈ L, with Π
is a selection rule according to the definition of Csiszár in [45] and L is a subset
of the Ω-point distributions, we have the Generalized Pythagorean Theorem:

φ(p||q) + φ(q||r) = φ(p||r).

Moreover the authors in [46] show that the set ΓN of all discrete probability
distributions over N elements ({x1, . . . , xN}) is a Riemannian manifold, and it

26 Emmanuelle Anceaume, Yann Busnel

owns another different dually flat affine structure. They also show that these dual
structures give rise to the generalized Pythagorean theorem. This is verified for
the coordinates in ΓN and for the dual coordinates [46]. Combining these results
with the projection theorem [45,46], we obtain that

φ̂k(p||r) = max
ρ∈Pk(Ω)

φ(p̂ρ||r̂ρ)

= max
ρ∈Pk(Ω)

(φ(p̂ρ||q̂ρ) + φ(q̂ρ||r̂ρ))

= max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) + max
ρ∈Pk(Ω)

φ(q̂ρ||r̂ρ)

= φ̂k(p||q) + φ̂k(q||r)

Finally, by the characterization of Bregman divergence through transitivity [45],

and reinforced with Lemma 13 statement, φ̂k is also a Bregman divergence. ut

In the following, we show that the Sketch-? metric preserves the properties
of divergences.

Lemma 11 (Monotonicity). Given any generalized metric φ verifying the
Monotonicity property then, for any k ∈ N, the corresponding Sketch-? metric
φ̂k preserves the Monotonicity property.

Proof. Let p and q be any two Ω-point distributions. Given c < N , consider a
partition µ ∈ Pc(Ω). As φ is monotonic, we have φ(p||q) ≥ φ(p̂µ||q̂µ) [47]. We
split the proof into two cases:

Case (1). Suppose that c ≥ k. Computing φ̂k(p̂µ||q̂µ) amounts in considering
only the k-cell partitions ρ ∈ Pk(Ω) that verify

∀b ∈ µ,∃a ∈ ρ : b ⊆ a.

These partitions form a subset of Pk(Ω). The maximal value of φ(p̂ρ||q̂ρ) over
this subset cannot be greater than the maximal value over the whole Pk(Ω).
Thus we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) ≥ φ̂k(p̂µ||q̂µ).

Case (2). Suppose now that c < k. By definition, we have φ̂k(p̂µ||q̂µ) =
φ(p̂µ||q̂µ). Consider ρ′ ∈ Pk(Ω) such that ∀a ∈ ρ′,∃b ∈ µ, a ⊆ b. It then exists
a transition probability that respectively transforms p̂ρ′ and q̂ρ′ into p̂µ and q̂µ.
As φ is monotonic, we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

≥ φ(p̂ρ′ ||q̂ρ′)

≥ φ(p̂µ||q̂µ) = φ̂k(p̂µ||q̂µ).

Finally for any value of c, φ̂k guarantees the monotonicity property. This
concludes the proof. ut

Lightweight Metric Computation for Distributed Massive Data Streams 27

Lemma 12 (Convexity). Given any generalized metric φ verifying the Con-

vexity property then, for any k ∈ N, the corresponding Sketch-? metric φ̂k pre-
serves the Convexity property.

Proof. Let p1, p2, q1 and q2 be any four Ω-point distributions. Given any λ ∈
[0, 1], we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
Let ρ ∈ Pk(Ω) such that

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
.

As φ verifies the Convexity property, we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
≤ λφ(p̂1ρ||q̂1ρ) + (1− λ)φ(p̂2ρ||q̂2ρ)

≤ λ
(

max
ρ∈Pk(Ω)

φ(p̂1ρ||q̂1ρ)
)

+ (1− λ)

(
max

ρ∈Pk(Ω)
φ(p̂2ρ||q̂2ρ)

)
= λφ̂k(p1||q1) + (1− λ)φ̂k(p2||q2)

that concludes the proof. ut

Lemma 13 (Linearity). The Sketch-? metric definition preserves the Linear-
ity property.

Proof. Let F1 and F2 be two strictly convex and differentiable functions, and
any λ ∈ [0, 1]. Consider the three Bregman divergences generated respectively
from F1, F2 and F1 + λF2.

Let p and q be two Ω-point distributions. We have:

B̂F1+λF2k
(p||q) = max

ρ∈Pk(Ω)
BF1+λF2

(p̂ρ||q̂ρ)

= max
ρ∈Pk(n)

(BF1
(p̂ρ||q̂ρ) + λBF2

(p̂ρ||q̂ρ))

≤ B̂F1k
(p||q) + λB̂F2k

(p||q)

As F1 and F2 are two strictly convex functions, and taken a leaf out of the
Jensen’s inequality, we have:

B̂F1k
(p||q) + λB̂F2k

(p||q) ≤ max
ρ∈Pk(Ω)

(BF1
(p̂ρ||q̂ρ) + λBF2

(p̂ρ||q̂ρ))

= B̂F1+λF2k
(p||q)

28 Emmanuelle Anceaume, Yann Busnel

Algorithm 2: Sketch-? metric algorithm

Input: Two input streams σ1 and σ2; the distance φ, k and t settings;

Output: The distance φ̂ between σ1 and σ2

1 Choose t functions h : Ω → [k], each from a 2-universal hash function family;
2 Cσ1 [1...t][1...k]← 0;
3 Cσ2 [1...t][1...k]← 0;
4 for i ∈ σ1 do
5 for ` = 1 to t do
6 Cσ1 [`][h`(i)]← Cσ1 [`][h`(i)] + 1;

7 for j ∈ σ2 do
8 for ` = 1 to t do
9 Cσ2 [`][h`(j)]← Cσ2 [`][h`(j)] + 1;

10 On query φ̂k(σ1||σ2) return max1≤`≤tφ(Cσ1 [`][−],Cσ2 [`][−]);

that concludes the proof. ut

To summarize, we have shown that the Sketch-? metric preserves all the
axioms of a metric as well as the properties of f -divergences and Bregman di-
vergences. We now show how to efficiently implement such a metric.

4.3 Approximation algorithm

In this section, we propose an algorithm that computes the Sketch-? metric in
one pass on the stream.

To compute the Sketch-? metric of two streams σ1 and σ2, two sketches σ̂1
and σ̂2 of these streams are constructed as in Section 3.3. Note that again there
is no particular assumption on the length of both streams σ1 and σ2. That is
their respective length is finite but unknown. Figure 2 presents the pseudo-code
of our algorithm.

Lemma 14. Given parameters k and t, Algorithm 2 gives an approximation of
the Sketch-? metric, using

O (t(logN + k logm)) bits of space.

Proof. The matrices Cσi , for any i ∈ {1, 2}, are composed of t × k counters,
which uses O (logm). On the other hand, with a suitable choice of hash family,
we can store the hash functions above in O(t logN) space. ut

4.4 Performance Evaluation

Settings of the experiments We have also implemented our Sketch-? metric
and have conducted a series of experiments on different types of streams and for
different parameters settings. We have fed our algorithm with both real-world

Lightweight Metric Computation for Distributed Massive Data Streams 29

data sets and synthetic traces. We have varied all the significant parameters of
our algorithm, that is, the maximal number of distinct data items N in each
stream, the number of cells k of each generated partition, and the number of
generated partitions t. For each parameters setting, we have conducted and
averaged 100 trials of the same experiment, leading to a total of more than
300, 000 experiments for the evaluation of our metric. As in Section 3.5, we feed
our algorithm with the same synthetic traces and the real data downloaded from
the repository of Internet network traffic [42].

Main lessons drawn from the experiments In this section, we evaluate the
accuracy of the Sketch-? metric by comparing φ̂k(p||q) with φk(p||q), for φ ∈
{Kullback-Leiber, Jensen-Shannon, Bhattacharyya}, and for p and q generated
from the 7 distributions and the 5 real data sets. Distances computed from the
sketches of the stream are referred to as Sketch in the legend of the graphs,
while the ones computed from the full streams are mentioned as Ref. Due to
space constraints, only a subset of the results are presented in the paper.

Figure 4 shows the accuracy of our metric as a function of the different input
streams and the different generalized metrics applied on these streams. The first
noticeable remark is that Sketch-? metric behaves perfectly well when the two
compared streams follow the same distribution, whatever the generalized metric
φ used. This can be observed from both synthetic traces (cf. Figure 4(a) with
both p and q following the Pascal distribution, Figure 4(b) with both p and
q following the Binomial distribution, Figure 4(c) with both p and q following
the Zipf–α = 1 distribution, and Figure 4(d) with both p and q uniformly dis-
tributed), and real data sets (cf. Figures 4(e) and 4(f) with the NASA (July and
August) and ClarkNet (August and September) traces).

This tendency is further observed when the distributions of input streams
are close to each other (e.g., Zipf–α = 2, 4 and Pascal distributions, or Uniform
and Zipf–α = 1). This makes the Sketch-? metric a very good candidate as a
parametric method for making distribution parameters inference. Another in-
teresting result is shown when the two input streams exhibit a totally different
shape. Specifically, let us consider Figures 4(a) and 4(d). Sketching the Uniform
distribution leads to k-cell partitions whose value is well distributed, that is, for
a given partition φ, all the k cell values have with high probability the same
value. Now, when sketching the Pascal distribution, the repartition of the data
items in the cells of any given partitions is such that a few number of data
items (those with high frequency) populate a very few number of cells. However,
the values of these cells is very large compared to the other cells, which are
populated by a large number of data items whose frequency is small. Thus, the
contribution of data items exhibiting a small frequency and sharing the cells of
highly frequent items is biased compared to the contribution of the other items.
Thus although the input streams show a totally different shape, the accuracy of
φ̂k is only slightly lowered in these scenarios which makes it a very powerful tool
to compare any two different data streams. The same observation holds with
real data sets. When the shapes of the input streams are different (which is the

30 Emmanuelle Anceaume, Yann Busnel

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

U
niform

Zipf - α=1

Zipf - α=2

Zipf - α=4

Pascal

B
inom

ial

Poisson

M
et

ri
c

v
al

u
e

q =

Ref - Bhattacharyya distance
Sketch - Bhattacharyya distance

Ref - Kullback-Leibler divergence
Sketch - Kullback-Leibler divergence

Ref - Jensen-Shannon divergence
Sketch - Jensen-Shannon divergence

(a) Synthetic traces – Distribution p fol-
lows a Negative Binomial NB(3; 0.99) (or
Pascal) distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

U
niform

Zipf - α=1

Zipf - α=2

Zipf - α=4

Pascal

B
inom

ial

Poisson

M
et

ri
c

v
al

u
e

q =

(b) Synthetic traces – Distribution p fol-
lows a Binomial distribution with parame-
ter equals to 0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

U
niform

Zipf - α=1

Zipf - α=2

Zipf - α=4

Pascal

B
inom

ial

Poisson

M
et

ri
c

v
al

u
e

q =

(c) Synthetic traces – Distribution p fol-
lows a Zipf distribution with α = 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

U
niform

Zipf - α=1

Zipf - α=2

Zipf - α=4

Pascal

B
inom

ial

Poisson

M
et

ri
c

v
al

u
e

q =

(d) Synthetic traces – Distribution p fol-
lows a Uniform distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

N
A

SA
 (A

ug)

N
A

SA
 (Jul)

C
.N

. (A
ug)

C
.N

. (Sep)

Saskatchew
an

M
et

ri
c

v
al

u
e

q =

(e) Real datasets – The input stream p is
the NASA (August) trace

 0

 0.05

 0.1

 0.15

 0.2

 0.25

N
A

SA
 (A

ug)

N
A

SA
 (Jul)

C
.N

. (A
ug)

C
.N

. (Sep)

Saskatchew
an

M
et

ri
c

v
al

u
e

q =

(f) Real datasets – The input stream p is
the Saskatchewan trace

Fig. 4. Comparison between the Sketch-? metric and the φ metric as a function of the
input stream q either generated from a distribution or real traces. For synthetic traces,
m = 200, 000 and N = 4, 000. Parameters of the count-min sketch data structure are
k = 200 and t = 4. All the histograms share the same legend, but for readability
reasons, this legend is only indicated on histogram 4(a).

Lightweight Metric Computation for Distributed Massive Data Streams 31

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40 45 50

M
et

ri
c

v
al

u
e

r parameter

Ref - Bhattacharyya distance
Sketch - Bhattacharyya distance

Ref - Kullback-Leibler divergence
Sketch - Kullback-Leibler divergence

Ref - Jensen-Shannon divergence
Sketch - Jensen-Shannon divergence

Fig. 5. Comparison between the Sketch-? metric and the φ metric as a function of the
parameters of the Negative Binomial distribution NB(r,N/(2r +N)), where distribu-
tion p follows a Uniform distribution and q follows the Negative Binomial distribution
NB(r,N/(2r +N)).

case for Saskatchewan with respect to the 4 other input streams), the accuracy
of the Sketch-? metric decreases a little bit but in a very small proportion. No-
tice that the scales on the y-axis differ significantly in Figures 4(a)–4(d) and in
Figures 4(e)–4(f).

We can also observe the strong impact of the non-symmetry of the Kullback-
Leibler divergence on the computation of the distance (computed on full streams
or on sketches) with a clear influence when the input streams follow a Pascal
and Zipf–α = 1 distributions (see Figures 4(a) and 4(c)).

Figure 5 summarizes the good properties of φ̂k by illustrating how, for any
generalized metric φ, and for any variations in the shape of the two input distri-
butions, φ̂k remains close to φ. Recall that increasing values of the r parameter
of the Negative Binomial distribution makes the shape of the distribution flatter,
while maintaining the same mean value.

Figure 6 presents the impact of the number of cells per generated partition
on the accuracy of the-? metric on both synthetic traces and real data. It clearly
shows that by increasing k the number of data items per cell in the generated
partition shrinks and thus the absolute error on the computation of the distance
decreases. The same feature appears when the number N of distinct data items
in the stream increases. Indeed, when N increases (for a given k), the number
data items per cell augments and thus the precision of our metric decreases.
This gives rise to a shift of the inflection point, as illustrated in Figure 6(b)
as data sets have almost twenty to forty times more distinct data items than
the synthetic ones. As aforementioned, the input streams exhibit very different
shapes which explain the strong impact of k. Note also that k has the same
influence on the Sketch-? metric for all the generalized distances φ.

32 Emmanuelle Anceaume, Yann Busnel

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000 100000

M
et

ri
c

v
al

u
e

k parameter

Ref - Bhattacharyya distance
Sketch - Bhattacharyya distance

Ref - Kullback-Leibler divergence
Sketch - Kullback-Leibler divergence

Ref - Jensen-Shannon divergence
Sketch - Jensen-Shannon divergence

(a) Synthetic traces – Distribution p follows a Uniform distri-
bution and q follows a Negative Binomial NB(3; 0.99) one

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 10 100 1000 10000 100000

M
et

ri
c

v
al

u
e

k parameter

Ref - Bhattacharyya distance
Sketch - Bhattacharyya distance
Ref - Kullback-Leibler divergence
Sketch - Kullback-Leibler divergence
Ref - Jensen-Shannon divergence
Sketch - Jensen-Shannon divergence

(b) Real datasets – The input stream p is the ClarkNet (Au-
gust) trace and q is the Saskatchewan one

Fig. 6. Comparison between the Sketch-? metric and the φ metric as a function of the
number of cells k per partition (the number of partitions t of the count-min sketch
data structure is set to 4). For synthetic traces, m = 200, 000 and N = 4, 000.

Lightweight Metric Computation for Distributed Massive Data Streams 33

Finally, it is interesting to note that the number t of generated partitions
has a slight influence on the accuracy of our metric The reason comes from the
use of 2-universal hash functions, which guarantee for each of them and with
high probability that data items are uniformly distributed over the cells of any
partition. As a consequence, augmenting the number of such hash functions has
a weak influence on the accuracy of the metric.

5 Conclusion and Future Works

In this paper we have proposed a novel metric, named the sketch codeviation,
that allows to approximate the deviation between any number of distributed
streams. We have given upper and lower bounds on the quality of this metric,
and have provided an algorithm that additively approximates it using very little
space. Beyond its theoretical interest, the sketch codeviation can be exploited
in many applications. As discussed in the introduction, large scale monitoring
applications are quite straightforward application domains, but we might also
use it in Internet of Things applications, where it must be interesting to track the
temporal and spatial correlations that may exist between the different streams
produced by devices in such applications.

In order to generalized this approach, we have introduced another new metric,
the Sketch-? metric, that allows to compute any generalized metric φ on the
summaries of two large input streams. We have presented a simple and efficient
algorithm to sketch streams in the same way and compute this metric on these
sketches. We have then shown that it behaves pretty well whatever the considered
input streams. We are convinced of the indisputable interest of such a metric
in various domains including Internet of Things statistical usages as network
monitoring and information retrieval [7], and we think that it should pertinent
in machine learning, and data mining applications as discussed in [9].

Regarding future works, we plan to characterize our metric among Rényi
divergences [48], also known as α-divergences, which generalize different diver-
gence classes. We also plan to consider a fully distributed setting, where each
site would be in charge of analyzing its own streams and then would propagate
its results to the other sites of the system for comparison or merging (without
any coordinator). An immediate application of such a tool would be to detect
massive attacks in a decentralized manner (e.g., by identifying specific connec-
tion profiles as with worms propagation, and massive port scan attacks or by
detecting sudden variations in the volume of received data), which perfectly fits
with IoT constraints.

References

1. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: Proceedings of the ACM Conference on Applications, technologies,
architectures, and protocols for computer communications (SIGCOMM). (2005)

34 Emmanuelle Anceaume, Yann Busnel

2. Qiu, T., Ge, Z., Pei, D., Wang, J., Xu, J.: What happened in my network: mining
network events from router syslogs. In: Procs of the 10th ACM conference on
Internet measurement (IMC). (2010)

3. Yeung, D.S.: Covariance-matrix modeling and detecting various flooding attacks.
IEEE Transactions on Systems, Man and Cybernetics, Part A 37(2) (2007) 157–
169

4. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks
and countermeasures in mix networks. In: Procs of the 4th ACM International
Conference on Privacy Enhancing Technologies (PET). (2004)

5. s. Ganguly, Garafalakis, M., Rastogi, R., Sabnani, K.: Streaming algorithms for
robust, real-time detection of ddos attacks. In: Procs of the 27th International
Conference on Distributed Computing Systems (ICDCS). (2007)

6. Jin, S., Yeung, D.: A covariance analysis model for ddos attack detection. In:
4th IEEE International Conference on Communications (ICC). Volume 4. (2004)
1882–1886

7. Pinarer, O., Gripay, Y., Servigne, S., Ozgovde, A.: Energy Enhancement of
Multi-application Monitoring Systems for Smart Buildings. In: Conference on Ad-
vanced Information Systems Engineering - EnBIS: Energy-awareness and Big Data
Management in Information Systems (CAiSE). Volume 249., Ljubljana, Slovenia,
Springer (June 2016) 131–142

8. Boubrima, A., Matigot, F., Bechkit, W., Rivano, H., Ruas, A.: Optimal Deploy-
ment of Wireless Sensor Networks for Air Pollution Monitoring. In: 24th Inter-
national Conference on Computer Communication and Networks (ICCCN), Las
Vegas, United States (August 2015)

9. Stankovic, J.A.: Research directions for the internet of things. IEEE Internet of
Things Journal 1(1) (Feb 2014) 3–9

10. Anceaume, E., Busnel, Y., Gambs, S.: Uniform and Ergodic Sampling in Unstruc-
tured Peer-to-Peer Systems with Malicious Nodes. In: Proceedings of the 14th
international conference on Principles of distributed systems (OPODIS). Volume
6490. (2010) 64–78

11. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
distinct elements in a data stream. In: Proceedings of the 6th International Work-
shop on Randomization and Approximation Techniques (RANDOM), Springer-
Verlag (2002) 1–10

12. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. Journal of Computer and System Sciences 31(2) (1985) 182–209

13. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct
element problem. In: Proceedings of the Symposium on Principles of Databases
(PODS). (2010)

14. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing (STOC). (1996) 20–29

15. Cover, T., Thomas, J.: Elements of information theory. Wiley New York (1991)
16. Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algorithm for com-

puting the entropy of a stream. In: In ACM-SIAM Symposium on Discrete Algo-
rithms. (2007) 328–335

17. Lall, A., Sekar, V., Ogihara, M., Xu, J., Zhang, H.: Data streaming algorithms
for estimating entropy of network traffic. In: Proceedings of the joint international
conference on Measurement and modeling of computer systems (SIGMETRICS),
ACM (2006)

Lightweight Metric Computation for Distributed Massive Data Streams 35

18. Anceaume, E., Busnel, Y., Gambs, S.: On the power of the adversary to solve
the node sampling problem. Transactions on Large-Scale Data- and Knowledge-
Centered Systems (TLDKS) 11 (2013) 102–126

19. Anceaume, E., Busnel, Y.: An information divergence estimation over data
streams. In: Proceedings of the 11th IEEE International Symposium on Network
Computing and Applications (NCA). (2012)

20. Chakrabarti, A., Ba, K.D., Muthukrishnan, S.: Estimating entropy and entropy
norm on data streams. In: In Proceedings of the 23rd International Symposium on
Theoretical Aspects of Computer Science (STACS), Springer (2006)

21. Guha, S., McGregor, A., Venkatasubramanian, S.: Streaming and sublinear approx-
imation of entropy and information distances. In: Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). (2006) 733–742

22. Rivetti, N., Busnel, Y., Querzoni, L.: Load-aware shedding in stream processing
systems. In: Proceedings of the 10th ACM International Conference on Distributed
Event-Based Systems (DEBS), Ivine, CA, USA (June 2016)

23. Rivetti, N., Anceaume, E., Busnel, Y., Querzoni, L., Sericola, B.: Online scheduling
for shuffle grouping in distributed stream processing systems. In: Proceedings
of the 17th ACM/IFIP/USENIX 13th International Conference on Middleware
(Middleware), Trento, Italie (December 2016)

24. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theoretical Computer Science 312(1) (2004) 3–15

25. Cormode, G., Garofalakis, M.: Sketching probabilistic data streams. In: Proceed-
ings of the 2007 ACM SIGMOD international conference on Management of data.
(2007) 281–292

26. Guha, S., Indyk, P., Mcgregor, A.: Sketching information divergences. Machine
Learning 72(1-2) (2008) 5–19

27. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. In: Procs of the 19th Annual ACM-SIAM Symposium On Discrete
Algorithms (SODA). (2008)

28. Arackaparambil, C., Brody, J., Chakrabarti, A.: Functional monitoring without
monotonicity. In: Procs of the 36th ACM International Colloquium on Automata,
Languages and Programming (ICALP). (2009)

29. Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: Proceedings of the Thirteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA). (2001) 281–291

30. Haung, Z., Yi, K., Zhang, Q.: Randomized algorithms for tracking distributed
count, frequencies and ranks. In: Proceedings of 31st ACM Symposium on Princi-
ples of Database Systems (PODS). (2012)

31. Z. Liu, B.R., Vojnovic, M.: Continuous distributed counting for non-monotonic
streams. In: Proceedings of 31st ACM Symposium on Principles of Database Sys-
tems (PODS). (2012)

32. Yuan, J., Mills, K.: Monitoring the macroscopic effect of DDoS flooding attacks.
IEEE Transactions on Dependable and Secure Computing 2(4) (2005)

33. Basseville, M., Cardoso, J.F.: On entropies, divergences, and mean values. In:
Proceedings of the IEEE International Symposium on Information Theory. (1995)

34. Ali, S.M., Silvey, S.D.: General Class of Coefficients of Divergence of One Distri-
bution from Another. Journal of the Royal Statistical Society. Series B (Method-
ological) 28(1) (1966) 131–142

35. Csiszár, I.: Information Measures: A Critical Survey. In: Transactions of the
Seventh Prague Conference on Information Theory, Statistical Decision Functions,
Random Processes, Dordrecht, D. Riedel (1978) 73–86

36 Emmanuelle Anceaume, Yann Busnel

36. Morimoto, T.: Markov processes and the h-theorem. Journal of the Physical
Society of Japan 18(3) (1963) 328–331

37. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Math-
ematical Statistics 22(1) (1951) 79–86

38. Bhattacharyya, A.: On a measure of divergence between two statistical populations
defined by their probability distributions. Bulletin of the Calcutta Mathematical
Society 35 (1943) 99–109

39. Muthukrishnan: Data Streams: Algorithms and Applications. Now Publishers Inc.
(2005)

40. Anceaume, E., Busnel, Y., Rivetti, N.: Estimating the frequency of data items
in massive distributed streams. In: Proceedings of the 4th IEEE Symposium on
Network Cloud Computing and Applications (NCCA). (2015) 59–66

41. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1) (2005) 58–75

42. the Internet Traffic Archive: http://ita.ee.lbl.gov/html/traces.html. Lawrence
Berkeley National Laboratory (April 2008)

43. Bregman, L.M.: The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics 7(3) (1967) 200–217

44. Hellinger, E.: Neue begründung der theorie quadratischer formen von unendlichvie-
len veränderlichen. J. Reine Angew. Math. 136 (1909) 210–271

45. Csiszár, I.: Why least squares and maximum entropy? an axiomatic approach
to inference for linear inverse problems. The Annals of Statistics 19(4) (1991)
2032–2066

46. Amari, S.I., Cichocki, A.: Information geometry of divergence functions. Bulletin
of the Polish Academy of Sciences: Technical Sciences 58(1) (2010) 183–195

47. Amari, S.I.: α-Divergence Is Unique, Belonging to Both f -Divergence and Bregman
Divergence Classes. IEEE Transactions on Information Theory 55(11) (nov 2009)
4925–4931

48. Renyi, A.: On measures of information and entropy. In: Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics and Probability. (1960) 547–561

A Derivation of Upper Bounds on Ek(X,Y)

We have shown with Theorem 1, that the sketch codeviation matches exactly the
codeviation if k ≥ | supp(X) ∩ supp(Y)| + 1supp(X)rsupp(Y) + 1supp(Y)rsupp(X).
In this section, we characterize the upper bound of the overestimation fac-
tor, i.e., the error made with respect to the codeviation, when k is strictly
less than this bound. To prevent problems of measurability, we restrict the
classes of Ω-point distribution under consideration. Specifically, given mX and
mY any positive integers, we define the two classes X and Y as X = {X =
(x1, . . . , xN) such that ||X||1 = mX } and Y = {Y = (y1, . . . , yN) such that ||Y ||1 =
mY}. The following theorem derives the maximum value of the overestimation
factor.

Theorem 2 [Upper bound of Ek(X,Y)] Let k ≥ 1 be the precision parameter
of the sketch codeviation. For any two Ω-point distributions X ∈ X and Y ∈ Y,

Lightweight Metric Computation for Distributed Massive Data Streams 37

let Ek be the maximum value of the overestimation factor Ek(X,Y). Then, the
following relation holds.

Ek = max
X∈X ,Y ∈Y

Ek(X,Y) =


mXmY
N

if k = 1,

mXmY
N

(
1

k
− 1

N

)
if k > 1.

Proof. The first part of the proof is directly derived from Lemma 15. Using
Lemmata 16 and 17, we obtain the statement of the theorem. ut

Lemma 15. For any two Ω-point distributions X ∈ X and Y ∈ Y, the maxi-
mum value E1 of the overestimation factor is exactly

E1 = max
X∈X ,Y ∈Y

E1(X,Y) =
mXmY
N

.

Proof. ∀X ∈ X ,∀Y ∈ Y, we are looking for the maximal value of E1(X,Y)
under the following constraints:

0 ≤ xi ≤ mX with 1 ≤ i ≤ N,
0 ≤ yi ≤ mY with 1 ≤ i ≤ N,∑N
i=1 xi = mX ,∑N
i=1 yi = mY .

(11)

In order to relax one constraint, we set xN = mX −
∑N−1
i=1 xi. We rewrite

E1(X,Y) as a function f such that

f(x1, . . . , xN−1, y1, . . . , yN) =

N−1∑
i=1

N∑
j=1,j 6=i

xiyj +

(
mX −

N−1∑
i=1

xi

)
N−1∑
i=1

yi.

The function f is differentiable on its domain [0..mX]N−1 × [0..mY]N . Thus we
get

df

dxi
(x1, . . . , xN−1, y1, . . . , yN) =

N∑
j=1,j 6=i

yj −
N−1∑
j=1

yj = yN − yi.

We need to consider the following two cases:

1. yN > yi. Function f is strictly increasing, and its maximum is reached for
xi = mX (f is a Schur-convex function). By Relation 11, ∀j ∈ Ωr{i}, xj = 0.

2. yN ≤ yi. Function f is decreasing, and its minimum is reached at xi = 0.

By symmetry on Y , the maximum of E1(X,Y) is reached for a distribution
for which exactly one yi is equal to mY , and all the others yj are equal to zero,
which corresponds to the Dirac distribution. On the other hand, if the spike

38 Emmanuelle Anceaume, Yann Busnel

element of Y is the same as the one of X, then E1(X,Y) = 0, which is clearly
not the maximum.

Thus, for all X ∈ X and Y ∈ Y, the maximum E of the overestimation
factor when k = 1 is reached for two Dirac distributions Xδ and Y δ respectively

centered in i and j with i 6= j, which leads to E1 =
1

N

N∑
i=1

N∑
j=1,j 6=i

xδi y
δ
j =

mXmY
N

.

ut

We now show that for any k > 1, the maximum value of overestimation factor
of the sketch codeviation between X and Y is obtained when both X and Y are
uniform distributions.

Lemma 16. Let XU and YU be two uniform Ω-point distributions, i.e., XU =

(x1, . . . , xN) with xi = ||XU ||1
N for 1 ≤ i ≤ N and YU = (y1, . . . , yN) with

yi = ||YU ||1
N for 1 ≤ i ≤ N . Then for any k > 1, the value of the overestimation

factor is given by

Ek(XU , YU) =
||XU ||1||YU ||1

N

(
1

k
− 1

N

)
.

Proof. By definition, Ek(XU , YU) represents for a given k the minimum overes-
timation factor for all k-cell partitions of Ω, and in particular for any regular
partition for which all the k cells of the partition contain the same number N

k of
elements. In such a partition, all the k disjoint cells of the cross product matrix

share the same value ||XU ||1||YU ||1N2 . Therefore each cell a has the same weight

equal to ||XU ||1||YU ||1N2

(
N2

k2 −
N
k

)
, leading to

Ek(XU , YU) =
k

N

||XU ||1||YU ||1
N2

(
N2

k2
− N

k

)
=
||XU ||1||YU ||1

N

(
1

k
− 1

N

)
which concludes the proof. ut

Lemma 17. Let X ∈ X and Y ∈ Y be any two Ω-point distributions. Then
the maximum value of the overestimation factor of the sketch codeviation when
k > 1 is exactly

Ek = max
X∈X ,Y ∈Y

Ek(X,Y) =
mXmY
N

(
1

k
− 1

N

)
.

Proof. Given X ∈ X and Y ∈ Y any two Ω-point distributions, let us denote
Eρk (X,Y) = 1

N

∑
a∈ρ

∑
i∈a
∑
j∈ar{i} xiyj .

Consider the partition ρ = argminρ∈Pk(Ω) E
ρ
k (X,Y) with k > 1. We introduce

the operator ·̃ that operates on Ω-point distributions. This operator is defined
as follows

Lightweight Metric Computation for Distributed Massive Data Streams 39

– If it exists a ∈ ρ such that ∃`, `′ ∈ a with y` ≥ y`′ and x`′ > 0, then operator

·̃ is applied on the pair (`, `′) of X so that we have

{
x̃` = x` + 1
x̃`′ = x`′ − 1

.

– Otherwise, ∃a, a′ ∈ ρ with ∃` ∈ a,∃`′ ∈ a′, x` ≥ x`′ > 0. Then operator ·̃ is

applied on the pair (`, `′) of X so that we have

{
x̃` = x` + 1
x̃`′ = x`′ − 1

.

– Finally,X is kept unmodified for all the other items, i.e., ∀i ∈ Ωr{`, `′}, x̃i =
xi.

It is clear that any Ω-point distributions can be constructed from the uniform
one, using several iterations of this operator. Thus we split the proof into two
parts. The first one supposes that both Ω-point distributions X and Y are
uniform while the second part considers any two Ω-point distributions.

Case 1. Let XU and YU be two uniform Ω-point distributions, i.e., XU =

(x1, . . . , xN) with xi = ||XU ||1
N for 1 ≤ i ≤ N and YU = (y1, . . . , yN) with

yi = ||YU ||1
N for 1 ≤ i ≤ N .

We split the analysis into two sub-cases: the class of partitions in which x`
and x`′ belong to the same cell a of a given k-partition ρ, and the class of
partitions in which they are located into two separated cells a and a′. Suppose
first that the ·̃ operator is applied on XU . Then the overestimation factor is given
by

Ek(X̃U , YU) = min(E,E′) with



E = min
ρ ∈ Pk(Ω) s.t.
∃a ∈ ρ, `, `′ ∈ a

Eρk (X̃U , YU)

E′ = min
ρ ∈ Pk(Ω) s.t.
∃a, a′ ∈ ρ, a 6= a′

∧` ∈ a ∧ `′ ∈ a′

Eρk (X̃U , YU).
(12)

Let us consider the first term E. We have

E = min
ρ ∈ Pk(Ω) s.t.
∃a ∈ ρ, `, `′ ∈ a

 ∑
b∈ρr{a}

∑
i∈b

∑
j∈br{i}

x̃iyj +
∑
i∈a

∑
j∈ar{i}

x̃iyj


= min

ρ ∈ Pk(Ω) s.t.
∃a ∈ ρ, `, `′ ∈ a

 ∑
b∈ρr{a}

∑
i∈b

∑
j∈br{i}

mXmY
N2

+
∑

i∈ar{`,`′}

∑
j∈ar{i}

mXmY
N2

+
∑

j∈ar{`}

(mX
N

+ 1
) mY
N

+
∑

j∈ar{`′}

(mX
N
− 1
) mY
N


= min

ρ ∈ Pk(Ω) s.t.
∃a ∈ ρ, `, `′ ∈ a

(Eρk (XU , YU)) .

40 Emmanuelle Anceaume, Yann Busnel

According to the second term E′, we have

E′ = min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧` ∈ a ∧ `′ ∈ a′

 ∑
b ∈ ρ

r{a, a′}

∑
i∈b

∑
j ∈ b
r{i}

mXmY
N2

+
∑

i∈ar{`}

∑
j∈ar{i}

mXmY
N2

+
∑

i∈a′r{`′}

∑
j∈a′r{i}

mXmY
N2

+
∑

j∈ar{`}

(mX
N

+ 1
) mY
N

+
∑

j∈a′r{`′}

(mX
N
− 1
) mY
N


= min

ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧` ∈ a ∧ `′ ∈ a′

(
Eρk (XU , YU) +

mY
N

(|a| − |a′|)
)
.

Thus, Ek(X̃U , YU) ≤ Ek(XU , YU). By symmetry, we have Ek(XU , ỸU) ≤ Ek(XU , YU).
Case 2. In the rest of the proof, we show that for any X and Y , we have
Ek(X̃, Y) ≤ Ek(X,Y). Again, we split the proof into two sub-cases according to
Relation 12. We get for the first term,

min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, `, `′ ∈ a

Eρk (X̃, Y) = min
ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, `, `′ ∈ a

Eρk (X,Y) +
∑

j∈ar{`}

yj −
∑

j∈ar{`′}

yj


= min

ρ ∈ Pk(Ω) s.t.

∃a ∈ ρ, `, `′ ∈ a

(Eρk (X,Y) + y`′ − y`) .

For the second term, we have

min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧` ∈ a ∧ `′ ∈ a′

Eρk (X̃, Y) = min
ρ ∈ Pk(Ω) s.t.

∃a, a′ ∈ ρ, a 6= a′

∧` ∈ a ∧ `′ ∈ a′

Eρk (X,Y) +
∑

j∈ar{`}

yj −
∑

j∈a′r{`′}

yj

 .

By definition of the operator, if it exists a ∈ ρ such that ∃`, `′ ∈ a, then y` ≥ y`′
and so Eρk (X̃, Y) ≤ Eρk (X,Y). Otherwise, ` and `′ are in two separated cells of
ρ, implying that x` ≥ x`′ . We then have

∑
j∈ar{`} yj ≤

∑
j∈a′r{`′} yj . Indeed,

suppose that by contradiction

x`
∑

j∈a′r{`′}

yj + x`′
∑

j∈ar{`}

yj < x`
∑

j∈ar{`}

yj + x`′
∑

j∈a′r{`′}

yj .

Let ρ′ be the partition corresponding to the partition ρ in which ` and `′ have

been swapped. Then we obtain Eρ
′

k (X,Y) < Eρk (X,Y), which is impossible by as-

sumption on ρ. Thus, in both cases we have Ek(X̃, Y) ≤ Eρk (X̃, Y) ≤ Eρk (X,Y) =

Ek(X,Y). By symmetry, we also have Ek(X, Ỹ) ≤ Ek(X,Y).
Thus we have shown that the maximum of any overestimation factor is

reached for the uniform Ω-point distribution. Lemma 16 concludes the proof.
ut

