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Stability of semidiscrete formulations for elastodynamics at small time steps

Eran Grosu, Isaac Harari∗

Department of Solid Mechanics, Materials, and Systems, Tel Aviv University, 69978 Ramat Aviv, Israel

Solutions of direct time-integration schemes for elastodynamics that converge in time to conventional semidiscrete formulations may be 
polluted at small time steps by spurious oscillations that violate the principle of causality, for example by arising before wave fronts. This 
degradation is not an artifact of the time-marching scheme, but rather a property of the solution of the semidiscrete formulation itself. An 
analogy to singularly perturbed elliptic problems provides an upper bound on the time step for the onset of these oscillations. A simple 
procedure of spatial stabilization is proposed to remove this pathology from implicit time-integration schemes, without affecting unconditional 
temporal stability. Spatially stabilized implicit time-integration methods are free of noncausal oscillations at small time steps.
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1. Introduction
Dynamic behavior of elastic bodies (elastodynamics) is de-

scribed by the equation of motion, which is continuous in space
and time. Finite element methods are usually used to obtain
numerical solutions for problems in structural dynamics.

The common approach to transient computation (the method
of lines [1]) is time-integration of a semidiscrete formulation,
which is obtained by spatial discretization. Thus, the approx-
imation is carried out in two stages. First, spatial approxi-
mation, e.g., by standard finite element methods, leads to the
semidiscrete formulation (a coupled system of ordinary dif-
ferential equations in time). Then, temporal discretization by
time-integration schemes results in a system of algebraic equa-
tions at each time level. Perhaps the most widely used family of
direct methods for solving the semidiscrete equation of motion
is the Newmark family of methods for time-integration. The un-
conditionally stable in time, second-order accurate trapezoidal
rule is, probably, the most commonly used implicit algorithm
among the Newmark family.
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It is well known that higher modes, related to higher frequen-
cies of semidiscrete formulations, are approximated poorly
[2, Section 6.3]. As a result, algorithmic damping is often intro-
duced in time-integration schemes in order to remove partici-
pation of high-frequency modal components [3,4]. Algorithmic
damping cannot be introduced in the Newmark method without
degrading the order of accuracy. Hence, the trapezoidal rule
lacks algorithmic damping. The implicit, unconditionally sta-
ble in time, second-order accurate HHT-� [3] and generalized-�
[4] algorithms are extensions of the Newmark method with
adjustable algorithmic damping introduced to improve this
shortcoming.

Conventional wisdom advocates that time step reduction be
accompanied by corresponding refinement of the spatial mesh.
Indeed, procedures for time step selection often advise against
reducing time steps far below the critical values for temporal
stability [5, p. 510]. Nevertheless, small time steps are often
necessary in practice, for example in problems of radiative
transport [6] and fluid-structure interaction [7]. As the time
step is reduced with a fixed mesh size, the deleterious effects
of higher modes are inevitably admitted into the computation,
even with algorithmic damping [8]. Thus, spurious spatial
oscillations may pollute the solution, at small time steps, of all
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algorithms that converge in time to consistent semidiscrete for-
mulations.

The principle of causality in classical mechanics states that
cause precedes its effect. With relation to computation of
discontinuous elastodynamic phenomena, numerical solutions
may be polluted by spurious oscillations resulting from the
sharp gradient at the front of a stress wave. Spurious oscilla-
tions arising before the wave front are noncausal. Specifically,
computation of discontinuous phenomena with the trapezoidal
rule is accompanied by spurious oscillations, due to its lack
of algorithmic damping. At relatively large time steps these
oscillations follow the wave front, but for small time steps
the oscillations precede the wave front, violating the principle
of causality. The HHT-� [3] and generalized-� [4] algorithms
significantly reduce the spurious oscillations observed in the
trapezoidal rule. Nonetheless spurious oscillations precede the
wave front at small time steps.

An alternative approach to the method of lines is the Rothe
method [9] (or horizontal method of lines) of first discretiz-
ing in time and then in space on each discrete time level. The
Rothe method is employed in order to characterize the on-
set of noncausal oscillations and eliminate them. This method
reveals that the time-discrete equation, that is solved at each
time level of standard implicit schemes, can be viewed as a
Galerkin approximation of a steady reaction–diffusion equation
governed by a modified Helmholtz operator. An analogy to such
singularly perturbed elliptic problem provides a threshold for
the onset of small time step oscillations. Numerical computa-
tions obtained for smaller time steps might produce noncausal
oscillations.

Any scheme that stabilizes the singularly perturbed equa-
tion removes this pathology. We propose a simple procedure
of spatial stabilization, which leads to implicit time-integration
schemes that are free of noncausal oscillations, without effect-
ing unconditional temporal stability. A stabilized method for the
Rothe representation is obtained by appending to its Galerkin
equation residuals of its Euler–Lagrange equation in adjoint
least-squares form. These residuals are multiplied by a mesh-
dependent stability parameter, which is defined by von Neu-
mann analysis. The stabilized method of adjoint type, originally
called the unusual stabilized finite element method [10] and
also subgrid modeling [11] or multiscale stabilization [12], may
be derived in the variational multiscale framework [13], and
is related to residual-free bubbles [14,15]. In practice, for the
self-adjoint operators considered herein, this method is equiv-
alent to Galerkin/least-squares, which is often employed for
such problems [16].

As mentioned previously, it is well known that effects of
higher modes are inevitably admitted into the computation
as the time step is reduced with a fixed mesh size. The ob-
jective of this paper is to characterize the onset of instabil-
ity and propose a stabilization procedure for eliminating this
pathology from implicit time-integration schemes for elasto-
dynamics. Similar work was done for the diffusion equation,
as a model for parabolic problems [17]. In this paper, the
equation of motion is considered as a model for hyperbolic
problems.

The remainder of this paper is organized as follows. In
Section 2 we consider the Newmark time-integration method
for the semidiscrete equation of motion, and demonstrate the
existence of noncausal oscillations at small time steps. Im-
proved methods, such as the generalized-� method, concentrate
on enhancement of the algorithmic damping capabilities, which
can only reduce the nonphysical behavior rather than eliminate
it. An alternative approach to the derivation of the time-discrete
equations shows, in Section 3, that a steady reaction–diffusion
model explains the pathologies observed, characterizes the
threshold of instability and leads to a stabilization procedure.
By analogy to the simple reaction–diffusion model, these mea-
sures are employed to derive a bound for the time step under
which noncausal oscillations are expected, and then remove the
instabilities from implicit time-integration schemes by spatial
stabilization. Conclusions are offered in Section 4.

2. Formulations for elastodynamics

The equation of motion is considered as a model of a hy-
perbolic partial differential equation. We examine the New-
mark and generalized-� families of time-integration schemes,
although other algorithms can be considered as well.

2.1. Semidiscrete formulation of the equation of motion

Let � ⊂ Rd be a d-dimensional, open, bounded domain with
smooth boundary �. The open time interval is (0, T ).

Consider the following homogeneous, Dirichlet, elastody-
namic problem of finding the displacement u(x, t), such that

�u,t t − ∇ · (c∇u)= f in �× (0, T ), (1)

u= 0 on �× (0, T ), (2)

u(x, 0)= u0(x), x ∈ �, (3)

u,t (x, 0)= u̇0(x), x ∈ �. (4)

Here, �(x) > 0 is the known density, c(x) is the known fourth-
rank tensor of elastic coefficients (with the usual symmetry and
positive-definiteness properties), f(x, t) is the prescribed body
force, u0(x) is the specified initial displacement, and u̇0(x) is
the specified initial velocity. Generalization of the following
results to problems with other types of boundary conditions is
straightforward (see Section 2.4 for a numerical example with
other types of boundary conditions).

For isotropic materials, the tensor c(x) has only two inde-
pendent parameters, e.g., the Lamé parameters, � and �. The
problem parameters can be combined in terms of the pres-
sure and shear wave velocities, cL and cT , respectively, where
c2
L = (�+ 2�)/� and c2

T = �/�.
Let � be partitioned, in the usual way, into nonoverlapping

element domains, numbered with index e. The semidiscrete
Galerkin approximation is stated in terms of a set of func-
tions that do not depend on time Vh ⊂ H 1

0 (�). The stan-
dard finite element method consists of finding uh(t) ∈ Vh,
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such that ∀ūh ∈Vh

(ūh, �üh)+ a(ūh, uh)= (ūh, f), (5)

(ūh, �uh(0))= (ūh, �u0), (6)

(ūh, �u̇h(0))= (ūh, �u̇0). (7)

Here, x is suppressed as an argument of u, the superposed
dot denotes time differentiation, and (·, ·) is the L2(�) inner
product. The form of the right-hand side assumes sufficiently
smooth f. The bilinear operator is

a(ū, u)= (∇ū, c∇u). (8)

The matrix equations are obtained in the usual way (see, e.g.,
Ref. [5]). The functions ūh and uh are expressed in terms of
standard finite element shape functions which are not time de-
pendent, whereas the unknown nodal displacements are time
dependent.

The semidiscrete form of the initial/boundary-value prob-
lem governed by the equation of motion (1) is the well-known
initial-value problem of finding the vector of unknown nodal
displacements, d=d(t), satisfying the coupled system of ordi-
nary differential equations

Md̈+ Cḋ+Kd= F, (9)

and initial conditions

d(0)= d0, (10)

ḋ(0)= ḋ0. (11)

Here, M is the symmetric, positive-definite, mass matrix ob-
tained from the first term on the left-hand side of Eq. (5); C is
a viscous damping matrix, which is not derived from the equa-
tion of motion (1), but is often used in structural dynamics;
K is the symmetric, positive-semidefinite, stiffness matrix ob-
tained from the second term on the left-hand side of Eq. (5);
and F = F(t) is the prescribed force vector obtained from the
right-hand side of Eq. (5). The initial conditions d0 and ḋ0 are
usually taken as nodal values of the given functions u0(x) and
u̇0(x), respectively. The global arrays M, C, K and F are as-
sembled from element arrays me, ce, ke and fe in the usual
way (see, e.g., Ref. [5]).

2.2. The Newmark method

The Newmark method for integrating the semidiscrete equa-
tion (9) from time level tn to tn+1 = tn + �t is expressed in
terms of dn, vn and an, the approximations to d(tn), ḋ(tn) and
d̈(tn), respectively, as follows:

Man+1 + Cvn+1 +Kdn+1 = Fn+1, (12)

dn+1 = d̃n+1 + 	�2
t an+1, (13)

vn+1 = ṽn+1 + 
�tan+1, (14)

where �t is the time step and the predictors are

d̃n+1 = dn + �tvn + �2
t

2
(1− 2	)an, (15)

ṽn+1 = vn + �t (1− 
)an. (16)

The Newmark algorithms are a one-step, two-parameter (	 and

) family of methods. The second-order accurate, uncondi-
tionally stable in time, trapezoidal or average acceleration rule
(	= 1

4 , 
= 1
2 ) is, probably, the most common implicit scheme

among the Newmark algorithms. The trapezoidal rule lacks
algorithmic damping, which can be obtained by increasing
the value of the parameter 
 beyond 1

2 . While this introduces
the desired high-frequency dissipation, it also affects the low-
frequency range, resulting in first-order accurate schemes.
There is no second-order accurate Newmark method with
algorithmic damping.

The following form of implementation is considered:

(M+ 
�tC+ 	�2
t K)an+1 = Fn+1 − Cṽn+1 −Kd̃n+1. (17)

The initialization of the solution procedure is standard. At the
beginning of each time step, the terms on the right-hand side
of Eq. (17) are known. The equation is solved for an+1, and
dn+1 and vn+1 are then obtained from the update equations
(13) and (14).

2.3. The generalized-� method

Consider the integration of the semidiscrete equation (9)
by the generalized-� method for second-order systems [4].
The update equations of the Newmark method (13) and
(14) are retained, whereas the time-discrete equation is
modified:

Man+1−�m + Cvn+1−�f
+Kdn+1−�f

= Fn+1−�f
, (18)

dn+1−�f
= d̃n+1−�f

+ 	�2
t (1− �f )an+1, (19)

vn+1−�f
= ṽn+1−�f

+ 
�t (1− �f )an+1, (20)

an+1−�m = (1− �m)an+1 + �man, (21)

where tn+1−�f
= (1 − �f )tn+1 + �f tn = tn+1 − �f �t . The

predictors are

d̃n+1−�f
= dn + �t (1− �f )vn + �2

t

2
(1− 2	)(1− �f )an,

(22)

ṽn+1−�f
= vn + �t (1− 
)(1− �f )an. (23)

The generalized-� method is an extension of the Newmark
method that exhibits algorithmic damping. It is defined in terms
of parameters �m and �f , in addition to 	 and 
. Selecting
�m = �f = 0 leads to the familiar Newmark family of meth-
ods. Selecting �m=0, �f =−� leads to the HHT-� method [3].
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Alternatively, selecting

�m = 2�∞ − 1

�∞ + 1
, (24)

�f = �∞
�∞ + 1

, (25)

	= (1− �m + �f )2/4, (26)


= (1− 2�m + 2�f )/2, (27)

defines an unconditionally stable in time, second-order
accurate, one-parameter (0��∞�1), family of methods. The
parameter �∞ specifies the dissipation of the high-frequency
modal components. Taking �∞ = 0 eliminates the high-
frequency response (known as asymptotic annihilation). On the
other extreme, setting �∞=1 eliminates the algorithmic damp-
ing and the trapezoidal time-integration scheme is regained.

The following form of implementation is considered:

((1− �m)M+ 
�t (1− �f )C+ 	�2
t (1− �f )K)an+1

= Fn+1−�f
− �mMan − Cṽn+1−�f

−Kd̃n+1−�f
. (28)

Again, the initialization of the solution procedure is standard.
At the beginning of each time step, the terms on the right-hand
side of Eq. (28) are known. The equation is solved for an+1, and
then dn+1 and vn+1 are obtained using the update equations of
the Newmark method (13) and (14)

dn+1 =
d̃n+1−�f

− �f dn + 	�2
t (1− �f )an+1

1− �f

, (29)

vn+1 =
ṽn+1−�f

− �f vn + 
�t (1− �f )an+1

1− �f

. (30)

2.4. Motivation: numerical example

Consider a one-dimensional wave propagation problem in
a uniform bar of length L and a constant bar wave velocity
c0=√E/�, where E is Young’s modulus and � is the material
density. The model lacks physical damping. No body force is
applied. The bar is fixed on the left end, and a constant pressure
p is applied at t = 0 on the right end (see Fig. 1). The bar
is initially at rest. Once the load is applied, a stress wave is
generated, propagating towards the fixed end at the bar wave
velocity c0. Attention is restricted to the time interval before
the stress wave reaches the fixed end of the bar (T < L/c0).

The initial/boundary-value problem is

ü− c2
0u
′′ = 0, 0 < x < L, 0 < t < T , (31)

u(0, t)= 0, 0 < t < T , (32)

�(L, t)= p, 0 < t < T , (33)

u(x, 0)= 0, 0 < x < L, (34)

u̇(x, 0)= 0, 0 < x < L, (35)

where �= Eu′.

pco

x L

Fig. 1. Bar fixed on the left end and subject to pressure on the right end.

The exact solution is [18, p. 91]

u= p

E
〈c0t − (L− x)〉, (36)

where 〈·〉 is the Macaulay bracket. The bar is at rest before
the wave front, since the stress wave has not yet arrived due
to the finite velocity of propagation, conforming to the prin-
ciple of causality. The discretization error inherent in numeri-
cal methods invariably leads to precursors before wave fronts
that violate the principle of causality. Such precursors are con-
sidered acceptable as long as they are monotonic and small.
Numerical solutions may also exhibit spurious oscillations on
both sides of the wave front resulting from sharp gradients in
stress. Noncausal oscillations, appearing before the wave front,
are inappropriate.

Numerical computations were performed using a uniform
mesh of 100 linear rod elements (h = L/100) and three time
steps CFL= 1.0, 0.5, 0.1, where CFL= c0�t /h is the Courant
number. Recall, CFL = 1 is the critical time step for temporal
stability of the central difference method (	 = 0, 
 = 1

4 ), the
explicit scheme of the Newmark method (when the mass matrix
is lumped).

Snapshots of the numerical solutions for the stress, obtained
by the trapezoidal rule and generalized-� method (�∞ = 7

13 )
at t = 0.6L/c0, are shown in Fig. 2. The numerical solutions
exhibit spurious oscillations resulting from sharp gradients at
the wave front. For the largest time step (CFL = 1.0), the
solutions exhibit small monotonic precursors but are free of
noncausal oscillations, as can be seen in Fig. 2(a). For the
trapezoidal rule, spurious oscillations follow the wave front.
The damping property of the generalized-� method is apparent.
For the medium time step (CFL = 0.5), the onset of spurious
oscillations before the wave front can be observed in Fig. 2(b),
violating the principle of causality. Again, the damping prop-
erty of the generalized-� method is evident, but still noncausal
oscillations exist. For the smallest time step (CFL = 0.1), the
spurious oscillations before the wave front are no longer local-
ized, as is the case for the medium time step, as can be seen in
Fig. 2(c). At this time step, the solutions are essentially con-
verged to the solution of the semidiscrete formulation, hence
the two solutions are almost identical.

3. Spatial stability analysis

The numerical example in the previous section shows that
standard time-integration schemes exhibit noncausal phenom-
ena at small time steps. These pathologies can be explained by
examining a simple free-space model. Furthermore, this model
can be used to formulate stabilized methods that are free of
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Fig. 2. Snapshots of stress computed by the trapezoidal rule and generalized-� method (�∞ = 7
13 ) at t = 0.6L/c0 (compared to the exact solution).

(a) Solutions at CFL=1.0: trapezoidal rule (left) and generalized-� method (right). (b) Solutions at CFL=0.5: trapezoidal rule (left) and generalized-� method
(right). (c) Solutions at CFL = 0.1: trapezoidal rule (left) and generalized-� method (right).

noncausal oscillations at all time steps. Consider the scalar wave
equation

ü− c2�u= f , (37)

where c is the appropriate wave velocity (e.g., cT , cL or c0).

3.1. Time-integration by the Newmark method

By the Rothe method, the space–time continuous wave
equation (37) is discretized in time by the Newmark time-
integration scheme in terms of un(x), vn(x) and an(x), the
approximations at time tn to u(x, t), u̇(x, t) and ü(x, t),
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respectively, as follows:

an+1 − c2�un+1 = f (x, tn+1), (38)

un+1 = ũn+1 + 	�2
t an+1, (39)

vn+1 = ṽn+1 + 
�t an+1, (40)

where the predictors are

ũn+1 = un + �t vn + �2
t

2
(1− 2	)an, (41)

ṽn+1 = vn + �t (1− 
)an. (42)

Substitution leads to the following steady reaction–diffusion
equation

Lan+1 = f̃ , (43)

where Lu=−	�2
t c

2�u+ u is a modified Helmholtz operator
and f̃ =f (x, tn+1)+c2�ũn+1. The degradation of stability for
this singularly perturbed elliptic equation at small values of the
parameter is well-known.

3.1.1. Stability of spatial Galerkin approximation
The Galerkin approximation of the free-space model (ne-

glecting boundary conditions) consists of finding ah
n+1, such

that

(āh
n+1, a

h
n+1)+ a(āh

n+1, a
h
n+1)= (āh

n+1, f̃ ). (44)

In order to recover the usual discrete form, the predictor term on
the right-hand side should be integrated by parts. The bilinear
operator in this case is

a(ū, u)= 	�2
t (∇ū, c2∇u). (45)

Free-space solutions of the constant-coefficient, homogeneous,
reaction–diffusion equation exhibit exponential growth and
decay with rate 1/(

√
	�t c), which is related to the Courant

number (CFL) in computation. Von Neumann analysis of the
Galerkin method of a uniform d-dimensional mesh of linear
elements of size h aligned with the direction of growth or
decay leads to an expression for the approximate growth or
decay rate (for more details, see Ref. [17]). Expressing the
approximate exponential rate as CFLh, the Galerkin method
results in the following relation:

1

CFLh
=√

	 arccosh

(
6	 CFL2 + 2

6	 CFL2 − 1

)
. (46)

This expression represents the correct behavior of exponen-
tial growth and decay (CFLh ∈ R) when CFL2 > 1/(6	). For
CFL < 1/

√
6	, CFLh is complex valued, which represents spu-

rious oscillations. This is a manifestation of degradation of spa-
tial stability of the time-discrete problem, in the H 1 sense, as
the value of the CFL decreases, while maintaining L2 stabil-
ity, which is incapable of controlling derivatives. Considerable
degradation in accuracy is possible (Fig. 3) even prior to the
potential onset of spurious oscillations at CFL = 1/

√
6	.

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

β1/2 CFL

(C
F

L
h
 −

 C
F

L
) 

/ 
C

F
L

Lumped

Consistent

Fig. 3. Error in growth and decay rate for the Galerkin method (solid line)
and for lumped mass method (dotted line) prior to potential onset of spurious
oscillations.

Remark 1. This analysis holds for consistent representation
of inertial terms. With lumped mass, the expression for the
approximate growth and decay rate becomes

1

CFLh
=√

	 arccosh

(
1+ 1

2	 CFL2

)
. (47)

This relation represents exponential growth and decay for all
admissible values of

√
	 CFL, and hence solutions are free of

spurious oscillations (see Fig. 3). However, this may not be the
case for lumped mass elements of high-order. For the linear ele-
ments considered here, the error of the approximate growth and
decay rate, related to the local truncation error, is of the same
order as in the consistent representation on uniform meshes.
The consistent representation retains second-order spatial
accuracy in the local truncation error on non-uniform meshes,
whereas the lumped representation can degrade to first or-
der [19]. Moreover, the loss of guaranteed bounds, when the
variational framework is violated by mass lumping, can be
detrimental to the use of techniques such as error estimation.

In summary, the Galerkin solution with linear elements may
exhibit spurious spatial oscillations for

CFL <
1√
6	

, (48)

and considerable degradation in accuracy even prior to the po-
tential onset of the spurious oscillations. Note that the bound
for the time step is O(h). For the trapezoidal rule (	= 1

4 ,
= 1
2 ),

the bound for spatial stability is CFL <

√
2
3 .

3.1.2. Stabilized method
A stabilized finite element method for the Newmark algo-

rithm is obtained by appending to the Galerkin equation (44)
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Fig. 4. Stabilization parameter for linear elements.

terms containing residual-based operators multiplied by method
parameters �:

(āh
n+1, a

h
n+1)+ a(āh

n+1, a
h
n+1)− (L∗āh

n+1, �Lah
n+1)�̃

= (āh
n+1, f̃ )− (L∗āh

n+1, �f̃ )�̃, (49)

where L∗ is the adjoint operator of the differential operator L
given in Eq. (43). The mesh-dependent stabilization parameter
for linear elements of size h,

�= 1+ 6	 CFL2 1− cosh(1/(
√

	 CFL))

2+ cosh(1/(
√

	 CFL))
, (50)

is defined on the element level. We note for later reference that
0�� < 1 for

√
	 CFL > 0 (see Fig. 4).

Subscripts on inner products denote domains of integration
other than �, namely, �̃ denotes the union of element inte-

riors such that � = �̃. Integration of the additional terms is
performed over �̃ in order to respect regularity requirements
of typical, piecewise smooth, finite element functions. In prac-
tice, standard finite element procedures which assemble global
arrays from element contributions are employed without mod-
ification. For linear elements, spatial stabilization is obtained
by a simple modification of the element mass matrix and force
vector prior to assembly, namely

me ← (1− �)me, (51)

fe ← (1− �)fe. (52)

Recall, the predictor terms in the force vector are integrated by
parts.

Symmetry of the spatially stabilized mass matrix follows
directly from the definition of the modified matrix. Positive-
definiteness of the modified mass matrix follows along the lines
of the procedure for the original matrix, recalling that 1−� > 0.

The analysis of the spatially stabilized Newmark method is
similar to that of the conventional method [5, pp. 497–498],
indicating that spatial stabilization does not effect unconditional
temporal stability.

Repeating the analysis in Section 3.1.1 for the stabilized
method (49) shows that setting the method parameter as (50)
leads to CFLh = CFL, eliminating errors in the exponential
rate in Cartesian meshes of linear elements aligned in the
direction of growth and decay, along with the attendant spurious
oscillations. Stabilization restores the correct balance between
the L2 and H 1 terms. Furthermore, it reduces the sensitivity of
the computation to spurious phenomena that are generated by
transitions in mesh size [20].

3.2. Time-integration by the generalized-� method

The wave equation (37) is now discretized, by the Rothe
method, with the generalized-� time-integration scheme, as
follows:

an+1−�m − c2�un+1−�f
= f (x, tn+1−�f

), (53)

un+1−�f
= (1− �f )un+1 + �f un, (54)

vn+1−�f
= (1− �f )vn+1 + �f vn, (55)

an+1−�m = (1− �m)an+1 + �man, (56)

where

un+1 =
ũn+1−�f

− �f un + 	�2
t (1− �f )an+1

1− �f

, (57)

vn+1 =
ṽn+1−�f

− �f vn + 
�t (1− �f )an+1

1− �f

(58)

and

ũn+1−�f
= un + �t (1− �f )vn + �2

t

2
(1− 2	)(1− �f )an,

(59)

ṽn+1−�f
= vn + �t (1− 
)(1− �f )an. (60)

As in the case of the Newmark method, simple manipulation
yields a steady reaction–diffusion equation for an+1. Eq. (43)
is regained with Lu=−((1−�f )/(1−�m))	�2

t c
2�u+u, the

modified Helmholtz operator, and f̃ =f (x, tn+1−�f
)−�man+

c2�ũn+1−�f
. Once again, the predictor term of f̃ is integrated

by parts in the weak form.
Repeating the analysis in Section 3.1.1 leads to a bound

for the time step, under which noncausal spatial oscillations
may occur. Specifically, noncausal spatial oscillations may arise
in the standard one-parameter (�∞) family of generalized-�
methods for

CFL < (1+ �∞)

√
2− �∞

6
. (61)

Again, the bound for the time step is O(h). Recall, the
parameter �∞ specifies the dissipation of the high-frequency
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Fig. 5. Snapshots of stress computed by the stabilized trapezoidal rule and stabilized generalized-� method (�∞ = 7
13 ) at t = 0.6L/c0 (compared to the

exact and unstabilized solutions). (a) Solutions at CFL = 1.0: stabilized trapezoidal rule (left) and stabilized generalized-� method (right). (b) Solutions at
CFL = 0.5: stabilized trapezoidal rule (left) and stabilized generalized-� method (right). (c) Solutions at CFL = 0.1: stabilized trapezoidal rule (left) and
stabilized generalized-� method (right).

modal components. Setting �∞ = 1, eliminating the algo-
rithmic damping, recovers the bound for spatial stability

of the trapezoidal time-integration scheme CFL <

√
2
3 . On

the other extreme, taking �∞ = 0, eliminating the high-
frequency response, improves the bound for spatial stability

CFL <

√
1
3 compared to the trapezoidal rule. For �∞ = 7

13
(from the numerical example) the bound for spatial stability is
CFL < 0.76.

A stabilized version of the generalized-� algorithm is
obtained by the procedure outlined in Section 3.1.2. The
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mesh-dependent stabilization parameter for linear elements
of size h in this case is obtained by substituting in Eq. (50)
1/((2− �∞)(1+ �∞)2) for 	.

3.3. Numerical example revisited

Returning to the numerical example described in Section 2.4,
the stability analysis, with c0 as the appropriate wave velocity,
shows that the largest time step (CFL= 1.0) is higher than the
bounds for spatial stability (48) and (61) for both algorithms
considered (	= 1

4 , �∞= 7
13 ). Indeed, the solutions for the largest

time step are free of noncausal oscillations (see Fig. 2(a)). On
the other hand, the medium time step (CFL = 0.5) is a little
below and the smallest time step (CFL = 0.1) is well below
these bounds, explaining the noncausal oscillations observed in
Figs. 2(b) and (c).

Snapshots of the numerical solutions for the stress, obtained
by the stabilized trapezoidal rule and stabilized generalized-�
method at t = 0.6L/c0, are shown in Fig. 5. The numerical so-
lutions still exhibit spurious oscillations resulting from sharp
gradients at the wave front. However, spurious oscillations be-
fore the wave front are absent from the solutions of the stabi-
lized methods, even for time steps lower than the bounds for
spatial stability (48) and (61), thus conforming to the principle
of causality. The solutions of the stabilized trapezoidal rule for
all three time steps are similar to the solution of the unstabilized
trapezoidal rule for the largest time step. The damping property
of the stabilized generalized-� method is apparent, providing
the best performance.

While the proposed approach successfully removes non-
causal oscillations from the computation, considerable spurious
oscillations remain. The combination of spatial stabilization
and algorithmic damping is probably incapable of address-
ing this deficiency, which would require combining spatial
stabilization with more advanced time-marching schemes. Ini-
tialization procedures and alternative forms of implementation
should also be examined.

4. Conclusions

Solutions of semidiscrete formulations for hyperbolic prob-
lems may exhibit noncausal oscillations, due to poor approxi-
mation of higher modes. Consequently, all conventional direct
time-integration schemes that are based on such semidiscrete
formulations and are convergent in time may eventually admit
these pathologies as the time step is reduced (with a fixed mesh
size).

In this paper, a procedure for determining specific values
for the potential onset of noncausal spatial oscillations is pro-
vided by considering the scalar wave equation as a simple
model. Time discretization by the Rothe method leads to a
singularly perturbed, steady, reaction–diffusion equation. In
particular, bounds (for linear elements) are obtained for im-
plicit algorithms belonging to the Newmark and generalized-�
methods.

The time-discrete problem can be stabilized by any procedure
that is used for the singularly perturbed equation. For linear

elements, spatial stabilization is obtained by a simple modifica-
tion of the element mass matrix and force vector prior to assem-
bly, in order to improve spatial performance within each time
step. This procedure preserves the property of unconditional
temporal stability. Employing spatial stabilization, as proposed,
eliminates noncausal oscillations observed in implicit compu-
tations with small time steps. The best performance is obtained
by a combination of spatial stabilization and algorithmic damp-
ing, as in the case of the stabilized version of the generalized-�
method.

The onset of noncausal spatial oscillations in implicit time-
integration occurs at time steps of the order of the critical time
step for temporal stability of corresponding explicit schemes.
Consequently, this pathology may be of particular concern in
the application of implicit–explicit mesh partitions. The stabi-
lization procedure proposed in this work is well suited for the
implicit part of such algorithms.
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