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GLOBAL EXISTENCE AND BLOWUP FOR A CLASS OF THE FOCUSING
NONLINEAR SCHRÖDINGER EQUATION WITH INVERSE-SQUARE

POTENTIAL

VAN DUONG DINH

Abstract. We consider a class of the focusing nonlinear Schrödinger equation with inverse-
square potential

i∂tu+ ∆u− c|x|−2u = −|u|αu, u(0) = u0 ∈ H1, (t, x) ∈ R× Rd,

where d ≥ 3, 4
d
≤ α ≤ 4

d−2 and c 6= 0 satisfies c > −λ(d) := −
(
d−2

2

)2
. In the mass-critical

case α = 4
d

, we prove the global existence and blowup below ground states for the equation with
d ≥ 3 and c > −λ(d). In the mass and energy intercritical case 4

d
< α < 4

d−2 , we prove the
global existence and blowup below the ground state threshold for the equation. This extends
similar results of [17] and [21] to any dimensions d ≥ 3 and a full range c > −λ(d). We finally
prove the blowup below ground states for the equation in the energy-critical case α = 4

d−2 with

d ≥ 3 and c > − d2+4d
(d+2)2 λ(d).

1. Introduction

Consider the Cauchy problem for the focusing nonlinear Schrödinger equation with inverse-
square potential {

i∂tu− Pcu = −|u|αu, (t, x) ∈ R× Rd,
u(0) = u0,

(NLSc)

where u : R × Rd → C, u0 : Rd → C, d ≥ 3, α > 0 and Pc = −∆ + c|x|−2 with c 6= 0 satisfies
c > −λ(d) := −

(
d−2

2
)2. The case c = 0 is the well-known nonlinear Schrödinger equation which

has been studied extensively over the last three decades. The nonlinear Schrödinger equation
with inverse-square potential (NLSc) appears in a variety of physical settings and is of interest in
quantum mechanics (see e.g. [13] and references therein). The study of the (NLSc) has attracted
a lot of interest in the past several years (see e.g. [4, 25, 26, 28, 29, 18, 19, 17, 33, 21]).

The operator Pc is the self-adjoint extension of −∆ + c|x|−2. It is well-known that in the range
−λ(d) < c < 1−λ(d), the extension is not unique (see e.g. [13]). In this case, we do make a choice
among possible extensions, such as Friedrichs extension. The restriction on c comes from the sharp
Hardy inequality, namely

λ(d)
∫
|x|−2|u(x)|2dx ≤

∫
|∇u(x)|2dx, ∀u ∈ H1, (1.1)

which ensures that Pc is a positive operator.
Throughout this paper, we denote for γ ∈ R and q ∈ [1,∞] the usual homogeneous and inho-

mogeneous Sobolev spaces associated to the Laplacian −∆ by Ẇ γ,q and W γ,q respectively. We
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2 V. D. DINH

also use Ḣγ := Ẇ γ,2 and Hγ := W γ,2. Similarly, we define the homogeneous Sobolev space Ẇ γ,q
c

associated to Pc by the closure of C∞0 (Rd\{0}) under the norm

‖u‖Ẇγ,q
c

:= ‖
√
Pc
γ
u‖Lq .

The inhomogeneous Sobolev space associated to Pc is defined by the closure of C∞0 (Rd) under the
norm

‖u‖Wγ,q
c

:= ‖ 〈Pc〉γ u‖Lq ,
where 〈·〉 is the Japanese bracket. We abbreviate Ḣγ

c := Ẇ γ,2
c and Hγ

c := W γ,2
c . Note that by

definition, we have

‖u‖2
Ḣ1
c

=
∫
|∇u(x)|2 + c|x|−2|u(x)|2dx. (1.2)

By the sharp Hardy inequality, we see that for c > −λ(d),
‖u‖Ḣ1

c
∼ ‖u‖Ḣ1 .

Before stating our results, let us recall some facts for the (NLSc). We firstly note that the
(NLSc) is invariant under the scaling,

uλ(t, x) := λ
2
αu(λ2t, λx), λ > 0.

An easy computation shows
‖uλ(0)‖Ḣγ = λγ+ 2

α−
d
2 ‖u0‖Ḣγ .

Thus, the critical Sobolev exponent is given by

γc := d

2 −
2
α
. (1.3)

Moreover, the (NLSc) has the following conserved quantities:

M(u(t)) :=
∫
|u(t, x)|2dx = M(u0), (1.4)

Ec(u(t)) :=
∫ 1

2 |∇u(t, x)|2 + c

2 |x|
−2|u(t, x)|2 − 1

α+ 2 |u(t, x)|α+2dx = Ec(u0). (1.5)

It is convenient to introduce the following numbers:

α? := 4
d
, α? :=

{
4
d−2 if d ≥ 3,
∞ if d = 1, 2.

(1.6)

The main purpose of this paper is to study the global existence and blowup for the (NLSc)
in the mass-critical (i.e. α = α?), intercritical (mass-supercritical and energy-subcritical, i.e.
α? < α < α?) and energy-critical (i.e. α = α?) cases.

1.1. Mass-critical case. Let us firstly recall known results for the focusing mass-critical nonlinear
Schrödinger equation, i.e. c = 0 and α = α? in (NLSc). One has the following (see e.g. [5, Chapter
6] for more details):

Theorem 1.1. Let u0 ∈ H1 and u be the corresponding solution to the mass-critical (NLS0) (i.e.
c = 0 and α = α? in (NLSc)).

1. Global existence [31]: If d ≥ 1 and ‖u0‖L2 < ‖Q0‖L2 , where Q0 is the unique positive radial
solution to the elliptic equation

∆Q0 −Q0 +Qα?+1
0 = 0,

then the solution u exists globally in time and supt∈R ‖u(t)‖Ḣ1 <∞.
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2. Blowup [23, 24]: The solution u blows up in finite time if one of the following conditions
holds true:
• d ≥ 1, E0(u0) < 0 and xu0 ∈ L2,
• d ≥ 2, E0(u0) < 0 and u0 is radial,
• d = 1 and E0(u0) < 0.

Remark 1.2. 1. By the sharp Gagliardo-Nirenberg inequality, the condition ‖u0‖L2 < ‖Q0‖L2

implies E0(u0) > 0.
2. The condition ‖u0‖L2 < ‖Q0‖L2 is sharp for the global existence in the sense that for any
M0 > ‖Q0‖L2 (even for M0 = ‖Q0‖L2 , see Item 4 below), there exists u0 ∈ H1 satisfying
‖u0‖L2 = M0 and the corresponding solution u blows up in finite time.

3. The assumption E0(u0) < 0 is a sufficient condition for finite time blowup but it is not
necessary. One can show that for any E0 > 0, there exists u0 ∈ H1 satisfying E0(u0) = E0
and the corresponding solution blows up in finite time.

4. It is well-known (see e.g. [32] or [5, Remark 6.7.3]) that there exists a blowup solution to the
mass-critical (NLS0) with ‖u0‖L2 = ‖Q0‖L2 by using the speudo-conformal transformation.

5. Note also that Merle in [22] proved the following classification of miminal mass blowup
solutions for the mass-critical (NLS0): Let u0 ∈ H1 be such that ‖u0‖L2 = ‖Q0‖L2 . If the
corresponding solution blows up in finite time 0 < T < +∞, then up to symmetries of the
equation, u(t, x) = S(t− T, x), where

S(t, x) := 1
|t| d2

e−i
|x|2

4t + i
tQ
(x
t

)
. (1.7)

Now let us consider c 6= 0 satisfy c > −λ(d). Let CGN(c) be the sharp constant to the Gagliardo-
Nirenberg inequality associated to the mass-critical (NLSc), namely,

CGN(c) := sup
{
‖f‖α?+2

Lα?+2 ÷
[
‖f‖α?L2‖f‖2

Ḣ1
c

] ∣∣∣ f ∈ H1
c \{0}

}
.

We will see in Theorem 4.1 that:
1. When −λ(d) < c < 0, the sharp constant CGN(c) is attained by a non-negative radial

solution to the elliptic equation
−PcQc −Qc +Qα?+1

c = 0.

2. When c > 0, CGN(c) = CGN(0), where CGN(0) is the sharp constant to the standard
Gagliardo-Nirenberg inequality

‖f‖α?+2
Lα?+2 ≤ CGN(0)‖f‖α?L2‖f‖2

Ḣ1 .

However, CGN(c) is never attained. Moreover, if we restrict attention to the Gagliardo-
Nirenberg inequality for radial functions, then the sharp constant for the radial Gagliardo-
Nirenberg inequality associated to the mass-critical (NLSc), namely,

CGN(c, rad) := sup
{
‖f‖α?+2

Lα?+2 ÷
[
‖f‖α?L2‖f‖2

Ḣ1
c

] ∣∣∣ f ∈ H1
c \{0}, f radial

}
is attended by a radial solution Qc,rad to the elliptic equation

−PcQc,rad −Qc,rad +Qα?+1
c,rad = 0.

Since CGN(c) is never attained, the constant CGN(c, rad) is strictly smaller than CGN(c).
We will also see in Remark 4.2 that for c > −λ(d),

CGN(c) = α? + 2
2‖Qc‖α?L2

, (1.8)
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where c := min{c, 0}. Moreover, for c > 0,

CGN(c, rad) = α? + 2
2‖Qc,rad‖α?L2

, (1.9)

Our first result is the following global existence and blowup for the mass-critical (NLSc).

Theorem 1.3. Let d ≥ 3 and c 6= 0 be such that c > −λ(d). Let u0 ∈ H1 and u be the
corresponding solution to the mass-critical (NLSc) (i.e. α = α?).

1. If ‖u0‖L2 < ‖Qc‖L2 , then the solution u exists globally and supt∈R ‖u(t)‖Ḣ1
c
<∞.

2. If Ec(u0) < 0 and either xu0 ∈ L2 or u0 is radial, then the solution u blows up in finite
time.

Remark 1.4. 1. In [8], the authors proved the global existence for the mass-critical (NLSc)
with −λ(d) < c < 0 under the assumption ‖u0‖L2 < ‖Qc‖L2 . Here we extend their result
to any c 6= 0 and c > −λ(d).

2. By the sharp Gagliardo-Nirenberg inequality associated to (NLSc), we see that the con-
dition ‖u0‖L2 < ‖Qc‖L2 implies that Ec(u0) > 0. Indeed, applying the sharp Gagliardo-
Nirenberg inequality and (1.8),

Ec(u0) = 1
2‖u0‖2

Ḣ1
c
− 1
α? + 2‖u0‖α?+2

Lα?+2

≥ 1
2‖u0‖2

Ḣ1
c
− 1
α? + 2CGN(c)‖u0‖α?L2‖u0‖2

Ḣ1
c

≥ 1
2‖u0‖2

Ḣ1
c

[
1−

( ‖u0‖L2

‖Qc‖L2

)α?]
> 0.

3. When −λ(d) < c < 0, the condition ‖u0‖L2 < ‖Qc‖L2 = ‖Qc‖L2 is sharp for the global
existence. In fact, for any Mc > ‖Qc‖L2 (even for Mc = ‖Qc‖L2 , see Item 5 below),
we can show (see Remark 6.1) that there exists u0 ∈ H1 satisfying ‖u0‖L2 = Mc and
the corresponding solution u to the mass-critical (NLSc) blows up in finite time. When
c > 0, the condition ‖u0‖L2 < ‖Q0‖L2 is not sharp. Indeed, if u0 is radial and sat-
isfies ‖u0‖L2 < ‖Qc,rad‖L2 , then the corresponding solution exists globally. Note that
‖Qc,rad‖L2 > ‖Q0‖L2 . Moreover, for any Mc > ‖Qc,rad‖L2 (even for Mc = ‖Qc,rad‖L2 , see
again Item 5 below), we can show (see again Remark 6.1) that there exists u0 ∈ H1 radial
satisfying ‖u0‖L2 = Mc and the corresponding solution blows up in finite time.

4. The condition Ec(u0) < 0 is a sufficient condition for finite time blowup, but it is not
necessary. We will see in Remark 7.1 that for any Ec > 0, there exists u0 ∈ H1 satisfying
Ec(u0) = Ec and the corresponding solution blows up in finite time.

5. Recently, Csobo-Genoud in [8, Lemma 1] made use of the speudo-conformal transformation
to show that for −λ(d) < c < 0, there exists a blowup solution to the mass-critical
(NLSc) with ‖u0‖L2 = ‖Qc‖L2 . By a similar argument, we can show (see Remark 6.2)
that for c > 0, there exists a radial blowup solution to the mass-critical (NLSc) with
‖u0‖L2 = ‖Qc,rad‖L2 .

6. In [8], the authors also proved the classification of miminal mass blowup solutions for the
mass-critical (NLSc) with −λ(d) < c < 0. Their result is as follows: Let u0 ∈ H1 be such
that ‖u0‖L2 = ‖Qc‖L2 . If the corresponding solution blows up in finite time 0 < T < +∞,
then up to symmetries of the equation 1, u(t, x) = S(t− T, x), where S is as in (1.7). We
expect that a similar result should hold for radial blowup solutions with c > 0.

1The (NLSc) does not enjoy the space translation invariance and the Galilean invariance.
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1.2. Intercritical case. We next consider the intercritical (i.e. mass-supercritical and energy-
subcritical) case. Let us recall known results for the focusing intercritical nonlinear Schrödinger
equation, i.e. c = 0 and α? < α < α? in (NLSc). The global existence, scattering and blowup were
studied in [12, 9, 10]. In order to state these results, let us define the following quantities:

H(0) := E0(Q0)M(Q0)σ, K(0) := ‖Q0‖Ḣ1‖Q0‖σL2 ,

where

σ := 1− γc

γc
= 4− (d− 2)α

dα− 4 . (1.10)

and Q0 is the unique positive radial solution to the elliptic equation
∆Q0 −Q0 +Qα+1

0 = 0.

Theorem 1.5 ([12, 9, 10]). Let d ≥ 1, u0 ∈ H1 and u be the corresponding solution to the
intercritical (NLS0) (i.e. c = 0 and α? < α < α? in (NLSc)). Suppose that E0(u0)M(u0)σ < H(0).

1. If ‖u0‖Ḣ1‖u0‖σL2 < K(0), then the solution u exists globally in time and
‖u(t)‖Ḣ1‖u(t)‖σL2 < K(0),

for any t ∈ R. Moreover, the solution u scatters in H1.
2. If ‖u0‖Ḣ1‖u0‖σL2 > K(0) and either

• xu0 ∈ L2,
• or d ≥ 3, u0 is radial,
• or d = 2, u0 is radial and α? < α < 4,

then the solution u blows up in finite time and
‖u(t)‖Ḣ1‖u(t)‖σL2 > K(0),

for any t in the existence time.

Now let c 6= 0 be such that c > −λ(d), and let CGN(c) be the sharp constant in the Gagliardo-
Nirenberg inequality associated to the intercritical (NLSc), namely,

CGN(c) := sup
{
‖f‖α+2

Lα+2 ÷
[
‖f‖

4−(d−2)α
2 ‖f‖

dα
2
Ḣ1
c

] ∣∣∣ f ∈ H1
c \{0}

}
.

We will see in Theorem 4.1 that:
1. When −λ(d) < c < 0, the sharp constant CGN(c) is attained by a solution Qc to the elliptic

equation
−PcQc −Qc +Qα+1

c = 0.
2. When c > 0, CGN(c) = CGN(0), where CGN(0) is again the sharp constant to the standard

Gagliardo-Nirenberg inequality

‖f‖α+2
Lα+2 ≤ CGN(0)‖f‖

4−(d−2)α
2

L2 ‖f‖
dα
2
Ḣ1 .

Moreover, CGN(c) is never attained. However, if we restrict attention to the Gagliardo-
Nirenberg inequality for radial functions, then the sharp constant for the radial Gagliardo-
Nirenberg inequality associated to the intercritical (NLSc), namely,

CGN(c, rad) := sup
{
‖f‖α+2

Lα+2 ÷
[
‖f‖

4−(d−2)α
2 ‖f‖

dα
2
Ḣ1
c

] ∣∣∣ f ∈ H1
c \{0}, f radial

}
is attended by a radial solution Qc,rad to the elliptic equation

−PcQc,rad −Qc,rad +Qα+1
c,rad = 0.

Since CGN(c) is never attained, the constant CGN(c, rad) is strictly smaller than CGN(c).
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We define the following quantities:
H(c) := Ec(Qc)M(Qc)σ, K(c) := ‖Qc‖Ḣ1

c
‖Qc‖σL2 , (1.11)

where c = min{c, 0}. Our next result is the following global existence and blowup for the inter-
critical (NLSc).
Theorem 1.6. Let d ≥ 3, α? < α < α? and c 6= 0 be such that c > −λ(d). Let u0 ∈ H1 and u be
the corresponding solution of the intercritical (NLSc) (i.e. α? < α < α?). Suppose that

Ec(u0)M(u0)σ < H(c). (1.12)
1. Global existence: If

‖u0‖Ḣ1
c
‖u0‖σL2 < K(c), (1.13)

then the solution u exists globally in time and
‖u(t)‖Ḣ1

c
‖u(t)‖σL2 < K(c). (1.14)

for any t ∈ R.
2. Blowup: If

‖u0‖Ḣ1
c
‖u0‖σL2 > K(c), (1.15)

and either xu0 ∈ L2 or u0 is radial, then the solution u blows up in finite time and
‖u(t)‖Ḣ1

c
‖u(t)‖σL2 > K(c), (1.16)

for any t in the existence time.
Remark 1.7. 1. In [17], the authors considered the cubic (NLSc) in 3D (i.e. α = 2 and

c > − 1
4 ) and proved that the global existence as well as scattering hold true under the

assumptions (1.12), (1.13) and the blowup holds true under the assumptions (1.12), (1.15).
Recently, Lu-Miao-Murphy in [21] proved a similar result as in [17] for the intercritical
(NLSc) with{

c > − 1
4 if d = 3, 4

3 < α ≤ 2
c > −λ(d) +

(
d−2

2 −
1
α

)2 if 3 ≤ d ≤ 6, max
{

2
d−2 ,

4
d

}
< α < 4

d−2 .

Here we extend the global existence and blowup results of [17, 21] to any dimensions d ≥ 3
and the full range c > −λ(d). We expect that the global solution in Theorem 1.6 scatters
in H1 under a certain restriction on c. Note that the scattering of global solutions depends
heavily on Strichartz estimates which were proved in [4, 2]. In order to successfully apply
Strichartz estimates, we need the equivalence of Sobolev norms between the ones associated
to Pc and those associated to −∆ (see Subsection 2.2 for more details). This will lead to
a restriction on the validity of c.

2. Theorem 1.6 says that the condition (1.13) is sharp for the global existence except for the
threshold level

‖u0‖Ḣ1
c
‖u0‖σL2 = K(c).

It is an interesting open problem to show that there exists blowup solutions to the inter-
critical (NLS0) and (NLSc) equations at this threshold.

3. It is worth mentioning that if the energy of the initial data is negative, then (1.12) is always
satisfied. Indeed, we will see in (4.9) that

E(Qc) = dα− 4
2(4− (d− 2)α)‖Qc‖

2
L2 = dα− 4

2dα ‖Qc‖
2
Ḣ1
c

,

hence H(c) is always non-negative.
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In the case c > 0, we have the following improved result for radial solutions.

Theorem 1.8. Let d ≥ 3, α? < α < α? and c > 0. Let u0 ∈ H1 be radial and u the corresponding
solution of the intercritical (NLSc) (i.e. α? < α < α?). Suppose that

Ec(u0)M(u0)σ < H(c, rad) =: Ec(Qc,rad)M(Qc,rad)σ. (1.17)
1. Global existence: If

‖u0‖Ḣ1
c
‖u0‖σL2 < K(c, rad) =: ‖Qc,rad‖Ḣ1

c
‖Qc,rad‖σL2 , (1.18)

then the solution u exists globally in time and
‖u(t)‖Ḣ1

c
‖u(t)‖σL2 < K(c, rad). (1.19)

for any t ∈ R.
2. Blowup: If

‖u0‖Ḣ1
c
‖u0‖σL2 > K(c, rad), (1.20)

then the solution u blows up in finite time and
‖u(t)‖Ḣ1

c
‖u(t)‖σL2 > K(c, rad), (1.21)

for any t in the existence time.

Since CGN(c, rad) < CGN(c), we will see in Remark 4.2 that H(c) < H(c, rad) and K(c) <
K(c, rad). This shows that the class of radial solutions enjoys strictly larger thresholds for the
global existence and the blowup.

1.3. Energy-critical case. We finally consider the energy-critical case. As above, we recall known
results for the focusing energy-critical nonlinear Schrödinger equation, i.e. c = 0 and α = α? in
(NLSc). The global existence, scattering and blowup for the energy-critical (NLS0) were first stud-
ied in [14] where the authors proved the global existence, scattering and blowup for the equation
under the radial assumption of initial data in dimensions d = 3, 4, 5. This was extended to di-
mensions d ≥ 3 in [15]. Later, Killip-Visan in [16] proved the global existence and scattering for
the equation with general (non-radial) data in dimensions five and higher. They also proved the
existence of blowup solutions in dimensions d ≥ 3. The global existence and scattering for the
energy-critical (NLS0) for general data still remain open for d = 3, 4. To state their results, we
recall the following facts. Let

W0(x) :=
(

1 + |x|2

d(d− 2)

)− d−2
2
. (1.22)

It is well-known that W solves the elliptic equation
∆W0 + |W0|α

?

W0 = 0.
In particular, W0 is a stationary solution to the energy-critical (NLS0). Note that W0 ∈ Ḣ1 but it
need not belong to L2.

Theorem 1.9 ([14]). Let d = 3, 4, 5. Let u0 ∈ Ḣ1 be radial and u be the corresponding solution
to the energy-critical (NLS0) (i.e. c = 0 and α = α? in (NLSc)). Suppose that E0(u0) < E0(W0).

1. If ‖u0‖Ḣ1 < ‖W0‖Ḣ1 , then the solution u exists globally and scatters in Ḣ1.
2. If ‖u0‖Ḣ1 > ‖W0‖Ḣ1 and either xu0 ∈ L2 or u0 ∈ H1 is radial, then the solution u blows

up in finite time.

Theorem 1.10 ([16]). Let u0 ∈ Ḣ1 and u be the corresponding solution to the energy-critical
(NLS0). Suppose that E0(u0) < E0(W0).
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1. If d ≥ 5 and ‖u0‖Ḣ1 < ‖W0‖Ḣ1 , then the solution u exists globally and scatters in Ḣ1.
2. If d ≥ 3, ‖u0‖Ḣ1 > ‖W0‖Ḣ1 and either xu0 ∈ L2 or u0 ∈ H1 is radial, then the solution u

blows up in finite time.

Remark 1.11. Note that the conditions E0(u0) < E0(W0) and ‖u0‖Ḣ1 = ‖W0‖Ḣ1 are incompat-
ible.

Now let c 6= 0 satisfy c > −λ(d), and let CSE(c) be the sharp constant in the Sobolev embedding
inequality associated to the energy-critical (NLSc), namely,

CSE(c) := sup
{
‖f‖Lα?+2 ÷ ‖f‖Ḣ1

c
| f ∈ Ḣ1

c \{0}
}
.

We will see in Theorem 4.3 that:
1. When −λ(d) < c < 0, the sharp constant CSE(c) is attained by functions f(x) of the form
λWc(µx) for some λ ∈ C and µ > 0, where

Wc(x) := [d(d− 2)β2]
d−2

4

[ |x|β−1

1 + |x|2β
] d−2

2
, (1.23)

with β = 1− 2ρ
d−2 (see (2.3) for the definition of ρ).

2. When c > 0, CSE(c) = CSE(0), where CSE(0) is the sharp constant to the standard Sobolev
embedding inequality

‖f‖Lα?+2 ≤ CSE(0)‖f‖Ḣ1 .

Moreover, CSE(c) is never attained. Note that the constant CSE(0) is attained by functions
f(x) of a form λW0(µx + y) for some λ ∈ C, y ∈ Rd and µ > 0. However, if we restrict
attention to radial functions, then the sharp constant for the radial Sobolev embedding
associated to the energy-critical (NLSc), namely,

CSE(c, rad) := sup
{
‖f‖Lα?+2 ÷ ‖f‖Ḣ1

c
| f ∈ Ḣ1

c \{0}, f radial
}

is attained by functions f(x) of the form λWc(µx) for some λ ∈ C and µ > 0.
Our last result concerns with the blowup for the energy-critical (NLSc).

Theorem 1.12. Let d ≥ 3 and c 6= 0 be such that c > − d2+4d
(d+2)2λ(d). Let u0 ∈ Ḣ1 and u be the

corresponding solution to the energy-critical (NLSc) (i.e. α = α?). Suppose that Ec(u0) < Ec(Wc)
and ‖u0‖Ḣ1

c
> ‖Wc‖Ḣ1

c
, where c = min{c, 0}. If xu0 ∈ L2 or u0 is radial, then the solution u blows

up in finite time.

Remark 1.13. 1. As in Remark 1.11, the conditions Ec(u0) < Ec(Wc) and ‖u0‖Ḣ1
c

=
‖Wc‖Ḣ1

c
are incompatible.

2. Theorem 1.12 was stated in [19] without proof. In this paper, we give a proof for this result.
The restriction of c comes from the local theory via Strichartz estimates (see Proposition
3.3).

3. We expect that the global existence as well as scattering for the energy-critical (NLSc)
hold true for u0 ∈ Ḣ1 satisfying Ec(u0) < Ec(Wc) and ‖u0‖Ḣ1

c
< ‖Wc‖Ḣ1

c
. It is a delicate

open problem.

In the case c > 0, we have the following blowup result for radial solutions.

Theorem 1.14. Let d ≥ 3 and c > 0. Let u0 ∈ Ḣ1 radial and u be the corresponding solution to
the energy-critical (NLSc) (i.e. α = α?). Suppose that Ec(u0) < Ec(Wc) and ‖u0‖Ḣ1

c
> ‖Wc‖Ḣ1

c
.

Then the solution u blows up in finite time.
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Since CGN(c) > CGN(c, rad), we have from (4.19) and (4.22) that E0(W0) < Ec(Wc). This
shows that the blowup threshold for radial solutions is strictly larger than the one for non-radial
solutions.

The paper is organized as follows. In Section 2, we recall some preliminary results related to the
(NLSc). In Section 3, we recall the local well-posedness for the (NLSc) in the energy-subcritical
and energy-critical cases. In Section 4, we recall the sharp Gagliardo-Nirenberg inequality and the
sharp Sobolev embedding inequality for the (NLSc) by using the variational analysis. We next
derive the standard virial identity as well as the localized virial estimate in Section 5. Section 6 is
devoted to the proofs of global existence results. Finally, we give the proofs of blowup results in
Section 7.

2. Preliminaries

In the sequel, the notation A . B denotes an estimate of the form A ≤ CB for some constant
C > 0. The notation A ∼ B means A . B and B . A. The various constant C may change from
line to line.

2.1. Strichartz estimates. Let J ⊂ R and p, q ∈ [1,∞]. We define the mixed norm

‖u‖Lp(J,Lq) :=
(∫

J

(∫
Rd
|u(t, x)|qdx

) 1
q
) 1
p

with a usual modification when either p or q are infinity.

Definition 2.1. A pair (p, q) is said to be Schrödinger admissible, for short (p, q) ∈ S, if

(p, q) ∈ [2,∞]2, (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
= d

2 .

We recall Strichartz estimates for the inhomogeneous Schrödinger equation with inverse-square
potential.

Proposition 2.2 (Strichartz estimates [4, 2]). Let d ≥ 3 and c > −λ(d). Let u be a solution to
the inhomogeneous Schrödinger equation with inverse-square potential, namely

u(t) = eitPcu0 +
∫ t

0
ei(t−s)PcF (s)ds,

for some data u0, F . Then, for any (p, q), (a, b) ∈ S,

‖u‖Lp(R,Lq) . ‖u0‖L2 + ‖F‖La′ (R,Lb′ ). (2.1)

Moreover, for any γ ∈ R, (p, q), (a, b) ∈ S,

‖u‖Lp(R,Ẇγ,q
c ) . ‖u0‖Ḣγc + ‖F‖

La
′
t (R,Ẇγ,b′

c ). (2.2)

Here (a, a′) and (b, b′) are conjugate pairs.

Note that Strichartz estimates for the homogeneous nonlinear Schrödinger equation with inverse-
square potential were first proved by Burq-Planchon-Stalker-Zadeh in [4] except the endpoint
(p, q) = (2, 2d

d−2 ). Recently, Bouclet-Mizutani in [2] proved Strichartz estimates with the full set
of Schrödinger admissible pairs for the homogeneous and inhomogeneous nonlinear Schrödinger
equation with critical potentials including the inverse-square potential. We refer the reader to
[4, 2] for more details.
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2.2. Equivalence of Sobolev norms. In this subsection, we recall the equivalence between
Sobolev norms defined by Pc and the ones defined by the usual Laplacian −∆. In [4, Proposition
1], the authors proved the following:

‖u‖Ḣγc ∼ ‖u‖Ḣγ , ∀γ ∈ [−1, 1].

Later, Zhang-Zheng in [33] extended this result to homogeneous Sobolev spaces Ẇ γ,q
c and Ẇ γ,q

for 0 ≤ γ ≤ 1 and a certain range of q. Recently, Killip-Miao-Visan-Zhang-Zheng extended these
results to a more general setting. To state their result, let us introduce

ρ := d− 2
2 −

√(
d− 2

2

)2
+ c. (2.3)

Proposition 2.3 (Equivalence of Sobolev norms [18]). Let d ≥ 3, c ≥ −λ(d), 0 < γ < 2 and ρ be
as in (2.3).

1. If 1 < q <∞ satisfies γ+ρ
d < 1

q < min
{

1, d−ρd
}

, then

‖f‖Ẇγ,q . ‖f‖Ẇγ,q
c
,

for all f ∈ C∞0 (Rd\{0}).
2. If 1 < q <∞ satisfies max

{
γ
d ,

ρ
d

}
< 1

q < min
{

1, d−ρd
}

, then

‖f‖Ẇγ,q
c
. ‖f‖Ẇγ,q ,

for all f ∈ C∞0 (Rd\{0}).

Remark 2.4. 1. When c > 0, we have ρ < 0. Therefore, ‖u‖Ẇγ,q is equivalent to ‖u‖Ẇγ,q
c

provided that 0 < γ < 2 and

γ

d
<

1
q
< 1 or 1 < q <

d

γ
. (2.4)

2. When −λ(d) ≤ c < 0, we have 0 < ρ < d−2
2 . Thus ‖u‖Ẇγ,q ∼ ‖u‖Ẇγ,q

c
provided that

0 < γ < 2 and

γ + ρ

d
<

1
q
<
d− ρ
d

or d

d− ρ
< q <

d

γ + ρ
. (2.5)

We next recall the fractional derivative estimates due to Christ-Weinstein [7]. The equivalence
of Sobolev spaces given in Proposition 2.3 allows us to use the same estimates for powers of Pc
with a certain set of exponents.

Lemma 2.5 (Fractional derivative estimates). 1. Let γ ≥ 0, 1 < r <∞ and 1 < p1, q1, p2, q2 ≤
∞ satisfying 1

r = 1
p1

+ 1
q1

= 1
p2

+ 1
q2

. Then

‖|∇|γ(fg)‖Lr . ‖f‖Lp1 ‖|∇|γg‖Lq1 + ‖|∇|γf‖Lp2 ‖g‖Lq2 .

2. Let G ∈ C1(C), γ ∈ (0, 1], 1 < r, q <∞ and 1 < p ≤ ∞ satisfying 1
r = 1

p + 1
q . Then

‖|∇|γG(f)‖Lr . ‖G′(f)‖Lp‖|∇|γf‖Lq .
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2.3. Convergences of operators. In this subsection, we recall the convergence of operators of
[19] arising from the fact that Pc does not commute with translations.

Definition 2.6. Suppose (xn)n∈N ⊂ Rd. We define

Pnc := −∆ + c

|x+ xn|2
, P∞c :=

{
−∆ + c

|x+x∞|2 if xn → x∞ ∈ Rd,
−∆ if |xn| → ∞.

(2.6)

By definition, we have Pc[f(x− xn)] = [Pnc f ](x− xn). The operator P∞c appears as a limit of
the operators Pnc in the following senses:

Lemma 2.7 (Convergence of operators [19]). Let d ≥ 3 and c 6= 0 be such that c > −λ(d). Suppose
(tn)n∈N ⊂ R satisfies tn → t∞ ∈ R, and (xn)n∈N ⊂ Rd satisfies xn → x∞ ∈ Rd or |xn| → ∞.
Then,

lim
n→∞

‖Pnc f − P∞c f‖Ḣ−1 = 0, for all f ∈ Ḣ1, (2.7)

lim
n→∞

‖e−itnP
n
c f − e−it∞P

∞
c f‖Ḣ−1 = 0, for all f ∈ Ḣ−1, (2.8)

lim
n→∞

‖
√
Pnc f −

√
P∞c f‖L2 = 0, for all f ∈ Ḣ1. (2.9)

Furthermore, for any (p, q) ∈ S with p 6= 2,

lim
n→∞

‖e−itP
n
c f − e−itP

∞
c f‖Lp(R,Lq) = 0, for all f ∈ L2. (2.10)

We refer the reader to [19, Lemma 3.3] for the proof of Lemma 2.7.

3. Local well-posedness

In this section, we study the local well-posedness for the (NLSc) in the energy-subcritical and
energy-critical cases. To our knowledge, there are two possible ways to show the local well-
posedness in H1 for the classical nonlinear Schrödinger equation (NLS0): the Kato’s method
and the energy method. The Kato’s method is based on the contraction mapping principle using
Strichartz estimates. This method is very effective to study the (NLS0) in general Sobolev spaces.
The energy method, on the other hand, does not use Strichartz estimates and only allows to prove
the existence of solutions in the energy space. But, on one hand, it provides a useful tool to
study the (NLS0) in a general domain Ω where Strichartz estimates are not available in general.
We refer the reader to [5] for more details. In the presence of the singular potential c|x|−2, even
though Strichartz estimates are available (see [4, 2]), the Kato’s method does not allow to study
the (NLSc) in the energy space with the full range c > −λ(d). The reason for this is that the
homogeneous Sobolev spaces Ẇ γ,q

c and the usual ones Ẇ γ,q are equivalent only in a certain range
of γ and q (see Subsection 2.2). Moreover, Okazawa-Suzuki-Yokota in [26] pointed out that the
energy method developed by Cazenave is not enough to study the (NLSc) in the energy space.
They thus formulated an improved energy method to treat the equation. More precisely, they
proved the following:

Theorem 3.1 ([26]). Let d ≥ 3, c > −λ(d). Then the (NLSc) is well posed in H1:
• locally if 0 ≤ α < α?,
• globally if 0 ≤ α < α?.

Here α?, α? are given in (1.6).

We refer the reader to [26, Theorem 5.1] for the proof of this result.
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Remark 3.2. 1. The energy method developed by Okazawa-Suzuki-Yokota is only available
for the energy-subcritical case (i.e. α < α?) and not for the energy-critical case α = α?.
The last case should rely on Kato’s method (see Proposition 3.3 below).

2. Theorem 3.1 tells us that H1 blowup solutions may occur only on α? ≤ α ≤ α?.
3. The same well-posedness for the (NLSc) as in Theorem 3.1 holds true when one replaces

Rd by a bounded domain Ω (see again [26]). In this consideration, Suzuki in [29] proved a
similar result for the (NLSc) on Ω with c = λ(d).

We now consider the energy-critical case α = α?.

Proposition 3.3. Let d ≥ 3, c > − d2+4d
(d+2)2λ(d) and α = α?. Then for every u0 ∈ H1, there exist

T∗, T
∗ ∈ (0,∞] and a unique strong H1 solution to the (NLSc) defined on the maximal interval

(−T∗, T ∗). Moreover, if ‖u0‖Ḣ1 < ε for some ε > 0 small enough, then T∗ = T ∗ = ∞ and the
solution is scattering in H1, i.e. there exist u±0 ∈ H1 such that

lim
t→±∞

‖u(t)− eitPcu±0 ‖H1 = 0.

Before giving the proof of this result, let us introduce some notations. In this section, we denote

p = 2(d+ 2)
d− 2 , q = 2d(d+ 2)

d2 + 4 .

It is easy to check that (p, q) is a Schrödinger admissible pair and
1
p

= 1
q
− 1
d
.

The last equality allows us to use the Sobolev embedding Ẇ 1,q ⊂ Lp. Moreover, in the view of
(2.4) and (2.5), it is easy to check that Ẇ 1,q

c is equivalent to W 1,q provided that c > − d2+4d
(d+2)2λ(d).

Proof of Proposition 3.3. We only consider the positive time, the negative time is similar. Let us
define

X :=
{
u ∈ C(I,H1) ∩ Lp(I,W 1,q)

∣∣∣ ‖u‖Lp(I,Ẇ 1,q) ≤M
}

equipped with the distance
d(u, v) := ‖u− v‖Lp(I,Lq),

where I = [0, T ] with T,M > 0 to be chosen later. By the Duhamel formula, it suffices to prove
that the functional

Φ(u)(t) = e−itPcu0 + i

∫ t

0
e−i(t−s)Pc |u(s)|α

?

u(s)ds =: uhom(t) + uinh(t)

is a contraction on (X, d). Using Strichartz estimates and the fact ‖u‖Ẇ 1,q
c
∼ ‖u‖Ẇ 1,q , we have

‖uhom‖Lp(I,Ẇ 1,q) ∼ ‖uhom‖Lp(I,Ẇ 1,q
c ) . ‖u0‖Ḣ1

c
∼ ‖u0‖Ḣ1 .

This shows that ‖uhom‖Lp(I,Ẇ 1,q) ≤ ε for some ε > 0 small enough provided that T is small
or ‖u0‖Ḣ1 is small. By Strichartz estimates, the equivalence ‖u‖Ẇ 1,q

c
∼ ‖u‖Ẇ 1,q , the fractional

derivative estimates and the Sobolev embedding Ẇ 1,q ⊂ Lp,

‖uinh‖Lp(I,Ẇ 1,q
c ) ∼ ‖uinh‖Lp(I,Ẇ 1,q

c ) . ‖|u|
α?u‖

L2(I,Ẇ
1, 2d
d+2

c )
∼ ‖|u|α

?

u‖
L2(I,Ẇ 1, 2d

d+2 )

. ‖u‖α
?

Lp(I,Lp)‖u‖Lp(I,Ẇ 1,q) . ‖u‖
α?+1
Lp(I,Ẇ 1,q).
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Note that it is easy to check that Ẇ 1, 2d
d+2

c ∼ Ẇ 1, 2d
d+2 . Similarly,

‖|u|α
?

u− |v|α
?

v‖
L2(I,L

2d
d+2 )

.
(
‖u‖α

?

Lp(I,Lp) + ‖v‖α
?

Lp(I,Lp)

)
‖u− v‖Lp(I,Lq)

.
(
‖u‖α

?

Lp(I,Ẇ 1,q) + ‖v‖α
?

Lp(I,Ẇ 1,q)

)
‖u− v‖Lp(I,Lq).

This implies that for any u, v ∈ X, there exists C > 0 independent of T and u0 ∈ H1 such that

‖Φ(u)‖Lp(I,Ẇ 1,q
c ) ≤ ε+ CMα?+1,

d(Φ(u),Φ(v)) ≤ CMα?d(u, v).

If we choose ε and M small so that

CMα? ≤ 1
2 , ε+ M

2 ≤M,

then Φ is a contraction on (X, d). This shows the local existence. It remains to show the scattering
for small data. As mentioned above, when ‖u0‖Ḣ1 is small enough, we can take T ∗ = ∞. By
Strichartz estimates, we have for 0 < t1 < t2,

‖eit2Pcu(t2)− eit1Pcu(t1)‖Ḣ1 ∼ ‖eit2Pcu(t2)− eit1Pcu(t1)‖Ḣ1
c

=
∥∥∥− i ∫ t2

t1

eisPc |u(s)|α
?

u(s)ds
∥∥∥
Ḣ1
c

. ‖|u|α
?

u‖
L2([t1,t2],Ẇ

1, 2d
d+2

c )

∼ ‖|u|α
?

u‖
L2([t1,t2],Ẇ 1, 2d

d+2 )

. ‖u‖α
?+1
Lp([t1,t2],Ẇ 1,q).

Similarly,

‖eit2Pcu(t2)− eit1Pcu(t1)‖L2 . ‖|u|α
?

u‖
L2([t1,t2],L

2d
d+2 )

. ‖u‖α
?

Lp([t1,t2],Ẇ 1,q)‖u‖Lp([t1,t2],Lq).

This shows that
‖eit2Pcu(t2)− eit1Pcu(t1)‖H1 → 0,

as t1, t2 → +∞. Thus the limit u+
0 : limt→+∞ eitPcu(t) exists in H1. Moreover,

u(t)− e−itPcu+
0 = −i

∫ +∞

t

e−i(t−s)Pc |u(s)|α
?

u(s)ds.

Estimating as above, we get
lim

t→+∞
‖u(t)− e−itPcu+

0 ‖H1 = 0.

The proof is complete. �

4. Variational analysis

In this section, we recall the sharp Gagliardo-Nirenberg and the sharp Sobolev embedding
inequalities related to the (NLSc).

Let us start with the following sharp Gagliardo-Nirenberg inequality:

‖f‖α+2
Lα+2 ≤ CGN(c)‖f‖

4−(d−2)α
2

L2 ‖f‖
dα
2
Ḣ1
c

. (4.1)

The sharp constant CGN(c) is defined by

CGN(c) := sup
{
Jc(f) : f ∈ H1

c \{0}
}
,
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where Jc(f) is the Weinstein functional

Jc(f) := ‖f‖α+2
Lα+2 ÷

[
‖f‖

4−(d−2)α
2

L2 ‖f‖
dα
2
Ḣ1
c

]
.

We also consider the sharp radial Gagliardo-Nirenberg inequality:

‖f‖α+2
Lα+2 ≤ CGN(c, rad)‖f‖

4−(d−2)α
2

L2 ‖f‖
dα
2
Ḣ1
c

, f radial, (4.2)

where the sharp constant CGN(c, rad) is defined by

CGN(c, rad) := sup
{
Jc(f) : f ∈ H1

c \{0}, f radial
}
.

When c = 0, Weinstein in [31] proved that the sharp constant CGN(0) is attained by the function
Q0, which is the unique positive radial solution of

∆Q0 −Q0 +Qα+1
0 = 0. (4.3)

Recently, Killip-Murphy-Visan-Zheng extended Weinstein’s result to c 6= 0. More precisely, we
have the following:

Theorem 4.1 (Sharp Gagliardo-Nirenberg inequality [17]). Let d ≥ 3, 0 < α < α? and c 6= 0 be
such that c > −λ(d). Then we have CGN(c) ∈ (0,∞) and

1. if −λ(d) < c < 0, then the equality in (4.1) is attained by a function Qc ∈ H1
c , which is a

non-zero, non-negative, radial solution to the elliptic equation

−PcQc −Qc +Qα+1
c = 0. (4.4)

2. if c > 0, then CGN(c) = CGN(0) and the equality in (4.1) is never attained. However,
the constant CGN(c, rad) is attained by a function Qc,rad which is a solution to the elliptic
equation

−PcQc,rad −Qc,rad +Qα+1
c,rad = 0. (4.5)

Proof. In [17, Theorem 3.1], the authors gave the proof for d = 3 and α = 2. For reader’s
convenience, we provide some details for the general case. Since ‖f‖Ḣ1

c
∼ ‖f‖Ḣ1 , we see that

Jc(f) ∼ J0(f). Thus the standard Gagliardo-Nirenberg inequality (i.e. (4.1) with c = 0) implies
0 < CGN(c) <∞.

Let us consider the case −λ(d) < c < 0. Let (fn)n ⊂ H1
c \{0} be a maximizing sequence, i.e.

Jc(fn)↗ CGN(c). Let f∗n be the Schwarz symmetrization of fn (see e.g. [20]). Using the fact that
the Schwarz symmetrization preserves Lq norm and does not increase Ḣ1 norm together with the
Riesz rearrangement inequality∫

c|x|−2|f∗(x)|2 ≤
∫
c|x|−2|f(x)|2dx, (4.6)

for c < 0, we see that Jc(fn) ≤ Jc(f∗n). Thus we may assume that each fn is radial. Note that
(4.6) plays an important role in order to restore the lack of compactness due to translations. We
next observe that the functional Jc is invariant under the scaling

fλ,µ(x) := λf(µx), λ, µ > 0.

Indeed, a simple computation shows

‖fλ,µ‖2
Ḣ1
c

= λ2µ2−d‖f‖2
Ḣ1
c
, ‖fλ,µ‖2

L2 = λ2µ−d‖f‖2
L2 , ‖fλ,µ‖α+2

Lα+2 = λα+2µ−d‖f‖α+2
Lα+2 .
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We thus get Jc(fλ,µ) = Jc(f). We now rescale the sequence (fn)n by setting gn(x) := λnfn(µnx),
where

λn =
‖fn‖d/2−1

L2

‖fn‖d/2
Ḣ1
c

, µn = ‖fn‖L
2

‖fn‖Ḣ1
c

.

It is easy to see that ‖gn‖L2 = ‖gn‖Ḣ1
c

= 1. We thus get a maximizing sequence (gn)n of Jc, which
is bounded in H1

c . We have from the compactness lemma (see e.g. [31]) that H1
rad(Rd) ↪→ Lα+2(Rd)

compactly for any 0 < α < 4
d−2 . Therefore, there exists g ∈ H1

c such that, up to a subsequence,
gn → g strongly in Lα+2 as well as weakly in H1

c . By the weak convergence, ‖g‖L2 ≤ 1 and
‖g‖Ḣ1

c
≤ 1. Hence,

CGN(c) = lim
n→∞

Jc(gn) = ‖g‖α+2
Lα+2 ≤ Jc(g) ≤ CGN(c).

Thus, we have Jc(g) = ‖g‖α+2
Lα+2 = CGN(c) and ‖g‖L2 = ‖g‖Ḣ1

c
= 1. Therefore, g is a maximizer

for the Weinstein functional Jc, and so g must satisfy the Euler-Lagrange equation
d

dε

∣∣∣
ε=0

Jc(g + εh) = 0, ∀h ∈ C∞0 (Rd\{0}).

Taking into consideration that ‖g‖L2 = ‖g‖Ḣ1
c

= 1 and CGN(c) = ‖g‖α+2
Lα+2 , we get

−dα2 CGN(c)Pcg −
4− (d− 2)α

2 CGN(c)g + (α+ 2)gα+1 = 0.

If we define Qc by g(x) = λQc(µx) with

λ = α

√
4− (d− 2)α

2(α+ 2) CGN(c), µ =
√

4− (d− 2)α
dα

,

then Qc solves (4.4). This proves Item 1.
In the case c > 0, we consider a sequence (xn)n ⊂ Rd with |xn| → ∞. Let Q0 be the unique

positive radial solution to (4.3). Using the definition (2.6) and (2.9), we have

‖Q0(· − xn)‖2
Ḣ1
c

= ‖
√
Pc[Q0(· − xn)]‖2

L2 = ‖[
√
Pnc Q0](· − xn)‖2

L2 → ‖
√
P∞c Q0‖2

L2 = ‖Q0‖2
Ḣ1 .

We thus get
Jc(Q0(· − xn))→ J0(Q0) = CGN(0),

hence CGN(0) ≤ CGN(c). Since c > 0, it is obvious that ‖f‖Ḣ1
x
< ‖f‖Ḣ1

c
for any f ∈ H1\{0}. The

sharp Gagliardo-Nirenberg inequality for c = 0 then implies

‖f‖α+2
Lα+2 ≤ CGN(0)‖f‖

4−(d−2)α
2

L2 ‖f‖
dα
2
Ḣ1 < CGN(0)‖f‖

4−(d−2)α
2

L2 ‖f‖
dα
2
Ḣ1
c

,

whence Jc(f) < CGN(0) for any f ∈ H1\{0}. Since H1 is equivalent to H1
c , we obtain CGN(c) <

CGN(0). Therefore, CGN(c) = CGN(0). The last estimate also shows that the equality in (4.1)
is never attained. Note also that the estimate (4.6) fails to hold true when c > 0. If we only
consider radial functions, then the estimate (4.6) is obviously holds true. Thus the result for radial
functions follows exactly as the case −λ(d) < c < 0. The proof is complete. �

Remark 4.2. 1. When −λ(d) < c < 0, the proof of Theorem 4.1 shows that there exist
solutions to the elliptic equation (4.4), which are non-zero, non-negative and radially sym-
metric. However, unlike the standard case c = 0, we do not know that the uniqueness
(up to symmetries) of these solutions. Moreover, any positive maximiser of Jc is radial.
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Furthermore, if Qc is a maximiser of Jc, then by multiplying (4.4) with Qc and x · ∇Qc
and integrating over Rd, we obtain the following Pohozaev identities:

‖Qc‖2
Ḣ1
c

+ ‖Qc‖2
L2 − ‖Qc‖α+2

Lα+2 = d− 2
2 ‖Qc‖2

Ḣ1
c

+ d

2‖Qc‖
2
L2 −

d

α+ 2‖Qc‖
α+2
Lα+2 = 0.

In particular,

‖Qc‖2
L2 = 4− (d− 2)α

dα
‖Qc‖2

Ḣ1
c

= 4− (d− 2)α
2(α+ 2) ‖Qc‖α+2

Lα+2 , (4.7)

and

CGN(c) = 2(α+ 2)
4− (d− 2)α

[4− (d− 2)α
dα

] dα
4 1
‖Qc‖αL2

(4.8)

= 2(α+ 2)
dα

[ dα

4− (d− 2)α

] 4−(d−2)α
4 1

‖Qc‖αḢ1
c

= [2(α+ 2)]α+2
2

[4− (d− 2)α]
4−(d−2)α

4 [dα] dα4
1

‖Qc‖
α(α+2)

2
Lα+2

.

In particular, all maximizers of Jc have the same L2, Ḣ1
c , L

α+2-norms. We also have

Ec(Qc) = dα− 4
2[4− (d− 2)α]‖Qc‖

2
L2 = dα− 4

2dα ‖Qc‖
2
Ḣ1
c
. (4.9)

In particular, in the mass-critical case, i.e. α = 4
d , we have Ec(Qc) = 0.

2. Since the identities (4.7) − (4.9) hold true for c = 0, we have from Theorem 4.1 that for
any c > −λ(d),

CGN(c) = 2(α+ 2)
4− (d− 2)α

[4− (d− 2)α
dα

] dα
4 1
‖Qc‖αL2

(4.10)

= 2(α+ 2)
dα

[ dα

4− (d− 2)α

] 4−(d−2)α
4 1

‖Qc‖αḢ1
c

= [2(α+ 2)]α+2
2

[4− (d− 2)α]
4−(d−2)α

4 [dα] dα4
1

‖Qc‖
α(α+2)

2
Lα+2

,

where c = min{c, 0}.
3. Let H(c) and K(c) be as in (1.11). Using (4.7), (4.8) and (4.9), it is easy to see that

H(c) = dα− 4
2dα

[ dα

2(α+ 2)CGN(c)
]− 4

dα−4
, (4.11)

and

K(c) =
[ dα

2(α+ 2)CGN(c)
]− 2

dα−4
. (4.12)

In particular,

H(c) = dα− 4
2dα K(c)2. (4.13)

4. When c > 0, we see that the same identities as in (4.7), (4.8), (4.9), (4.10), (4.9), (4.11),
(4.12) and (4.13) hold true with Qc,rad, CGN(c, rad), H(c, rad) and K(c, rad) in place of
Qc, CGN(c), H(c) and K(c) respectively.
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Let us now consider the sharp Sobolev embedding inequality:

‖f‖Lα?+2 ≤ CSE(c)‖f‖Ḣ1
c
, (4.14)

where the sharp constant CSE(c) is defined by

CSE(c) := sup
{
‖f‖Lα?+2 ÷ ‖f‖Ḣ1

c
: f ∈ Ḣ1

c \{0}
}
.

We also consider the sharp radial Sobolev embedding inequality

‖f‖Lα?+2 ≤ CSE(c, rad)‖f‖Ḣ1
c
, f radial (4.15)

where the sharp constant CSE(c, rad) is defined by

CSE(c, rad) := sup
{
‖f‖Lα?+2 ÷ ‖f‖Ḣ1

c
: f ∈ Ḣ1

c \{0}, f radial
}
.

When c = 0, it was proved by Aubin [1] and Talenti [30] that the constant CSE(0) is attained
by functions f(x) of a form λW0(µx+ y) for some λ ∈ C, µ > 0 and y ∈ Rd, where W0 is given in
(1.22).

When c 6= 0, Killip-Miao-Visan-Zhang-Zheng in [19] proved the following result.

Theorem 4.3 (Sharp Sobolev embedding inequality [19]). Let d ≥ 3 and c 6= 0 be such that
c > −λ(d). Then CSE(c) ∈ (0,∞) and

1. if −λ(d) < c < 0, then the equality in (4.14) is attained by functions f(x) of the form
λWc(µx) for some λ ∈ C and some µ > 0, where Wc is given in (1.23).

2. if c > 0, then CSE(c) = CSE(0) and the equality in (4.14) is never attained. However,
CSE(c, rad) is attained by functions f(x) of the form λWc(µx) for some λ ∈ C and some
µ > 0, where Wc is again given in (1.23).

We refer the reader to [19, Proposition 7.2] for the proof of this result. Note that the non-
existence of optimizers to the Sobolev embedding inequality for c > 0 is a consequence of the
failure of compactness due to translation. If we restrict our consideration to radial functions, the
compactness is restored. To end this section, we recall some properties related to Wc (see [19,
Section 7] for more details). It is not difficult to verify that Wc solves the elliptic equation

PcWc = |Wc|α
?

Wc.

This implies in particular

‖Wc‖2
Ḣ1
c

= ‖Wc‖α
?+2
Lα?+2 . (4.16)

Combining with Theorem 4.3, we have for −λ(d) < c < 0,

‖Wc‖2
Ḣ1
c

= ‖Wc‖α
?+2
Lα?+2 = CSE(c)−d, (4.17)

Ec(Wc) = 1
2‖Wc‖2

Ḣ1
c
− 1
α? + 2‖Wc‖α

?+2
Lα?+2 = d−1CSE(c)−d. (4.18)

Note that (4.17) and (4.18) hold true for c = 0. In particular, we have for any c 6= 0 satisfying
c > −λ(d),

CSE(c) = ‖Wc‖
− 2
d

Ḣ1
c

= ‖Wc‖
−α

?+2
d

Lα?+2 = [dEc(Wc)]−
1
d . (4.19)
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Similarly, we have for c > 0 that

‖Wc‖2
Ḣ1
c

= ‖Wc‖α
?+2
Lα?+2 = CSE(c, rad)−d, (4.20)

Ec(Wc) = 1
2‖Wc‖2

Ḣ1
c
− 1
α? + 2‖Wc‖α

?+2
Lα?+2 = d−1CSE(c, rad)−d. (4.21)

CSE(c, rad) = ‖Wc‖
− 2
d

Ḣ1
c

= ‖Wc‖
−α

?+2
d

Lα?+2 = [dEc(Wc)]−
1
d . (4.22)

5. Virial identities

In this section, we derive virial identities and localized virial estimates associated to the (NLSc).
Given a smooth real valued function χ, we define the virial potential by

Vχ(t) :=
∫
χ(x)|u(t, x)|2dx. (5.1)

By a direct computation, we have the following result.

Lemma 5.1. Let d ≥ 3 and c > −λ(d). If u : I × Rd → C is a smooth-in-time and Schwartz-in-
space solution to

i∂tu− Pcu = N(u),
with N(u) satisfying Im (N(u)u) = 0, then we have for any t ∈ I,

d

dt
Vχ(t) = 2

∫
Rd
∇χ(x) · Im (u(t, x)∇u(t, x))dx, (5.2)

and

d2

dt2
Vχ(t) =−

∫
∆2χ(x)|u(t, x)|2dx+ 4

d∑
j,k=1

∫
∂2
jkχ(x)Re (∂ku(t, x)∂ju(t, x))dx

+ 4c
∫
∇χ(x) · x

|x|4
|u(t, x)|2dx+ 2

∫
∇χ(x) · {N(u), u}p(t, x)dx,

(5.3)

where {f, g}p := Re (f∇g − g∇f) is the momentum bracket.

We note that if N(u) = −|u|αu, then

{N(u), u}p = α

α+ 2∇(|u|α+2).

Using this fact, we immediately have the following result.

Corollary 5.2. Let d ≥ 3 and c > −λ(d). If u : I × Rd → C is a smooth-in-time and Schwartz-
in-space solution to the (NLSc), then we have for any t ∈ I,

d2

dt2
Vχ(t) =−

∫
∆2χ(x)|u(t, x)|2dx+ 4

d∑
j,k=1

∫
∂2
jkχ(x)Re (∂ku(t, x)∂ju(t, x))dx

+ 4c
∫
∇χ(x) · x

|x|4
|u(t, x)|2dx− 2α

α+ 2

∫
∆χ(x)|u(t, x)|α+2dx.

(5.4)

We now have the following standard virial identity for the (NLSc).

Lemma 5.3. Let d ≥ 3 and c > −λ(d). Let u0 ∈ H1 be such that |x|u0 ∈ L2 and u : I × Rd → C
the corresponding solution to the (NLSc). Then, |x|u ∈ C(I, L2). Moreover, for any t ∈ I,

d2

dt2
‖xu(t)‖2

L2 = 8‖u(t)‖2
Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 . (5.5)



GLOBAL EXISTENCE & BLOWUP NLS INVERSE-SQUARE POTENTIAL 19

Proof. The first claim follows from the standard approximation argument, we omit the proof and
refer the reader to [5, Proposition 6.5.1] for more details. It remains to show (5.5). Applying
Corollary 5.2 with χ(x) = |x|2, we have

d2

dt2
V|x|2(t) = d2

dt2
‖xu(t)‖2

L2 = 8
∫
|∇u(t, x)|2 + c|x|−2|u(t, x)|2dx− 4dα

α+ 2

∫
|u(t, x)|α+2dx

= 8‖u(t)‖2
Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 .

This gives (5.5). �

In order to prove the blowup for the (NLSc) with radial data, we need localized virial estimates.
To do so, we introduce the smooth, non-negative function θ : [0,∞)→ [0,∞) satisfying

θ(r) =
{

r2 if 0 ≤ r ≤ 1,
const. if r ≥ 2, and θ′′(r) ≤ 2 for r ≥ 0. (5.6)

Note that the precise constant here is not important. For R > 1, we define the radial function

ϕR(x) = ϕR(r) := R2θ(r/R), r = |x|. (5.7)

It is easy to see that

2− ϕ′′R(r) ≥ 0, 2− ϕ′R(r)
r
≥ 0, 2d−∆ϕR(x) ≥ 0. (5.8)

Here the last inequality follows from the fact ∆ = ∂2
r + d−1

r ∂r.

Lemma 5.4. Let d ≥ 3, c > −λ(d), R > 1 and ϕR be as in (5.7). Let u : I × Rd → C be a radial
solution to the (NLSc). Then for any t ∈ I,

d2

dt2
VϕR(t) ≤ 8‖u(t)‖2

Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 +O
(
R−2 +R−

(d−1)α
2 ‖u(t)‖

α
2
Ḣ1
c

)
. (5.9)

Proof. We apply (5.4) for χ(x) = ϕR(x) to get

d2

dt2
VϕR(t) =−

∫
∆2ϕR(x)|u(t, x)|2dx+ 4

d∑
j,k=1

∫
∂2
jkϕR(x)Re (∂ku(t, x)∂ju(t, x))dx

+ 4c
∫
∇ϕR(x) · x

|x|4
|u(t, x)|2dx− 2α

α+ 2

∫
∆ϕR(x)|u(t, x)|α+2dx.

Since ϕR(x) = |x|2 for |x| ≤ R, we use (5.5) to have

d2

dt2
VϕR(t) = 8‖u(t)‖2

Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 − 8‖u(t)‖2
Ḣ1
c (|x|>R) + 4dα

α+ 2‖u(t)‖α+2
Lα+2(|x|>R)

−
∫
|x|>R

∆2ϕR|u(t)|2dx+ 4
d∑

j,k=1

∫
|x|>R

∂2
jkϕRRe (∂ku(t)∂ju(t))dx

+4c
∫
|x|>R

∇ϕR ·
x

|x|4
|u(t)|2dx− 2α

α+ 2

∫
|x|>R

∆ϕR|u(t)|α+2dx.

(5.10)
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Since |∆ϕR| . 1 and |∆2ϕR| . R−2, we have

d2

dt2
VϕR(t) = 8‖u(t)‖2

Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 + 4
d∑

j,k=1

∫
|x|>R

∂2
jkϕRRe (∂ku(t)∂ju(t))dx

+4c
∫
|x|>R

∇ϕR ·
x

|x|4
|u(t)|2dx− 8‖u(t)‖2

Ḣ1
c (|x|>R)

+O
(∫
|x|>R

R−2|u(t)|2 + |u(t)|α+2dx
)
.

Using (5.8) and the fact that

∂j = xj
r
∂r, ∂2

jk =
(δjk
r
− xjxk

r3

)
∂r + xjxk

r2 ∂2
r ,

we see that
d∑

j,k=1
∂2
jkϕR∂ku∂ju = ϕ′′R(r)|∂ru|2 ≤ 2|∂ru|2 = 2|∇u|2,

and
∇ϕR · x = ϕ′R

x

r
· x = ϕ′Rr ≤ 2r2 = 2|x|2.

Therefore

4
d∑

j,k=1

∫
|x|>R

∂2
jkϕRRe (∂ku∂ju)dx+ 4c

∫
|x|>R

∇ϕR · x|x|−4|u|2dx− 8‖u(t)‖2
Ḣ1
c (|x|>R) ≤ 0.

The conservation of mass then implies
d2

dt2
VϕR(t) ≤ 8‖u(t)‖2

Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 +O
(∫
|x|>R

R−2|u(t)|2 + |u(t)|α+2dx
)

≤ 8‖u(t)‖2
Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 +O
(
R−2 + ‖u(t)‖α+2

Lα+2(|x|>R)

)
.

It remains to bound ‖u(t)‖α+2
Lα+2(|x|>R). To do this, we recall the following radial Sobolev embedding

([27, 6]).

Lemma 5.5 (Radial Sobolev embedding [27, 6]). Let d ≥ 2 and 1
2 ≤ s < 1. Then for any radial

function f ,

sup
x 6=0
|x|

d−2s
2 |f(x)| ≤ C(d, s)‖f‖1−s

L2 ‖f‖sḢ1 . (5.11)

Moreover, the above inequality also holds for d ≥ 3 and s = 1.

Since Ḣ1 ∼ Ḣ1
c , we have in particular

sup
x 6=0
|x|

d−1
2 |f(x)| . ‖f‖

1
2
L2‖f‖

1
2
Ḣ1
c

. (5.12)

Using (5.12) and the conservation of mass, we estimate

‖u(t)‖α+2
Lα+2(|x|>R) ≤

(
sup
|x|>R

|u(t)|
)α
‖u(t)‖2

L2

. R−
(d−1)α

2

(
sup
|x|>R

|x|
d−1

2 |u(t)|
)α
‖u(t)‖2

L2

. R−
(d−1)α

2 ‖u(t)‖
α
2
Ḣ1
c

‖u(t)‖
α
2 +2
L2 . R−

(d−1)α
2 ‖u(t)‖

α
2
Ḣ1
c

.
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The proof is complete. �

The localized virial estimate given in Lemma 5.4 is not enough to show blowup solutions in the
mass-critical case, i.e. α = α?. In this case, we need a refined version of Lemma 5.4. We follow
the argument of [23] (see also [3]).

Lemma 5.6. Let d ≥ 3, c > −λ(d), R > 1 and ϕR be as in (5.7). Let u : I × Rd → C be a radial
solution to the mass-critical (NLSc), i.e. α = α?. Then for any ε > 0 and any t ∈ I,
d2

dt2
VϕR(t) ≤ 16Ec(u0)− 4

∫
|x|>R

(
χ1,R −

ε

d+ 2χ
d
2
2,R

)
|∇u(t)|2dx+O

(
R−2 + εR−2 + ε−

2
d−2R−2

)
,

(5.13)
where

χ1,R = 2− ϕ′′R, χ2,R = 2d−∆ϕR. (5.14)

Proof. Using (5.10) with α = α? = 4
d and

∑
j,k ∂

2
jkϕR∂ku∂ju = ϕ′′R|∂ru|2 and rewriting ϕ′′R =

2− (2− ϕ′′R) and ∆ϕR = 2d− (2d−∆ϕR), we have
d2

dt2
VϕR(t) = 16Ec(u(t))−

∫
|x|>R

∆2ϕR|u(t)|2dx− 4
∫
|x|>R

(2− ϕ′′R)|∂ru(t)|2dx

+ 4
d+ 2

∫
|x|>R

(2d−∆ϕR)|u(t)| 4d+2dx

+8
∫
|x|>R

|∂ru(t)|2dx+ 4c
∫
|x|>R

∇ϕR · x|x|−4|u(t)|2dx− 8‖u(t)‖2
Ḣ1
c (|x|>R)

≤ 16Ec(u0) +O(R−2)− 4
∫
|x|>R

χ1,R|∇u(t)|2dx+ 4
d+ 2

∫
|x|>R

χ2,R|u(t)| 4d+2dx.

We now bound the last term. Using the radial Sobolev embedding (5.11) with s = 1 and the
conservation of mass, we estimate∫

|x|>R
χ2,R|u(t)| 4d+2dx =

∫
|x|>R

|χ
d
4
2,Ru(t)| 4d |u(t)|2dx

≤
(

sup
|x|>R

|χ
d
4
2,R(x)u(t, x)|

) 4
d ‖u(t)‖2

L2

. R−
2(d−2)
d

∥∥∥∇(χ d
4
2,Ru(t)

)∥∥∥ 4
d

L2
‖u(t)‖2

L2

. R−
2(d−2)
d

∥∥∥∇(χ d
4
2,Ru(t)

)∥∥∥ 4
d

L2
.

We next use the Young inequality ab . εap + ε−
q
p bq with 1

p + 1
q = 1 and ε > 0 an arbitrary real

number to have

R−
2(d−2)
d

∥∥∥∇(χ d
4
2,Ru(t)

)∥∥∥ 4
d

L2
. ε
∥∥∥∇(χ d

4
2,Ru(t)

)∥∥∥2

L2
+O

(
ε−

2
d−2R−2

)
.

Here we apply the Young inequality with p = d
2 and q = d

d−2 . It is not hard to check |∇(χd/4
2,R)| .

R−1 for |x| > R. Thus the conservation of mass implies∥∥∥∇(χ d
4
2,Ru(t)

)∥∥∥2

L2
. R−2 +

∥∥∥χ d
4
2,R∇u(t)

∥∥∥2

L2
.

Combining the above estimates, we prove (5.13). �
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6. Global existence

In this section, we give the proofs of global existence given Theorem 1.3 and Theorem 1.6.

6.1. Mass-critical case. Thanks to the local well-posedness given in Theorem 3.1, it suffices to
bound ‖u(t)‖H1

c
for all t in the existence time. Applying (4.10) with α = α?, we see that

CGN(c) = α? + 2
2‖Qc‖α?L2

.

By the definition of energy, we have

‖u(t)‖2
Ḣ1
c

= 2Ec(u(t)) + 2
α? + 2‖u(t)‖α?+2

Lα?+2 .

The sharp Gagliardo-Nirenberg inequality and the conservations of mass and energy imply

‖u(t)‖2
Ḣ1
c
≤ 2Ec(u(t)) + 2

α? + 2CGN(c)‖u(t)‖α?L2‖u(t)‖2
Ḣ1
c

= 2Ec(u0) + 2
α? + 2CGN(c)‖u0|α?L2‖u(t)‖2

Ḣ1
c

= 2Ec(u0) +
( ‖u0‖L2

‖Qc‖L2

)α?
‖u(t)‖2

Ḣ1
c
.

Thus, [
1−

( ‖u0‖L2

‖Qc‖L2

)α?]
‖u(t)‖2

Ḣ1
c
≤ 2Ec(u0).

Since ‖u0‖L2 < ‖Qc‖L2 , the above estimate shows the boundedness of ‖u(t)‖Ḣ1
c
. Hence ‖u(t)‖H1

c

is bounded by the conservation of mass. This proves the global existence of Theorem 1.3.

Remark 6.1. Let us show Item 3 of Remark 1.4. Let −λ(d) < c < 0 and Mc > ‖Qc‖L2 . Let
λ = Mc/‖Qc‖L2 > 1. Set u0(x) = λQc(x). We have ‖u0‖L2 = Mc and

Ec(u0) = Ec(λQc) = λ2

2 ‖Qc‖
2
Ḣ1
c
− λα?+2

α? + 2‖Qc‖
α?+2
Lα?+2

= λα?+2Ec(Qc)−
λα?+2 − λ2

2 ‖Qc‖2
Ḣ1
c
.

Since Ec(Qc) = 0 and λ > 1, we see that Ec(u0) < 0. On the other hand, it is obvious that u0 is
radial. Thus by Item 2 of Theorem 1.3, we see that the corresponding solution with initial data
u0 blows up in finite time.

We next show for c > 0 that if u0 is radial and satisfies ‖u0‖L2 < ‖Qc,rad‖L2 , then the corre-
sponding solution exists globally. It follows similarly as the beginning of Subsection 6.1 by using
the sharp radial Gagliardo-Nirenberg inequality

‖f‖α?+2
Lα?+2 ≤ CGN(c, rad)‖f‖α?L2‖f‖2

Ḣ1
c
, f radial.

Note also that by Item 4 of Remark 4.2, we have

CGN(c, rad) = α? + 2
2‖Qc,rad‖α?L2

.

To complete the proof of Item 3, we show that for any Mc > ‖Qc,rad‖L2 , there exists u0 ∈ H1

radial satisfying ‖u0‖L2 = Mc and the corresponding solution blows up in finite time. We proceed
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as above. Let λ = Mc/‖Qc,rad‖L2 > 1 and set u0(x) = λQc,rad(x). We see that ‖u0‖L2 = Mc and

Ec(u0) = Ec(λQc,rad) == λ2

2 ‖Qc,rad‖2
Ḣ1
c
− λα?+2

α? + 2‖Qc,rad‖α?+2
Lα?+2

= λα?+2Ec(Qc,rad)− λα?+2 − λ2

2 ‖Qc,rad‖2
Ḣ1
c
.

Since Qc,rad is a solution to the (4.5), we see that Ec(Qc,rad) = 0. This shows that Ec(u0) < 0.
Thus the corresponding solution blows up in finite time.

Remark 6.2. Let us show Item 5 of Remark 1.4, that is to show when c > 0 there exists a radial
blowup solution to the mass-critical (NLSc) with ‖u0‖L2 = ‖Qc,rad‖L2 . Since Qc,rad is a solution
to the elliptic equation

−PcQc,rad −Qc,rad +Qα?+1
c,rad = 0,

it is easy to see that u(t) = eitQc,rad is a solution to the mass-critical (NLSc). Then a direct
computation shows that for any 0 < T < +∞, the function

uT (t, x) = 1
|t− T |d/2 e

−i |x|
2

4(t−T ) + i
t−T Qc,rad

( x

t− T

)
is also a solution to the mass-critical (NLSc) which blows up at T and ‖uT (0)‖L2 = ‖Qc,rad‖L2 .

6.2. Intercritical case. Again thanks to the local well-posedness of the (NLSc) given in Theorem
3.1. It suffices to show that ‖u(t)‖H1

c
is bounded as long as t belongs to the existence time. Let

u0 ∈ H1 be such that (1.12) and (1.13) hold. By the definition of energy and multiplying both
sides of Ec(u(t)) by M(u(t))σ, the sharp Gagliardo-Nirenberg inequality (4.1) implies

Ec(u(t))M(u(t))σ = 1
2

(
‖u(t)‖Ḣ1

c
‖u(t)‖σL2

)2
− 1
α+ 2‖u(t)‖α+2

Lα+2‖u(t)‖2σ
L2

≥ 1
2

(
‖u(t)‖Ḣ1

c
‖u(t)‖σL2

)2
− CGN(c)

α+ 2 ‖u(t)‖
4−(d−2)α

2 +2σ
L2 ‖u(t)‖

dα
2
Ḣ1
c

= f(‖u(t)‖Ḣ1
c
‖u(t)‖σL2), (6.1)

where

f(x) = 1
2x

2 − CGN(c)
α+ 2 x

dα
2 . (6.2)

Using (4.12) and (4.13), we see that

f(K(c)) = dα− 4
2dα K(c)2 = H(c). (6.3)

We have from (6.1), the conservations of mass and energy and the assumption (1.12) that
f(‖u(t)‖Ḣ1

c
‖u(t)‖σL2) ≤ Ec(u0)M(u0)σ < H(c). (6.4)

Using this together with (1.13), (6.3) and (6.4), the continuity argument shows
‖u(t)‖Ḣ1

c
‖u(t)‖σL2 < K(c),

for any t as long as the solution exists. The conservation of mass then implies the boundedness of
‖u(t)‖H1

c
.

The global existence of Theorem 1.8 is proved similarly as above using Item 4 of Remark 4.2.

7. Blowup

This section is devoted to the proofs of blowup solutions given in Theorem 1.3, Theorem 1.6
and Theorem 1.12.
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7.1. Mass-critical case. Let us consider the case Ec(u0) < 0 and xu0 ∈ L2. By the standard
virial identity (5.5),

d2

dt2
‖xu(t)‖2

L2 = 8‖u(t)‖2
Ḣ1
c
− 4dα?
α? + 2‖u(t)‖α?+2

Lα?+2 = 16Ec(u0) < 0.

By the classical argument of Glassey [11], it follows that the solution u blows up in finite time.
We next consider the case Ec(u0) < 0 and u0 is radial. Applying the localized virial estimate

(5.13), we have

d2

dt2
VϕR(t) ≤ 16Ec(u0)− 4

∫
|x|>R

(
χ1,R −

ε

d+ 2χ
d
2
2,R

)
|∇u(t)|2dx+O

(
R−2 + ε−

2
d−2R−2

)
,

where χ1,R = 2− ϕ′′R and χ2,R = 2d−∆ϕR. We seek for a radial function ϕR defined by (5.7) so
that

χ1,R −
ε

d+ 2χ
d
2
2,R ≥ 0, ∀r > R, (7.1)

for a sufficiently small ε > 0. If (7.1) is satisfied, then by choosing R > 1 sufficiently large depending
on ε, we see that

d2

dt2
VϕR(t) ≤ 8Ec(u0) < 0,

for any t in the existence time. This shows that the solution u must blow up in finite time. It
remains to show (7.1). To do so, we follow the argument of [23]. Let us define the smooth function

ϑ(r) :=


2r if 0 ≤ r ≤ 1,

2[r − (r − 1)3] if 1 < r ≤ 1 + 1/
√

3,
ϑ′ < 0 if 1 + 1/

√
3 < r < 2,

0 if r ≥ 2,

and

θ(r) :=
∫ r

0
ϑ(s)ds.

It is easy to see that θ satisfies (5.6). Define ϕR as in (5.7). We will show that (7.1) holds true for
this choice of ϕR. Indeed, by definition,

ϕ′R(r) = Rθ′(r/R) = Rϑ(r/R), ϕ′′R(r) = θ′′(r/R) = ϑ′(r/R), ∆ϕR(x) = ϕ′′R(r) + d− 1
r

ϕ′R(r).

When r > (1 + 1/
√

3)R, we see that ϑ′(r/R) ≤ 0, so χ1,R(r) = 2 − ϕ′′R(r) ≥ 2. We also have
χ2,R(r) ≤ C for some constant C > 0. Thus by choosing ε > 0 small enough, we have (7.1).

When R < r ≤ (1 + 1/
√

3)R, we have

χ1,R(r) = 6
( r
R
− 1
)2
, χ2,R(r) = 6

( r
R
− 1
)2[

1 + (d− 1)(r/R− 1)
3r/R

]
< 6
( r
R
− 1
)2(

1 + d− 1
3
√

3

)
.

Since 0 < r/R− 1 < 1/
√

3, we can choose ε > 0 small enough, for instance,

ε < (d+ 2)
(

1 + d− 1
3
√

3

)−d/2

to get (7.1). The proof is complete. �
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Remark 7.1. We now show Item 4 of Remark 1.4 that is to show the condition Ec(u0) < 0 is a
sufficient condition but it is not necessary. Let Ec > 0. We find data u0 ∈ H1 so that Ec(u0) = Ec
and the corresponding solution u blows up in finite time. We follow the standard argument (see
e.g. [5, Remark 6.5.8]). Using the standard virial identity with α = α?, we have

d2

dt2
‖xu(t)‖2

L2 = 16Ec(u0),

hence
‖xu(t)‖2

L2 = 8t2Ec(u0) + 4t
(

Im
∫
u0x · ∇u0dx

)
+ ‖xu0‖2

L2 =: f(t).

Note that if f(t) takes negative values, then the solution u must blow up in finite time. In order
to make f(t) takes negative values, we need(

Im
∫
u0x · ∇u0dx

)2
> 2Ec(u0)‖xu0‖2

L2 . (7.2)

Now fix θ ∈ C∞0 (Rd) a real-valued function and set ψ(x) = e−i|x|
2
θ(x). We see that ψ ∈ C∞0 (Rd)

and
Im

∫
ψx · ∇ψdx = −2

∫
|x|2θ2(x)dx < 0.

We now set

A = 1
2‖ψ‖

2
Ḣ1
c
, B = 1

α? + 2‖ψ‖
α?+2
Lα?+2 ,

C = ‖xψ‖2
L2 , D = −Im

∫
ψx · ∇ψdx.

Let λ, µ > 0 be chosen later and set u0(x) = λψ(µx). We will choose λ, µ > 0 so that Ec(u0) = Ec
and (7.2) holds true. A direct computation shows

Ec(u0) = λ2µ2µ−d
1
2‖ψ‖

2
Ḣ1
c
− λα?+2µ−d

1
α? + 2‖ψ‖

α?+2
Lα?+2 = λ2µ2−d

(
A− λα?

µ2 B
)
,

and
Im

∫
u0x · ∇u0dx = λ2µ−dIm

∫
ψx · ∇ψdx = −λ2µ−dD,

and
‖xu0‖2

L2 = λ2µ−d−2‖xψ‖2
L2 = λ2µ−d−2C.

Thus, the conditions Ec(u0) = Ec and (7.2) yield

λ2µ2−d
(
A− λα?

µ2 B
)

= Ec, (7.3)

D2

C
> 2
(
A− λα?

µ2 B
)
. (7.4)

Fix 0 < ε < min
{
A, D

2

2C

}
and choose

λα?

µ2 B = A− ε.

It is obvious that (7.4) is satisfied. Condition (7.3) implies

ελ2µ2−d = Ec or ε
( B

A− ε

) 2−d
2
λ2+ (2−d)α?

2 = Ec.

This holds true by choosing a suitable value of λ.
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7.2. Intercritical case. We firstly show (1.16). We have from (6.1) that

f(‖u(t)‖Ḣ1
c
‖u(t)‖σL2) ≤ Ec(u(t))M(u(t))σ,

where f is defined as in (6.2). Note that f(K(c)) = H(c). By our assumption (1.12), we have

f(‖u(t)‖Ḣ1
c
‖u(t)‖σL2) < H(c).

Using (1.15) and the continuity argument, we get

‖u(t)‖Ḣ1
c
‖u(t)‖σL2 > K(c),

for any t in the existence time. This proves (1.16).
We next pick δ > 0 small enough so that

Ec(u0)M(u0)σ ≤ (1− δ)H(c). (7.5)

This implies

f(‖u(t)‖Ḣ1
c
‖u(t)‖σL2) ≤ (1− δ)H(c). (7.6)

Using (6.2), (4.12) and (4.13), we have from (7.6) that

dα

dα− 4

(‖u(t)‖Ḣ1
c
‖u(t)‖σL2

K(c)

)2
− 4
dα− 4

(‖u(t)‖Ḣ1
c
‖u(t)‖σL2

K(c)

) dα
2 ≤ 1− δ.

The continuity argument shows that there exists δ′ > 0 depending on δ so that
‖u(t)‖Ḣ1

c
‖u(t)‖σL2

K(c) ≥ 1 + δ′ or ‖u(t)‖Ḣ1
c
‖u(t)‖σL2 ≥ (1 + δ′)K(c). (7.7)

We also have for ε > 0 small enough,

8‖u(t)‖2
Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 + ε‖u(t)‖2
Ḣ1
c
≤ −c < 0, (7.8)

for any t in the existence time. Indeed, multiplying the left hand side of (7.8) with a conserved
quantity M(u(t))σ, we get

LHS(7.8)×M(u(t))σ = 4dαEc(u(t))M(u(t))σ + (8 + ε− 2dα)‖u(t)‖2
Ḣ1
c
M(u(t))σ.

The conservations of mass and energy, (7.5), (7.7) and (4.13) then yield

LHS(7.8)×M(u0)σ ≤ 4dα(1− δ)H(c) + (8 + ε− 2dα)(1 + δ′)2K(c)2

= 2(dα− 4)(1− δ)K(c)2 + (8 + ε− 2dα)(1 + δ′)2K(c)2

= K(c)2
[
2(dα− 4)(1− δ − (1 + δ′)2) + ε(1 + δ′)2

]
.

By taking ε > 0 small enough, we prove (7.8).
Let us consider the case xu0 ∈ L2 satisfying (1.12) and (1.15). By the standard virial identity

(5.5) and (7.8),
d2

dt2
‖xu(t)‖2

L2 = 8‖u(t)‖2
Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 ≤ −c < 0.

This shows that the solution blows up in finite time.
We now consider the case u0 is radial, and satisfies (1.12) and (1.15). Using the localized virial

estimate (5.9), we have

d2

dt2
VϕR(t) ≤ 8‖u(t)‖2

Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 +O
(
R−2 +R−

(d−1)α
2 ‖u(t)‖

α
2
Ḣ1
c

)
.
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We next use the Young inequality to bound

R−
(d−1)α

2 ‖u(t)‖
α
2
Ḣ1
c

. ε‖u(t)‖2
Ḣ1
c

+ ε−
α

4−αR−
2(d−1)α

4−α ,

for ε > 0 an arbitrary real number. We thus get
d2

dt2
VϕR(t) ≤ 8‖u(t)‖2

Ḣ1
c
− 4dα
α+ 2‖u(t)‖α+2

Lα+2 + ε‖u(t)‖2
Ḣ1
c

+O
(
R−2 + ε−

α
4−αR−

2(d−1)α
4−α

)
.

By taking ε > 0 small enough and R > 1 large enough depending on ε, we obtain from (7.8) that

d2

dt2
VϕR(t) ≤ −c/2 < 0.

This shows that the solution must blow up in finite time.
The blowup of Theorem 1.8 follows by the same argument as above and Item 4 of Remark 4.2.

7.3. Energy-critical case. By definition of the energy and the sharp Sobolev embedding inequal-
ity (4.14),

Ec(u(t)) = 1
2‖u(t)‖2

Ḣ1
c
− 1
α? + 2‖u(t)‖α

?+2
Lα?+2

≤ 1
2‖u(t)‖2

Ḣ1
c
− [CSE(c)]α?+2

α? + 2 ‖u(t)‖α
?+2
Ḣ1
c

=: g(‖u(t)‖Ḣ1
c
),

where

g(y) = 1
2y

2 − [CSE(c)]α?+2

α? + 2 yα
?+2. (7.9)

We have from (4.19) that
g(‖Wc‖Ḣ1

c
) = Ec(Wc).

By the conservation of energy and the assumption Ec(u0) < Ec(Wc),

g(‖u(t)‖Ḣ1
c
) ≤ Ec(u(t)) = Ec(u0) < Ec(Wc).

We thus have from the assumption ‖u0‖Ḣ1
c
> ‖Wc‖Ḣ1

c
and the continuity argument that

‖u(t)‖Ḣ1
c
> ‖Wc‖Ḣ1

c
, (7.10)

for any t as long as the solution exists. We next improve (7.10) as follows. Pick δ > 0 small enough
so that

Ec(u0) ≤ (1− δ)Ec(Wc). (7.11)

This implies

g(‖u(t)‖Ḣ1
c
) ≤ (1− δ)Ec(Wc). (7.12)

Using (7.9) and (4.19), we have from (7.12) that

d

2

(‖u(t)‖Ḣ1
c

‖Wc‖Ḣ1
c

)2
− d− 2

2

(‖u(t)‖Ḣ1
c

‖Wc‖Ḣ1
c

)α?+2
≤ 1− δ.

The continuity argument shows that there exists δ′ > 0 depending on δ so that
‖u(t)‖Ḣ1

c

‖Wc‖Ḣ1
c

≥ 1 + δ′ or ‖u(t)‖Ḣ1
c
≥ (1 + δ′)‖Wc‖Ḣ1

c
. (7.13)
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We also have for ε > 0 small enough,

8‖u(t)‖2
Ḣ1
c
− 4dα?

α? + 2‖u(t)‖α
?+2
Lα?+2 + ε‖u(t)‖2

Ḣ1
c
≤ −c < 0, (7.14)

for any t in the existence time. Indeed,
LHS(7.14) = 4dα?Ec(u(t)) + (8 + ε− 2dα?)‖u(t)‖2

Ḣ1
c
.

The conservations of mass and energy, (7.11), (7.13), (4.17) and (4.18) then yield
LHS(7.14) ≤ 4dα?(1− δ)Ec(Wc) + (8 + ε− 2dα?)(1 + δ′)2‖Wc‖2

Ḣ1
c

= 16
d− 2(1− δ)‖Wc‖2

Ḣ1
c

+
(
− 16
d− 2 + ε

)
(1 + δ′)2‖Wc‖2

Ḣ1
c

= ‖Wc‖2
Ḣ1
c

[ 16
d− 2(1− δ − (1 + δ′)2) + ε(1 + δ′)2

]
.

By taking ε > 0 small enough, we prove (7.14).
Let us consider the case xu0 ∈ L2 satisfying Ec(u0) < Ec(Wc) and ‖u0‖Ḣ1

c
> ‖Wc‖Ḣ1

c
. By the

standard virial identity (5.5) and (7.14),
d2

dt2
‖xu(t)‖2

L2 = 8‖u(t)‖2
Ḣ1
c
− 4dα?

α? + 2‖u(t)‖α
?+2
Lα?+2 ≤ −c < 0.

This shows that the solution blows up in finite time.
We now consider the case u0 is radial, and satisfies Ec(u0) < Ec(Wc) and ‖u0‖Ḣ1

c
> ‖Wc‖Ḣ1

c
.

Using the localized virial estimate (5.9), we have
d2

dt2
VϕR(t) ≤ 8‖u(t)‖2

Ḣ1
c
− 4dα?

α? + 2‖u(t)‖α
?+2
Lα?+2 +O

(
R−2 +R−

(d−1)α?
2 ‖u(t)‖

α?

2
Ḣ1
c

)
.

Using the fact α?

2 = 2
d−2 ≤ 2, the uniform bound (7.10) and (7.14), we see that for R > 1 large

enough,
d2

dt2
VϕR(t) ≤ −c/2 < 0.

Therefore, the solution must blow up in finite time.
The blowup of Theorem 1.14 follows by the same argument as above and (4.20)− (4.22).
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