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We consider a class of the focusing nonlinear Schrödinger equation with inversesquare potential

. In the mass-critical case α = 4 d , we prove the global existence and blowup below ground states for the equation with d ≥ 3 and c > -λ(d). In the mass and energy intercritical case 4 d < α < 4 d-2 , we prove the global existence and blowup below the ground state threshold for the equation. This extends similar results of [17] and [21] to any dimensions d ≥ 3 and a full range c > -λ(d). We finally prove the blowup below ground states for the equation in the energy-critical case α = 4 d-2 with d ≥ 3 and c > -d 2 +4d (d+2) 2 λ(d).

. The case c = 0 is the well-known nonlinear Schrödinger equation which has been studied extensively over the last three decades. The nonlinear Schrödinger equation with inverse-square potential (NLS c ) appears in a variety of physical settings and is of interest in quantum mechanics (see e.g. [13] and references therein). The study of the (NLS c ) has attracted a lot of interest in the past several years (see e.g. [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF]25,26,[START_REF] Suzuki | Energy methods for Hartree type equations with inverse-square potentials[END_REF]29,[START_REF] Killip | Sobolev spaces adapted to the Schrödinger operator with inverse-square potential[END_REF][START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF]17,33,[START_REF] Lu | Scattering in H 1 for the intercritical NLS with an inverse-square potential[END_REF]).

The operator P c is the self-adjoint extension of -∆ + c|x| -2 . It is well-known that in the range -λ(d) < c < 1 -λ(d), the extension is not unique (see e.g. [13]). In this case, we do make a choice among possible extensions, such as Friedrichs extension. The restriction on c comes from the sharp Hardy inequality, namely

λ(d) |x| -2 |u(x)| 2 dx ≤ |∇u(x)| 2 dx, ∀u ∈ H 1 , ( 1.1) 
which ensures that P c is a positive operator. Throughout this paper, we denote for γ ∈ R and q ∈ [1, ∞] the usual homogeneous and inhomogeneous Sobolev spaces associated to the Laplacian -∆ by Ẇ γ,q and W γ,q respectively. We

γ c := d 2 - 2 α . ( 1.3) 
Moreover, the (NLS c ) has the following conserved quantities:

M (u(t)) := |u(t, x)| 2 dx = M (u 0 ), (1.4)

E c (u(t)) := 1 2 |∇u(t, x)| 2 + c 2 |x| -2 |u(t, x)| 2 - 1 α + 2 |u(t, x)| α+2 dx = E c (u 0 ). (1.5)
It is convenient to introduce the following numbers:

α := 4 d , α := 4 d-2 if d ≥ 3, ∞ if d = 1, 2.
(1.6)

The main purpose of this paper is to study the global existence and blowup for the (NLS c ) in the mass-critical (i.e. α = α ), intercritical (mass-supercritical and energy-subcritical, i.e. α < α < α ) and energy-critical (i.e. α = α ) cases.

1.1. Mass-critical case. Let us firstly recall known results for the focusing mass-critical nonlinear Schrödinger equation, i.e. c = 0 and α = α in (NLS c ). One has the following (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Chapter 6] for more details): Theorem 1.1. Let u 0 ∈ H 1 and u be the corresponding solution to the mass-critical (NLS 0 ) (i.e. c = 0 and α = α in (NLS c )).

1. Global existence [31]:

If d ≥ 1 and u 0 L 2 < Q 0 L 2
, where Q 0 is the unique positive radial solution to the elliptic equation

∆Q 0 -Q 0 + Q α +1 0 = 0,
then the solution u exists globally in time and sup t∈R u(t) Ḣ1 < ∞.

2. Blowup [23,[START_REF] Ogawa | Blow-up of H 1 solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF]: The solution u blows up in finite time if one of the following conditions holds true:

• d ≥ 1, E 0 (u 0 ) < 0 and xu 0 ∈ L 2 ,
• d ≥ 2, E 0 (u 0 ) < 0 and u 0 is radial,

• d = 1 and E 0 (u 0 ) < 0.

Remark 1.2. [START_REF] Aubin | Prolèmes isopérimétriques et espaces de Sobolev[END_REF]. By the sharp Gagliardo-Nirenberg inequality, the condition u 0 L 2 < Q 0 L 2 implies E 0 (u 0 ) > 0. 2. The condition u 0 L 2 < Q 0 L 2 is sharp for the global existence in the sense that for any M 0 > Q 0 L 2 (even for M 0 = Q 0 L 2 , see Item 4 below), there exists u 0 ∈ H 1 satisfying u 0 L 2 = M 0 and the corresponding solution u blows up in finite time. 3. The assumption E 0 (u 0 ) < 0 is a sufficient condition for finite time blowup but it is not necessary. One can show that for any E 0 > 0, there exists u 0 ∈ H 1 satisfying E 0 (u 0 ) = E 0 and the corresponding solution blows up in finite time. 4. It is well-known (see e.g. [START_REF] Weinstein | On the structure and formation of singularities of solutions to nonlinear dispersive evolution equations[END_REF] or [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Remark 6.7.3]) that there exists a blowup solution to the mass-critical (NLS 0 ) with u 0 L 2 = Q 0 L 2 by using the speudo-conformal transformation. 5. Note also that Merle in [START_REF] Merle | Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power[END_REF] proved the following classification of miminal mass blowup solutions for the mass-critical (NLS 0 ): Let u 0 ∈ H 1 be such that u 0 L 2 = Q 0 L 2 . If the corresponding solution blows up in finite time 0 < T < +∞, then up to symmetries of the equation, u(t, x) = S(t -T, x), where

S(t, x) := 1 |t| d 2 e -i |x| 2 4t + i t Q x t . ( 1.7) 
Now let us consider c = 0 satisfy c > -λ(d). Let C GN (c) be the sharp constant to the Gagliardo-Nirenberg inequality associated to the mass-critical (NLS c ), namely,

C GN (c) := sup f α +2 L α +2 ÷ f α L 2 f 2 Ḣ1 c f ∈ H 1 c
\{0} . We will see in Theorem 4.1 that:

1. When -λ(d) < c < 0, the sharp constant C GN (c) is attained by a non-negative radial solution to the elliptic equation

-P c Q c -Q c + Q α +1 c = 0.
2. When c > 0, C GN (c) = C GN (0), where C GN (0) is the sharp constant to the standard Gagliardo-Nirenberg inequality

f α +2 L α +2 ≤ C GN (0) f α L 2 f 2 Ḣ1 .
However, C GN (c) is never attained. Moreover, if we restrict attention to the Gagliardo-Nirenberg inequality for radial functions, then the sharp constant for the radial Gagliardo-Nirenberg inequality associated to the mass-critical (NLS c ), namely,

C GN (c, rad) := sup f α +2 L α +2 ÷ f α L 2 f 2 Ḣ1 c f ∈ H 1 c \{0}
, f radial is attended by a radial solution Q c,rad to the elliptic equation

-P c Q c,rad -Q c,rad + Q α +1
c,rad = 0. Since C GN (c) is never attained, the constant C GN (c, rad) is strictly smaller than C GN (c). We will also see in Remark 4.2 that for c > -λ(d),

C GN (c) = α + 2 2 Q c α L 2 , ( 1.8) 
where c := min{c, 0}. Moreover, for c > 0,

C GN (c, rad) = α + 2 2 Q c,rad α L 2 , (1.9)
Our first result is the following global existence and blowup for the mass-critical (NLS c ).

Theorem 1.3. Let d ≥ 3 and c = 0 be such that c > -λ(d). Let u 0 ∈ H1 and u be the corresponding solution to the mass-critical (NLS c ) (i.e. α = α ).

1. If u 0 L 2 < Q c L 2
, then the solution u exists globally and sup t∈R u(t) Ḣ1 c < ∞. 2. If E c (u 0 ) < 0 and either xu 0 ∈ L 2 or u 0 is radial, then the solution u blows up in finite time.

Remark 1.4. 1. In [START_REF] Csobo | Minimal mass blow-up solutions for the L 2 critical NLS with inverse-square potential[END_REF], the authors proved the global existence for the mass-critical (NLS c ) with -λ(d) < c < 0 under the assumption u 0 L 2 < Q c L 2 . Here we extend their result to any c = 0 and c > -λ(d). 2. By the sharp Gagliardo-Nirenberg inequality associated to (NLS c ), we see that the con-

dition u 0 L 2 < Q c L 2 implies that E c (u 0 ) > 0.
Indeed, applying the sharp Gagliardo-Nirenberg inequality and (1.8),

E c (u 0 ) = 1 2 u 0 2 Ḣ1 c - 1 α + 2 u 0 α +2 L α +2 ≥ 1 2 u 0 2 Ḣ1 c - 1 α + 2 C GN (c) u 0 α L 2 u 0 2 Ḣ1 c ≥ 1 2 u 0 2 Ḣ1 c 1 - u 0 L 2 Q c L 2 α > 0. 3. When -λ(d) < c < 0, the condition u 0 L 2 < Q c L 2 = Q c L 2 is sharp for the global existence. In fact, for any M c > Q c L 2 (even for M c = Q c L 2 , see Item 5 below),
we can show (see Remark 6.1) that there exists u 0 ∈ H 1 satisfying u 0 L 2 = M c and the corresponding solution u to the mass-critical (NLS c ) blows up in finite time. When c > 0, the condition u 0 L 2 < Q 0 L 2 is not sharp. Indeed, if u 0 is radial and satisfies u 0 L 2 < Q c,rad L 2 , then the corresponding solution exists globally. Note that

Q c,rad L 2 > Q 0 L 2 . Moreover, for any M c > Q c,rad L 2 (even for M c = Q c,rad L 2
, see again Item 5 below), we can show (see again Remark 6.1) that there exists u 0 ∈ H 1 radial satisfying u 0 L 2 = M c and the corresponding solution blows up in finite time. 4. The condition E c (u 0 ) < 0 is a sufficient condition for finite time blowup, but it is not necessary. We will see in Remark 7.1 that for any E c > 0, there exists u 0 ∈ H 1 satisfying E c (u 0 ) = E c and the corresponding solution blows up in finite time. 5. Recently, Csobo-Genoud in [8, Lemma 1] made use of the speudo-conformal transformation to show that for -λ(d) < c < 0, there exists a blowup solution to the mass-critical

(NLS c ) with u 0 L 2 = Q c L 2
. By a similar argument, we can show (see Remark 6.2) that for c > 0, there exists a radial blowup solution to the mass-critical (NLS c ) with u 0 L 2 = Q c,rad L 2 . 6. In [START_REF] Csobo | Minimal mass blow-up solutions for the L 2 critical NLS with inverse-square potential[END_REF], the authors also proved the classification of miminal mass blowup solutions for the mass-critical (NLS c ) with -λ(d) < c < 0. Their result is as follows: Let

u 0 ∈ H 1 be such that u 0 L 2 = Q c L 2 .
If the corresponding solution blows up in finite time 0 < T < +∞, then up to symmetries of the equation 1 , u(t, x) = S(t -T, x), where S is as in (1.7). We expect that a similar result should hold for radial blowup solutions with c > 0.

1.2. Intercritical case. We next consider the intercritical (i.e. mass-supercritical and energysubcritical) case. Let us recall known results for the focusing intercritical nonlinear Schrödinger equation, i.e. c = 0 and α < α < α in (NLS c ). The global existence, scattering and blowup were studied in [START_REF] Holmer | A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation[END_REF]9,10]. In order to state these results, let us define the following quantities:

H(0) := E 0 (Q 0 )M (Q 0 ) σ , K(0) := Q 0 Ḣ1 Q 0 σ L 2 , where σ := 1 -γ c γ c = 4 -(d -2)α dα -4 . (1.10)
and Q 0 is the unique positive radial solution to the elliptic equation

∆Q 0 -Q 0 + Q α+1 0 = 0.
Theorem 1.5 ([12, 9, 10]). Let d ≥ 1, u 0 ∈ H 1 and u be the corresponding solution to the intercritical (NLS 0 ) (i.e. c = 0 and α < α < α in

(NLS c )). Suppose that E 0 (u 0 )M (u 0 ) σ < H(0). 1. If u 0 Ḣ1 u 0 σ L 2 < K(0)
, then the solution u exists globally in time and

u(t) Ḣ1 u(t) σ L 2 < K(0), for any t ∈ R. Moreover, the solution u scatters in H 1 . 2. If u 0 Ḣ1 u 0 σ L 2 > K(0) and either • xu 0 ∈ L 2 , • or d ≥ 3, u 0 is radial, • or d = 2, u 0 is radial and α < α < 4,
then the solution u blows up in finite time and u(t) Ḣ1 u(t) σ L 2 > K(0), for any t in the existence time. Now let c = 0 be such that c > -λ(d), and let C GN (c) be the sharp constant in the Gagliardo-Nirenberg inequality associated to the intercritical (NLS c ), namely,

C GN (c) := sup f α+2 L α+2 ÷ f 4-(d-2)α 2 f dα 2 Ḣ1 c f ∈ H 1 c \{0} . We will see in Theorem 4.1 that: 1. When -λ(d) < c < 0, the sharp constant C GN (c) is attained by a solution Q c to the elliptic equation -P c Q c -Q c + Q α+1 c = 0. 2. When c > 0, C GN (c) = C GN (0)
, where C GN (0) is again the sharp constant to the standard Gagliardo-Nirenberg inequality

f α+2 L α+2 ≤ C GN (0) f 4-(d-2)α 2 L 2 f dα 2
Ḣ1 . Moreover, C GN (c) is never attained. However, if we restrict attention to the Gagliardo-Nirenberg inequality for radial functions, then the sharp constant for the radial Gagliardo-Nirenberg inequality associated to the intercritical (NLS c ), namely,

C GN (c, rad) := sup f α+2 L α+2 ÷ f 4-(d-2)α 2 f dα 2 Ḣ1 c f ∈ H 1 c \{0}, f radial is attended by a radial solution Q c,rad to the elliptic equation -P c Q c,rad -Q c,rad + Q α+1 c,rad = 0. Since C GN (c) is never attained, the constant C GN (c, rad) is strictly smaller than C GN (c).
We define the following quantities:

H(c) := E c (Q c )M (Q c ) σ , K(c) := Q c Ḣ1 c Q c σ L 2 , ( 1.11) 
where c = min{c, 0}. Our next result is the following global existence and blowup for the intercritical (NLS c ).

Theorem 1.6. Let d ≥ 3, α < α < α and c = 0 be such that c > -λ(d). Let u 0 ∈ H 1 and u be the corresponding solution of the intercritical (NLS c ) (i.e. α < α < α ). Suppose that

E c (u 0 )M (u 0 ) σ < H(c).
(1.12)

1. Global existence: If

u 0 Ḣ1 c u 0 σ L 2 < K(c), (1.13)
then the solution u exists globally in time and

u(t) Ḣ1 c u(t) σ L 2 < K(c). (1.14)
for any t ∈ R.

Blowup: If

u 0 Ḣ1 c u 0 σ L 2 > K(c), (1.15)
and either xu 0 ∈ L 2 or u 0 is radial, then the solution u blows up in finite time and

u(t) Ḣ1 c u(t) σ L 2 > K(c), (1.16) 
for any t in the existence time.

Remark 1.7. 1. In [17], the authors considered the cubic (NLS c ) in 3D (i.e. α = 2 and c > - 1 4 ) and proved that the global existence as well as scattering hold true under the assumptions (1.12), (1.13) and the blowup holds true under the assumptions (1.12), (1.15). Recently, Lu-Miao-Murphy in [START_REF] Lu | Scattering in H 1 for the intercritical NLS with an inverse-square potential[END_REF] proved a similar result as in [17] for the intercritical (NLS c ) with

c > -1 4 if d = 3, 4 3 < α ≤ 2 c > -λ(d) + d-2 2 -1 α 2 if 3 ≤ d ≤ 6, max 2 d-2 , 4 d < α < 4 d-2 .
Here we extend the global existence and blowup results of [17,[START_REF] Lu | Scattering in H 1 for the intercritical NLS with an inverse-square potential[END_REF] to any dimensions d ≥ 3 and the full range c > -λ(d). We expect that the global solution in Theorem 1.6 scatters in H 1 under a certain restriction on c. Note that the scattering of global solutions depends heavily on Strichartz estimates which were proved in [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF]2]. In order to successfully apply Strichartz estimates, we need the equivalence of Sobolev norms between the ones associated to P c and those associated to -∆ (see Subsection 2.2 for more details). This will lead to a restriction on the validity of c. 2. Theorem 1.6 says that the condition (1.13) is sharp for the global existence except for the threshold level

u 0 Ḣ1 c u 0 σ L 2 = K(c).
It is an interesting open problem to show that there exists blowup solutions to the intercritical (NLS 0 ) and (NLS c ) equations at this threshold. 3. It is worth mentioning that if the energy of the initial data is negative, then (1.12) is always satisfied. Indeed, we will see in (4.9) that

E(Q c ) = dα -4 2(4 -(d -2)α) Q c 2 L 2 = dα -4 2dα Q c 2 Ḣ1 c , hence H(c) is always non-negative.
In the case c > 0, we have the following improved result for radial solutions.

Theorem 1.8. Let d ≥ 3, α < α < α and c > 0. Let u 0 ∈ H 1 be radial and u the corresponding solution of the intercritical (NLS c ) (i.e. α < α < α ). Suppose that

E c (u 0 )M (u 0 ) σ < H(c, rad) =: E c (Q c,rad )M (Q c,rad ) σ .
(1.17)

1. Global existence: If

u 0 Ḣ1 c u 0 σ L 2 < K(c, rad) =: Q c,rad Ḣ1 c Q c,rad σ L 2 , (1.18)
then the solution u exists globally in time and

u(t) Ḣ1 c u(t) σ L 2 < K(c, rad). (1.19)
for any t ∈ R.

Blowup: If

u 0 Ḣ1 c u 0 σ L 2 > K(c, rad), (1.20)
then the solution u blows up in finite time and

u(t) Ḣ1 c u(t) σ L 2 > K(c, rad), (1.21) 
for any t in the existence time.

Since C GN (c, rad) < C GN (c), we will see in Remark 4.2 that H(c) < H(c, rad) and K(c) < K(c, rad). This shows that the class of radial solutions enjoys strictly larger thresholds for the global existence and the blowup.

1.3. Energy-critical case. We finally consider the energy-critical case. As above, we recall known results for the focusing energy-critical nonlinear Schrödinger equation, i.e. c = 0 and α = α in (NLS c ). The global existence, scattering and blowup for the energy-critical (NLS 0 ) were first studied in [START_REF] Kenig | Global well-posedness, scattering, and blowup for the energy-critical focusing nonlinear Schrödinger equation in the radial case[END_REF] where the authors proved the global existence, scattering and blowup for the equation under the radial assumption of initial data in dimensions d = 3, 4, 5. This was extended to dimensions d ≥ 3 in [15]. Later, Killip-Visan in [START_REF] Killip | The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher[END_REF] proved the global existence and scattering for the equation with general (non-radial) data in dimensions five and higher. They also proved the existence of blowup solutions in dimensions d ≥ 3. The global existence and scattering for the energy-critical (NLS 0 ) for general data still remain open for d = 3, 4. To state their results, we recall the following facts. Let

W 0 (x) := 1 + |x| 2 d(d -2) -d-2 2 . (1.22)
It is well-known that W solves the elliptic equation

∆W 0 + |W 0 | α W 0 = 0.
In particular, W 0 is a stationary solution to the energy-critical (NLS 0 ). Note that W 0 ∈ Ḣ1 but it need not belong to L 2 . Theorem 1.9 ([14]). Let d = 3, 4, 5. Let u 0 ∈ Ḣ1 be radial and u be the corresponding solution to the energy-critical

(NLS 0 ) (i.e. c = 0 and α = α in (NLS c )). Suppose that E 0 (u 0 ) < E 0 (W 0 ). 1. If u 0 Ḣ1 < W 0 Ḣ1
, then the solution u exists globally and scatters in Ḣ1 .

2. If u 0 Ḣ1 > W 0 Ḣ1 and either xu 0 ∈ L 2 or u 0 ∈ H 1 is radial, then the solution u blows up in finite time.

Theorem 1.10 ( [START_REF] Killip | The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher[END_REF]). Let u 0 ∈ Ḣ1 and u be the corresponding solution to the energy-critical (NLS 0 ). Suppose that E 0 (u 0 ) < E 0 (W 0 ).

1. If d ≥ 5 and u 0 Ḣ1 < W 0 Ḣ1 , then the solution u exists globally and scatters in Ḣ1 .

2. If d ≥ 3, u 0 Ḣ1 > W 0 Ḣ1 and either xu 0 ∈ L 2 or u 0 ∈ H 1 is radial, then the solution u blows up in finite time.

Remark 1.11. Note that the conditions E 0 (u 0 ) < E 0 (W 0 ) and u 0 Ḣ1 = W 0 Ḣ1 are incompatible.

Now let c = 0 satisfy c > -λ(d), and let C SE (c) be the sharp constant in the Sobolev embedding inequality associated to the energy-critical (NLS c ), namely,

C SE (c) := sup f L α +2 ÷ f Ḣ1 c | f ∈ Ḣ1 c \{0} . We will see in Theorem 4.3 that: 1. When -λ(d) < c < 0, the sharp constant C SE (c
) is attained by functions f (x) of the form λW c (µx) for some λ ∈ C and µ > 0, where

W c (x) := [d(d -2)β 2 ] d-2 4 |x| β-1 1 + |x| 2β d-2 2 , (1.23) with β = 1 -2ρ d-2 (see (2.3) for the definition of ρ). 2. When c > 0, C SE (c) = C SE (0), where C SE (0) is the sharp constant to the standard Sobolev embedding inequality f L α +2 ≤ C SE (0) f Ḣ1 . Moreover, C SE (c) is never attained. Note that the constant C SE (0) is attained by functions f (x) of a form λW 0 (µx + y) for some λ ∈ C, y ∈ R d and µ > 0.
However, if we restrict attention to radial functions, then the sharp constant for the radial Sobolev embedding associated to the energy-critical (NLS c ), namely,

C SE (c, rad) := sup f L α +2 ÷ f Ḣ1 c | f ∈ Ḣ1 c \{0}, f radial
is attained by functions f (x) of the form λW c (µx) for some λ ∈ C and µ > 0. Our last result concerns with the blowup for the energy-critical (NLS c ).

Theorem 1.12. Let d ≥ 3 and c = 0 be such that c > -d 2 +4d (d+2) 2 λ(d). Let u 0 ∈ Ḣ1 and u be the corresponding solution to the energy-critical

(NLS c ) (i.e. α = α ). Suppose that E c (u 0 ) < E c (W c ) and u 0 Ḣ1 c > W c Ḣ1 c
, where c = min{c, 0}. If xu 0 ∈ L 2 or u 0 is radial, then the solution u blows up in finite time.

Remark 1.13.

1. As in Remark 1.11, the conditions

E c (u 0 ) < E c (W c ) and u 0 Ḣ1 c = W c Ḣ1 c are incompatible.
2. Theorem 1.12 was stated in [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF] without proof. In this paper, we give a proof for this result.

The restriction of c comes from the local theory via Strichartz estimates (see Proposition 3.3). 3. We expect that the global existence as well as scattering for the energy-critical (NLS c ) hold true for

u 0 ∈ Ḣ1 satisfying E c (u 0 ) < E c (W c ) and u 0 Ḣ1 c < W c Ḣ1 c . It is a delicate open problem.
In the case c > 0, we have the following blowup result for radial solutions.

Theorem 1.14. Let d ≥ 3 and c > 0. Let u 0 ∈ Ḣ1 radial and u be the corresponding solution to the energy-critical

(NLS c ) (i.e. α = α ). Suppose that E c (u 0 ) < E c (W c ) and u 0 Ḣ1 c > W c Ḣ1 c .
Then the solution u blows up in finite time.

Since C GN (c) > C GN (c, rad), we have from (4.19) and (4.22) that E 0 (W 0 ) < E c (W c ). This shows that the blowup threshold for radial solutions is strictly larger than the one for non-radial solutions.

The paper is organized as follows. In Section 2, we recall some preliminary results related to the (NLS c ). In Section 3, we recall the local well-posedness for the (NLS c ) in the energy-subcritical and energy-critical cases. In Section 4, we recall the sharp Gagliardo-Nirenberg inequality and the sharp Sobolev embedding inequality for the (NLS c ) by using the variational analysis. We next derive the standard virial identity as well as the localized virial estimate in Section 5. Section 6 is devoted to the proofs of global existence results. Finally, we give the proofs of blowup results in Section 7.

Preliminaries

In the sequel, the notation A B denotes an estimate of the form A ≤ CB for some constant C > 0. The notation A ∼ B means A B and B A. The various constant C may change from line to line.

2.1. Strichartz estimates. Let J ⊂ R and p, q ∈ [1, ∞]. We define the mixed norm u L p (J,L q ) := J R d |u(t, x)| q dx 1 q 1 p
with a usual modification when either p or q are infinity.

Definition 2.1. A pair (p, q) is said to be Schrödinger admissible, for short (p, q) ∈ S, if

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q = d 2 .
We recall Strichartz estimates for the inhomogeneous Schrödinger equation with inverse-square potential.

Proposition 2.2 (Strichartz estimates [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF]2]). Let d ≥ 3 and c > -λ(d). Let u be a solution to the inhomogeneous Schrödinger equation with inverse-square potential, namely

u(t) = e itPc u 0 + t 0 e i(t-s)Pc F (s)ds,
for some data u 0 , F . Then, for any (p, q), (a, b) ∈ S,

u L p (R,L q ) u 0 L 2 + F L a (R,L b ) .
(2.1)

Moreover, for any γ ∈ R, (p, q), (a, b) ∈ S, u L p (R, Ẇ γ,q c ) u 0 Ḣγ c + F L a t (R, Ẇ γ,b c
) .

(2.2)

Here (a, a ) and (b, b ) are conjugate pairs.

Note that Strichartz estimates for the homogeneous nonlinear Schrödinger equation with inversesquare potential were first proved by Burq-Planchon-Stalker-Zadeh in [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF] except the endpoint (p, q) = (2, 2d d-2 ). Recently, Bouclet-Mizutani in [2] proved Strichartz estimates with the full set of Schrödinger admissible pairs for the homogeneous and inhomogeneous nonlinear Schrödinger equation with critical potentials including the inverse-square potential. We refer the reader to [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF]2] for more details.

Equivalence of Sobolev norms.

In this subsection, we recall the equivalence between Sobolev norms defined by P c and the ones defined by the usual Laplacian -∆. In [4, Proposition 1], the authors proved the following:

u Ḣγ c ∼ u Ḣγ , ∀γ ∈ [-1, 1].
Later, Zhang-Zheng in [33] extended this result to homogeneous Sobolev spaces Ẇ γ,q c and Ẇ γ,q for 0 ≤ γ ≤ 1 and a certain range of q. Recently, Killip-Miao-Visan-Zhang-Zheng extended these results to a more general setting. To state their result, let us introduce

ρ := d -2 2 - d -2 2 2 + c. (2.3)
Proposition 2.3 (Equivalence of Sobolev norms [START_REF] Killip | Sobolev spaces adapted to the Schrödinger operator with inverse-square potential[END_REF]).

Let d ≥ 3, c ≥ -λ(d), 0 < γ < 2 and ρ be as in (2.3). 1. If 1 < q < ∞ satisfies γ+ρ d < 1 q < min 1, d-ρ d , then f Ẇ γ,q f Ẇ γ,q c , for all f ∈ C ∞ 0 (R d \{0}). 2. If 1 < q < ∞ satisfies max γ d , ρ d < 1 q < min 1, d-ρ d , then f Ẇ γ,q c f Ẇ γ,q , for all f ∈ C ∞ 0 (R d \{0}).
Remark 2.4.

1. When c > 0, we have ρ < 0. Therefore, u Ẇ γ,q is equivalent to u Ẇ γ,q c provided that 0 < γ < 2 and

γ d < 1 q < 1 or 1 < q < d γ . (2.4) 2. When -λ(d) ≤ c < 0, we have 0 < ρ < d-2 2 . Thus u Ẇ γ,q ∼ u Ẇ γ,q c provided that 0 < γ < 2 and γ + ρ d < 1 q < d -ρ d or d d -ρ < q < d γ + ρ . (2.5)
We next recall the fractional derivative estimates due to Christ-Weinstein [7]. The equivalence of Sobolev spaces given in Proposition 2.3 allows us to use the same estimates for powers of P c with a certain set of exponents.

Lemma 2.5 (Fractional derivative estimates).

1.

Let γ ≥ 0, 1 < r < ∞ and 1 < p 1 , q 1 , p 2 , q 2 ≤ ∞ satisfying 1 r = 1 p1 + 1 q1 = 1 p2 + 1 q2 . Then |∇| γ (f g) L r f L p 1 |∇| γ g L q 1 + |∇| γ f L p 2 g L q 2 . 2. Let G ∈ C 1 (C), γ ∈ (0, 1], 1 < r, q < ∞ and 1 < p ≤ ∞ satisfying 1 r = 1 p + 1 q . Then |∇| γ G(f ) L r G (f ) L p |∇| γ f L q .
2.3. Convergences of operators. In this subsection, we recall the convergence of operators of [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF] arising from the fact that P c does not commute with translations.

Definition 2.6. Suppose (x n ) n∈N ⊂ R d . We define

P n c := -∆ + c |x + x n | 2 , P ∞ c := -∆ + c |x+x∞| 2 if x n → x ∞ ∈ R d , -∆ if |x n | → ∞. (2.6)
By definition, we have

P c [f (x -x n )] = [P n c f ](x -x n ).
The operator P ∞ c appears as a limit of the operators P n c in the following senses: Lemma 2.7 (Convergence of operators [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF]). Let d ≥ 3 and c = 0 be such that c > -λ(d). Suppose

(t n ) n∈N ⊂ R satisfies t n → t ∞ ∈ R, and (x n ) n∈N ⊂ R d satisfies x n → x ∞ ∈ R d or |x n | → ∞.
Then,

lim n→∞ P n c f -P ∞ c f Ḣ-1 = 0, for all f ∈ Ḣ1 , (2.7) lim n→∞ e -itnP n c f -e -it∞P ∞ c f Ḣ-1 = 0, for all f ∈ Ḣ-1 , (2.8) lim n→∞ P n c f -P ∞ c f L 2 = 0, for all f ∈ Ḣ1 .
(2.9)

Furthermore, for any (p, q) ∈ S with p = 2,

lim n→∞ e -itP n c f -e -itP ∞ c f L p (R,L q ) = 0, for all f ∈ L 2 .
(2.10)

We refer the reader to [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF]Lemma 3.3] for the proof of Lemma 2.7.

Local well-posedness

In this section, we study the local well-posedness for the (NLS c ) in the energy-subcritical and energy-critical cases. To our knowledge, there are two possible ways to show the local wellposedness in H 1 for the classical nonlinear Schrödinger equation (NLS 0 ): the Kato's method and the energy method. The Kato's method is based on the contraction mapping principle using Strichartz estimates. This method is very effective to study the (NLS 0 ) in general Sobolev spaces. The energy method, on the other hand, does not use Strichartz estimates and only allows to prove the existence of solutions in the energy space. But, on one hand, it provides a useful tool to study the (NLS 0 ) in a general domain Ω where Strichartz estimates are not available in general. We refer the reader to [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] for more details. In the presence of the singular potential c|x| -2 , even though Strichartz estimates are available (see [START_REF] Burq | Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential[END_REF]2]), the Kato's method does not allow to study the (NLS c ) in the energy space with the full range c > -λ(d). The reason for this is that the homogeneous Sobolev spaces Ẇ γ,q c and the usual ones Ẇ γ,q are equivalent only in a certain range of γ and q (see Subsection 2.2). Moreover, Okazawa-Suzuki-Yokota in [26] pointed out that the energy method developed by Cazenave is not enough to study the (NLS c ) in the energy space. They thus formulated an improved energy method to treat the equation. More precisely, they proved the following:

Theorem 3.1 ([26]). Let d ≥ 3, c > -λ(d). Then the (NLS c ) is well posed in H 1 : • locally if 0 ≤ α < α , • globally if 0 ≤ α < α .
Here α , α are given in (1.6).

We refer the reader to [26, Theorem 5.1] for the proof of this result.

Remark 3.2.

1. The energy method developed by Okazawa-Suzuki-Yokota is only available for the energy-subcritical case (i.e. α < α ) and not for the energy-critical case α = α . The last case should rely on Kato's method (see Proposition 3.3 below). 2. Theorem 3.1 tells us that H 1 blowup solutions may occur only on α ≤ α ≤ α . 3. The same well-posedness for the (NLS c ) as in Theorem 3.1 holds true when one replaces R d by a bounded domain Ω (see again [26]). In this consideration, Suzuki in [29] proved a similar result for the (NLS c ) on Ω with c = λ(d).

We now consider the energy-critical case α = α .

Proposition 3.3. Let d ≥ 3, c > -d 2 +4d
(d+2) 2 λ(d) and α = α . Then for every u 0 ∈ H 1 , there exist T * , T * ∈ (0, ∞] and a unique strong H 1 solution to the (NLS c ) defined on the maximal interval (-T * , T * ). Moreover, if u 0 Ḣ1 < for some > 0 small enough, then T * = T * = ∞ and the solution is scattering in H 1 , i.e. there exist

u ± 0 ∈ H 1 such that lim t→±∞ u(t) -e itPc u ± 0 H 1 = 0.
Before giving the proof of this result, let us introduce some notations. In this section, we denote

p = 2(d + 2) d -2 , q = 2d(d + 2) d 2 + 4 .
It is easy to check that (p, q) is a Schrödinger admissible pair and

1 p = 1 q - 1 d .
The last equality allows us to use the Sobolev embedding Ẇ 1,q ⊂ L p . Moreover, in the view of (2.4) and (2.5), it is easy to check that Ẇ 1,q c is equivalent to W 1,q provided that c > -d 2 +4d (d+2) 2 λ(d). Proof of Proposition 3.3. We only consider the positive time, the negative time is similar. Let us define

X := u ∈ C(I, H 1 ) ∩ L p (I, W 1,q ) u L p (I, Ẇ 1,q ) ≤ M equipped with the distance d(u, v) := u -v L p (I,L q ) ,
where I = [0, T ] with T, M > 0 to be chosen later. By the Duhamel formula, it suffices to prove that the functional

Φ(u)(t) = e -itPc u 0 + i t 0 e -i(t-s)Pc |u(s)| α u(s)ds =: u hom (t) + u inh (t)
is a contraction on (X, d). Using Strichartz estimates and the fact u Ẇ 1,q c ∼ u Ẇ 1,q , we have

u hom L p (I, Ẇ 1,q ) ∼ u hom L p (I, Ẇ 1,q c ) u 0 Ḣ1 c ∼ u 0 Ḣ1
. This shows that u hom L p (I, Ẇ 1,q ) ≤ for some > 0 small enough provided that T is small or u 0 Ḣ1 is small. By Strichartz estimates, the equivalence u Ẇ 1,q c ∼ u Ẇ 1,q , the fractional derivative estimates and the Sobolev embedding Ẇ 1,q ⊂ L p ,

u inh L p (I, Ẇ 1,q c ) ∼ u inh L p (I, Ẇ 1,q c ) |u| α u L 2 (I, Ẇ 1, 2d d+2 
c ) ∼ |u| α u L 2 (I, Ẇ 1, 2d d+2 ) u α L p (I,L p ) u L p (I, Ẇ 1,q ) u α +1 L p (I, Ẇ 1,q ) .
Note that it is easy to check that Ẇ 1,

2d d+2 c ∼ Ẇ 1, 2d d+2 . Similarly, |u| α u -|v| α v L 2 (I,L 2d d+2 ) u α L p (I,L p ) + v α L p (I,L p ) u -v L p (I,L q ) u α L p (I, Ẇ 1,q ) + v α L p (I, Ẇ 1,q ) u -v L p (I,L q ) .
This implies that for any u, v ∈ X, there exists C > 0 independent of T and

u 0 ∈ H 1 such that Φ(u) L p (I, Ẇ 1,q c ) ≤ + CM α +1 , d(Φ(u), Φ(v)) ≤ CM α d(u, v).
If we choose and M small so that

CM α ≤ 1 2 , + M 2 ≤ M,
then Φ is a contraction on (X, d). This shows the local existence. It remains to show the scattering for small data. As mentioned above, when u 0 Ḣ1 is small enough, we can take T * = ∞. By Strichartz estimates, we have for 0

< t 1 < t 2 , e it2Pc u(t 2 ) -e it1Pc u(t 1 ) Ḣ1 ∼ e it2Pc u(t 2 ) -e it1Pc u(t 1 ) Ḣ1 c = -i t2 t1 e isPc |u(s)| α u(s)ds Ḣ1 c |u| α u L 2 ([t1,t2], Ẇ 1, 2d d+2 
c ) ∼ |u| α u L 2 ([t1,t2], Ẇ 1, 2d d+2 ) u α +1 L p ([t1,t2], Ẇ 1,q ) . Similarly, e it2Pc u(t 2 ) -e it1Pc u(t 1 ) L 2 |u| α u L 2 ([t1,t2],L 2d d+2 ) u α L p ([t1,t2], Ẇ 1,q ) u L p ([t1,t2],L q ) .
This shows that e it2Pc u(t 2 ) -e it1Pc u(t 1 ) H 1 → 0, as t 1 , t 2 → +∞. Thus the limit u + 0 : lim t→+∞ e itPc u(t) exists in H 1 . Moreover,

u(t) -e -itPc u + 0 = -i +∞ t e -i(t-s)Pc |u(s)| α u(s)ds.
Estimating as above, we get lim t→+∞ u(t) -e -itPc u + 0 H 1 = 0. The proof is complete.

Variational analysis

In this section, we recall the sharp Gagliardo-Nirenberg and the sharp Sobolev embedding inequalities related to the (NLS c ).

Let us start with the following sharp Gagliardo-Nirenberg inequality:

f α+2 L α+2 ≤ C GN (c) f 4-(d-2)α 2 L 2 f dα 2 Ḣ1 c . (4.1)
The sharp constant C GN (c) is defined by

C GN (c) := sup J c (f ) : f ∈ H 1 c \{0} ,
where J c (f ) is the Weinstein functional

J c (f ) := f α+2 L α+2 ÷ f 4-(d-2)α 2 L 2 f dα 2 Ḣ1 c .
We also consider the sharp radial Gagliardo-Nirenberg inequality:

f α+2 L α+2 ≤ C GN (c, rad) f 4-(d-2)α 2 L 2 f dα 2 Ḣ1 c , f radial, (4.2) 
where the sharp constant C GN (c, rad) is defined by Weinstein in [31] proved that the sharp constant C GN (0) is attained by the function Q 0 , which is the unique positive radial solution of

C GN (c, rad) := sup J c (f ) : f ∈ H 1 c \{0}, f radial . When c = 0,
∆Q 0 -Q 0 + Q α+1 0 = 0. (4.3)
Recently, Killip-Murphy-Visan-Zheng extended Weinstein's result to c = 0. More precisely, we have the following: 

1. if -λ(d) < c < 0, then the equality in (4.1) is attained by a function Q c ∈ H 1 c
, which is a non-zero, non-negative, radial solution to the elliptic equation

-P c Q c -Q c + Q α+1 c = 0. ( 4.4) 
2. if c > 0, then C GN (c) = C GN (0) and the equality in (4.1) is never attained. However, the constant C GN (c, rad) is attained by a function Q c,rad which is a solution to the elliptic equation

-P c Q c,rad -Q c,rad + Q α+1 c,rad = 0. (4.5)
Proof. In [17, Theorem 3.1], the authors gave the proof for d = 3 and α = 2. For reader's convenience, we provide some details for the general case. Since f Ḣ1 c ∼ f Ḣ1 , we see that J c (f ) ∼ J 0 (f ). Thus the standard Gagliardo-Nirenberg inequality (i.e. (4.1) with c = 0) implies 0 < C GN (c) < ∞.

Let us consider the case -λ(d) < c < 0. Let (f n ) n ⊂ H 1 c \{0} be a maximizing sequence, i.e. J c (f n )

C GN (c). Let f * n be the Schwarz symmetrization of f n (see e.g. [START_REF] Lieb | Analysis[END_REF]). Using the fact that the Schwarz symmetrization preserves L q norm and does not increase Ḣ1 norm together with the Riesz rearrangement inequality

c|x| -2 |f * (x)| 2 ≤ c|x| -2 |f (x)| 2 dx, ( 4.6) 
for c < 0, we see that

J c (f n ) ≤ J c (f * n ).
Thus we may assume that each f n is radial. Note that (4.6) plays an important role in order to restore the lack of compactness due to translations. We next observe that the functional J c is invariant under the scaling

f λ,µ (x) := λf (µx), λ, µ > 0.
Indeed, a simple computation shows

f λ,µ 2 Ḣ1 c = λ 2 µ 2-d f 2 Ḣ1 c , f λ,µ 2 L 2 = λ 2 µ -d f 2 L 2 , f λ,µ α+2 L α+2 = λ α+2 µ -d f α+2 L α+2 .
We thus get J c (f λ,µ ) = J c (f ). We now rescale the sequence (f n ) n by setting g n (x) := λ n f n (µ n x), where

λ n = f n d/2-1 L 2 f n d/2 Ḣ1 c , µ n = f n L 2 f n Ḣ1 c .
It is easy to see that g n L 2 = g n Ḣ1 c = 1. We thus get a maximizing sequence (g n ) n of J c , which is bounded in H 1 c . We have from the compactness lemma (see e.g. [31]) that H 1 rad (R d ) → L α+2 (R d ) compactly for any 0 < α < 4 d-2 . Therefore, there exists g ∈ H 1 c such that, up to a subsequence, g n → g strongly in L α+2 as well as weakly in H 1 c . By the weak convergence, g L 2 ≤ 1 and

g Ḣ1 c ≤ 1. Hence, C GN (c) = lim n→∞ J c (g n ) = α+2 L α+2 ≤ J c (g) ≤ C GN (c).
Thus, we have J c (g) = g α+2 L α+2 = C GN (c) and g L 2 = g Ḣ1 c = 1. Therefore, g is a maximizer for the Weinstein functional J c , and so g must satisfy the Euler-Lagrange equation

d d =0 J c (g + h) = 0, ∀h ∈ C ∞ 0 (R d \{0}).
Taking into consideration that g

L 2 = g Ḣ1 c = 1 and C GN (c) = g α+2 L α+2 , we get - dα 2 C GN (c)P c g - 4 -(d -2)α 2 C GN (c)g + (α + 2)g α+1 = 0. If we define Q c by g(x) = λQ c (µx) with λ = α 4 -(d -2)α 2(α + 2) C GN (c), µ = 4 -(d -2)α dα ,
then Q c solves (4.4). This proves Item 1.

In the case c > 0, we consider a sequence (x n ) n ⊂ R d with |x n | → ∞. Let Q 0 be the unique positive radial solution to (4.3). Using the definition (2.6) and (2.9), we have

Q 0 (• -x n ) 2 Ḣ1 c = P c [Q 0 (• -x n )] 2 L 2 = [ P n c Q 0 ](• -x n ) 2 L 2 → P ∞ c Q 0 2 L 2 = Q 0 2 Ḣ1 .
We thus get

J c (Q 0 (• -x n )) → J 0 (Q 0 ) = C GN (0), hence C GN (0) ≤ C GN (c). Since c > 0, it is obvious that f Ḣ1 x < f Ḣ1 c for any f ∈ H 1 \{0}
. The sharp Gagliardo-Nirenberg inequality for c = 0 then implies

f α+2 L α+2 ≤ C GN (0) f 4-(d-2)α 2 L 2 f dα 2 Ḣ1 < C GN (0) f 4-(d-2)α 2 L 2 f dα 2 Ḣ1 c , whence J c (f ) < C GN (0) for any f ∈ H 1 \{0}. Since H 1 is equivalent to H 1 c , we obtain C GN (c) < C GN (0). Therefore, C GN (c) = C GN (0)
. The last estimate also shows that the equality in (4.1) is never attained. Note also that the estimate (4.6) fails to hold true when c > 0. If we only consider radial functions, then the estimate (4.6) is obviously holds true. Thus the result for radial functions follows exactly as the case -λ(d) < c < 0. The proof is complete.

Remark 4.2.

1. When -λ(d) < c < 0, the proof of Theorem 4.1 shows that there exist solutions to the elliptic equation (4.4), which are non-zero, non-negative and radially symmetric. However, unlike the standard case c = 0, we do not know that the uniqueness (up to symmetries) of these solutions. Moreover, any positive maximiser of J c is radial. Furthermore, if Q c is a maximiser of J c , then by multiplying (4.4) with Q c and x • ∇Q c and integrating over R d , we obtain the following Pohozaev identities:

Q c 2 Ḣ1 c + Q c 2 L 2 -Q c α+2 L α+2 = d -2 2 Q c 2 Ḣ1 c + d 2 Q c 2 L 2 - d α + 2 Q c α+2 L α+2 = 0.
In particular,

Q c 2 L 2 = 4 -(d -2)α dα Q c 2 Ḣ1 c = 4 -(d -2)α 2(α + 2) Q c α+2 L α+2 , (4.7)
and

C GN (c) = 2(α + 2) 4 -(d -2)α 4 -(d -2)α dα dα 4 1 Q c α L 2 (4.8) = 2(α + 2) dα dα 4 -(d -2)α 4-(d-2)α 4 1 Q c α Ḣ1 c = [2(α + 2)] α+2 2 [4 -(d -2)α] 4-(d-2)α 4 [dα] dα 4 1 Q c α(α+2) 2 L α+2
.

In particular, all maximizers of J c have the same L 2 , Ḣ1 c , L α+2 -norms. We also have

E c (Q c ) = dα -4 2[4 -(d -2)α] Q c 2 L 2 = dα -4 2dα Q c 2 Ḣ1 c . (4.9)
In particular, in the mass-critical case, i.e. α = 4 d , we have E c (Q c ) = 0. 2. Since the identities (4.7) -(4.9) hold true for c = 0, we have from Theorem 4.1 that for any c > -λ(d),

C GN (c) = 2(α + 2) 4 -(d -2)α 4 -(d -2)α dα dα 4 1 Q c α L 2 (4.10) = 2(α + 2) dα dα 4 -(d -2)α 4-(d-2)α 4 1 Q c α Ḣ1 c = [2(α + 2)] α+2 2 [4 -(d -2)α] 4-(d-2)α 4 [dα] dα 4 1 Q c α(α+2) 2 L α+2
, where c = min{c, 0}. 3. Let H(c) and K(c) be as in (1.11). Using (4.7), (4.8) and (4.9), it is easy to see that

H(c) = dα -4 2dα dα 2(α + 2) C GN (c) -4 dα-4 , (4.11)
and

K(c) = dα 2(α + 2) C GN (c) -2 dα-4 . (4.12)
In particular,

H(c) = dα -4 2dα K(c) 2 . (4.13)
4. When c > 0, we see that the same identities as in (4.7), (4.8), (4.9), (4.10), (4.9), (4.11), (4.12) and (4.13) hold true with Q c,rad , C GN (c, rad), H(c, rad) and K(c, rad) in place of Q c , C GN (c), H(c) and K(c) respectively.

Let us now consider the sharp Sobolev embedding inequality:

f L α +2 ≤ C SE (c) f Ḣ1 c , (4.14)
where the sharp constant C SE (c) is defined by

C SE (c) := sup f L α +2 ÷ f Ḣ1 c : f ∈ Ḣ1 c \{0} .
We also consider the sharp radial Sobolev embedding inequality

f L α +2 ≤ C SE (c, rad) f Ḣ1 c , f radial (4.15)
where the sharp constant C SE (c, rad) is defined by

C SE (c, rad) := sup f L α +2 ÷ f Ḣ1 c : f ∈ Ḣ1 c \{0}, f radial .
When c = 0, it was proved by Aubin [START_REF] Aubin | Prolèmes isopérimétriques et espaces de Sobolev[END_REF] and Talenti [START_REF] Talenti | Best constant in Sobolev inequality[END_REF] that the constant C SE (0) is attained by functions f (x) of a form λW 0 (µx + y) for some λ ∈ C, µ > 0 and y ∈ R d , where W 0 is given in (1.22).

When c = 0, Killip-Miao-Visan-Zhang-Zheng in [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF] proved the following result. We refer the reader to [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF]Proposition 7.2] for the proof of this result. Note that the nonexistence of optimizers to the Sobolev embedding inequality for c > 0 is a consequence of the failure of compactness due to translation. If we restrict our consideration to radial functions, the compactness is restored. To end this section, we recall some properties related to W c (see [START_REF] Killip | The energy-critical NLS with inverse-square potential[END_REF]Section 7] for more details). It is not difficult to verify that W c solves the elliptic equation

P c W c = |W c | α W c .

This implies in particular

W c 2 Ḣ1 c = W c α +2 L α +2 . (4.16)
Combining with Theorem 4.3, we have for -λ(d) < c < 0,

W c 2 Ḣ1 c = W c α +2 L α +2 = C SE (c) -d , (4.17) E c (W c ) = 1 2 W c 2 Ḣ1 c - 1 α + 2 W c α +2 L α +2 = d -1 C SE (c) -d . (4.18)
Note that (4.17) and (4.18) hold true for c = 0. In particular, we have for any c = 0 satisfying c > -λ(d),

C SE (c) = W c -2 d Ḣ1 c = W c -α +2 d L α +2 = [dE c (W c )] -1 d . (4.19)
Similarly, we have for c > 0 that

W c 2 Ḣ1 c = W c α +2 L α +2 = C SE (c, rad) -d , (4.20) E c (W c ) = 1 2 W c 2 Ḣ1 c - 1 α + 2 W c α +2 L α +2 = d -1 C SE (c, rad) -d . (4.21) C SE (c, rad) = W c -2 d Ḣ1 c = W c -α +2 d L α +2 = [dE c (W c )] -1 d . (4.22)

Virial identities

In this section, we derive virial identities and localized virial estimates associated to the (NLS c ). Given a smooth real valued function χ, we define the virial potential by

V χ (t) := χ(x)|u(t, x)| 2 dx.
(5.1)

By a direct computation, we have the following result. 

d dt V χ (t) = 2 R d ∇χ(x) • Im (u(t, x)∇u(t, x))dx, (5.2)
and

d 2 dt 2 V χ (t) = -∆ 2 χ(x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk χ(x)Re (∂ k u(t, x)∂ j u(t, x))dx + 4c ∇χ(x) • x |x| 4 |u(t, x)| 2 dx + 2 ∇χ(x) • {N (u), u} p (t, x)dx, (5.3)
where {f, g} p := Re (f ∇g -g∇f ) is the momentum bracket.

We note that if N (u) = -|u| α u, then {N (u), u} p = α α + 2 ∇(|u| α+2 ).
Using this fact, we immediately have the following result. 

d 2 dt 2 V χ (t) = -∆ 2 χ(x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk χ(x)Re (∂ k u(t, x)∂ j u(t, x))dx + 4c ∇χ(x) • x |x| 4 |u(t, x)| 2 dx - 2α α + 2 ∆χ(x)|u(t, x)| α+2 dx.
(5.4)

We now have the following standard virial identity for the (NLS c ).

Lemma 5.3. Let d ≥ 3 and c > -λ(d). Let u 0 ∈ H 1 be such that |x|u 0 ∈ L 2 and u : I × R d → C
the corresponding solution to the (NLS c ). Then, |x|u ∈ C(I, L 2 ). Moreover, for any t ∈ I,

d 2 dt 2 xu(t) 2 L 2 = 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 . (5.5)
Proof. The first claim follows from the standard approximation argument, we omit the proof and refer the reader to [5, Proposition 6.5.1] for more details. It remains to show (5.5). Applying Corollary 5.2 with χ(x) = |x| 2 , we have

d 2 dt 2 V |x| 2 (t) = d 2 dt 2 xu(t) 2 L 2 = 8 |∇u(t, x)| 2 + c|x| -2 |u(t, x)| 2 dx - 4dα α + 2 |u(t, x)| α+2 dx = 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 .
This gives (5.5).

In order to prove the blowup for the (NLS c ) with radial data, we need localized virial estimates. To do so, we introduce the smooth, non-negative function θ

: [0, ∞) → [0, ∞) satisfying θ(r) = r 2 if 0 ≤ r ≤ 1, const. if r ≥ 2,
and θ (r) ≤ 2 for r ≥ 0.

(5.6)

Note that the precise constant here is not important. For R > 1, we define the radial function

ϕ R (x) = ϕ R (r) := R 2 θ(r/R), r = |x|. (5.7) 
It is easy to see that

2 -ϕ R (r) ≥ 0, 2 - ϕ R (r) r ≥ 0, 2d -∆ϕ R (x) ≥ 0. (5.8) 
Here the last inequality follows from the fact ∆ = ∂ 2 r + d-1 r ∂ r .

Lemma 5.4. Let d ≥ 3, c > -λ(d), R > 1 and ϕ R be as in (5.7). Let u : I × R d → C be a radial solution to the (NLS c ). Then for any t ∈ I,

d 2 dt 2 V ϕ R (t) ≤ 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 + O R -2 + R -(d-1)α 2 u(t) α 2 Ḣ1 c .
(5.9)

Proof. We apply (5.4) for χ(x) = ϕ R (x) to get

d 2 dt 2 V ϕ R (t) = -∆ 2 ϕ R (x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk ϕ R (x)Re (∂ k u(t, x)∂ j u(t, x))dx + 4c ∇ϕ R (x) • x |x| 4 |u(t, x)| 2 dx - 2α α + 2 ∆ϕ R (x)|u(t, x)| α+2 dx. Since ϕ R (x) = |x| 2 for |x| ≤ R, we use (5.5) to have d 2 dt 2 V ϕ R (t) = 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 -8 u(t) 2 Ḣ1 c (|x|>R) + 4dα α + 2 u(t) α+2 L α+2 (|x|>R) - |x|>R ∆ 2 ϕ R |u(t)| 2 dx + 4 d j,k=1 |x|>R ∂ 2 jk ϕ R Re (∂ k u(t)∂ j u(t))dx +4c |x|>R ∇ϕ R • x |x| 4 |u(t)| 2 dx - 2α α + 2 |x|>R ∆ϕ R |u(t)| α+2 dx.
(5.10)

Since |∆ϕ R | 1 and |∆ 2 ϕ R | R -2 , we have d 2 dt 2 V ϕ R (t) = 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 + 4 d j,k=1 |x|>R ∂ 2 jk ϕ R Re (∂ k u(t)∂ j u(t))dx +4c |x|>R ∇ϕ R • x |x| 4 |u(t)| 2 dx -8 u(t) 2 Ḣ1 c (|x|>R) +O |x|>R R -2 |u(t)| 2 + |u(t)| α+2 dx .
Using (5.8) and the fact that

∂ j = x j r ∂ r , ∂ 2 jk = δ jk r - x j x k r 3 ∂ r + x j x k r 2 ∂ 2 r , we see that d j,k=1 ∂ 2 jk ϕ R ∂ k u∂ j u = ϕ R (r)|∂ r u| 2 ≤ 2|∂ r u| 2 = 2|∇u| 2 , and ∇ϕ R • x = ϕ R x r • x = ϕ R r ≤ 2r 2 = 2|x| 2 . Therefore 4 d j,k=1 |x|>R ∂ 2 jk ϕ R Re (∂ k u∂ j u)dx + 4c |x|>R ∇ϕ R • x|x| -4 |u| 2 dx -8 u(t) 2 Ḣ1 c (|x|>R) ≤ 0.
The conservation of mass then implies

d 2 dt 2 V ϕ R (t) ≤ 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 + O |x|>R R -2 |u(t)| 2 + |u(t)| α+2 dx ≤ 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 + O R -2 + u(t) α+2 L α+2 (|x|>R) .
It remains to bound u(t) α+2 L α+2 (|x|>R) . To do this, we recall the following radial Sobolev embedding ( [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF][START_REF] Cho | Sobolev inequalities with symmetry[END_REF]). Lemma 5.5 (Radial Sobolev embedding [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF][START_REF] Cho | Sobolev inequalities with symmetry[END_REF]). Let d ≥ 2 and 1 2 ≤ s < 1. Then for any radial function f ,

sup x =0 |x| d-2s 2 |f (x)| ≤ C(d, s) f 1-s L 2 f s Ḣ1 .
(5.11) Moreover, the above inequality also holds for d ≥ 3 and s = 1.

Since Ḣ1 ∼ Ḣ1 c , we have in particular sup

x =0 |x| d-1 2 |f (x)| f 1 2 L 2 f 1 2 Ḣ1 c .
(5.12) Using (5.12) and the conservation of mass, we estimate

u(t) α+2 L α+2 (|x|>R) ≤ sup |x|>R |u(t)| α u(t) 2 L 2 R -(d-1)α 2 sup |x|>R |x| d-1 2 |u(t)| α u(t) 2 L 2 R -(d-1)α 2 u(t) α 2 Ḣ1 c u(t) α 2 +2 L 2 R -(d-1)α 2 u(t) α 2 Ḣ1 c .
The proof is complete.

The localized virial estimate given in Lemma 5.4 is not enough to show blowup solutions in the mass-critical case, i.e. α = α . In this case, we need a refined version of Lemma 5.4. We follow the argument of [23] (see also [START_REF] Boulenger | Blowup for fractional NLS[END_REF]). Lemma 5.6. Let d ≥ 3, c > -λ(d), R > 1 and ϕ R be as in (5.7). Let u : I × R d → C be a radial solution to the mass-critical (NLS c ), i.e. α = α . Then for any > 0 and any t ∈ I,

d 2 dt 2 V ϕ R (t) ≤ 16E c (u 0 ) -4 |x|>R χ 1,R - d + 2 χ d 2 2,R |∇u(t)| 2 dx + O R -2 + R -2 + -2 d-2 R -2 , (5.13)
where

χ 1,R = 2 -ϕ R , χ 2,R = 2d -∆ϕ R .
(5.14)

Proof. Using (5.10) with α = α = 4 d and j,k ∂ 2 jk ϕ R ∂ k u∂ j u = ϕ R |∂ r u| 2 and rewriting ϕ R = 2 -(2 -ϕ R ) and ∆ϕ R = 2d -(2d -∆ϕ R ), we have d 2 dt 2 V ϕ R (t) = 16E c (u(t)) - |x|>R ∆ 2 ϕ R |u(t)| 2 dx -4 |x|>R (2 -ϕ R )|∂ r u(t)| 2 dx + 4 d + 2 |x|>R (2d -∆ϕ R )|u(t)| 4 d +2 dx +8 |x|>R |∂ r u(t)| 2 dx + 4c |x|>R ∇ϕ R • x|x| -4 |u(t)| 2 dx -8 u(t) 2 Ḣ1 c (|x|>R) ≤ 16E c (u 0 ) + O(R -2 ) -4 |x|>R χ 1,R |∇u(t)| 2 dx + 4 d + 2 |x|>R χ 2,R |u(t)| 4 d +2 dx.
We now bound the last term. Using the radial Sobolev embedding (5.11) with s = 1 and the conservation of mass, we estimate

|x|>R χ 2,R |u(t)| 4 d +2 dx = |x|>R |χ d 4 2,R u(t)| 4 d |u(t)| 2 dx ≤ sup |x|>R |χ d 4 2,R (x)u(t, x)| 4 d u(t) 2 L 2 R -2(d-2) d ∇ χ d 4 2,R u(t) 4 d L 2 u(t) 2 L 2 R -2(d-2) d ∇ χ d 4 2,R u(t) 4 d L 2
.

We next use the Young inequality ab a p + -q p b q with 1 p + 1 q = 1 and > 0 an arbitrary real number to have

R -2(d-2) d ∇ χ d 4 2,R u(t) 4 d L 2 ∇ χ d 4 2,R u(t) 2 L 2 + O -2 d-2 R -2 .
Here we apply the Young inequality with p = d 2 and q = d d-2 . It is not hard to check |∇(χ

d/4 2,R )| R -1 for |x| > R. Thus the conservation of mass implies ∇ χ d 4 2,R u(t) 2 L 2 R -2 + χ d 4 2,R ∇u(t) 2 L 2 .
Combining the above estimates, we prove (5.13).

Global existence

In this section, we give the proofs of global existence given Theorem 1.3 and Theorem 1.6.

6.1. Mass-critical case. Thanks to the local well-posedness given in Theorem 3.1, it suffices to bound u(t) H 1 c for all t in the existence time. Applying (4.10) with α = α , we see that

C GN (c) = α + 2 2 Q c α L 2
.

By the definition of energy, we have

u(t) 2 Ḣ1 c = 2E c (u(t)) + 2 α + 2 u(t) α +2 L α +2 .
The sharp Gagliardo-Nirenberg inequality and the conservations of mass and energy imply 

u(t) 2 Ḣ1 c ≤ 2E c (u(t)) + 2 α + 2 C GN (c) u(t) α L 2 u(t) 2 Ḣ1 c = 2E c (u 0 ) + 2 α + 2 C GN (c) u 0 | α L 2 u(t) 2 Ḣ1 c = 2E c (u 0 ) + u 0 L 2 Q c L 2 α u(t) 2 Ḣ1 c . Thus, 1 - u 0 L 2 Q c L 2 α u(t) 2 Ḣ1 c ≤ 2E c (u 0 ). Since u 0 L 2 < Q c L 2 ,
M c > Q c L 2 . Let λ = M c / Q c L 2 > 1. Set u 0 (x) = λQ c (x). We have u 0 L 2 = M c and E c (u 0 ) = E c (λQ c ) = λ 2 2 Q c 2 Ḣ1 c - λ α +2 α + 2 Q c α +2 L α +2 = λ α +2 E c (Q c ) - λ α +2 -λ 2 2 Q c 2 Ḣ1 c .
Since E c (Q c ) = 0 and λ > 1, we see that E c (u 0 ) < 0. On the other hand, it is obvious that u 0 is radial. Thus by Item 2 of Theorem 1.3, we see that the corresponding solution with initial data u 0 blows up in finite time.

We next show for c > 0 that if u 0 is radial and satisfies u 0 L 2 < Q c,rad L 2 , then the corresponding solution exists globally. It follows similarly as the beginning of Subsection 6.1 by using the sharp radial Gagliardo-Nirenberg inequality

f α +2 L α +2 ≤ C GN (c, rad) f α L 2 f 2 Ḣ1 c , f radial.
Note also that by Item 4 of Remark 4.2, we have

C GN (c, rad) = α + 2 2 Q c,rad α L 2 .
To complete the proof of Item 3, we show that for any M c > Q c,rad L 2 , there exists u 0 ∈ H 1 radial satisfying u 0 L 2 = M c and the corresponding solution blows up in finite time. We proceed as above. Let λ = M c / Q c,rad L 2 > 1 and set u 0 (x) = λQ c,rad (x). We see that u 0 L 2 = M c and

E c (u 0 ) = E c (λQ c,rad ) == λ 2 2 Q c,rad 2 Ḣ1 c - λ α +2 α + 2 Q c,rad α +2 L α +2 = λ α +2 E c (Q c,rad ) - λ α +2 -λ 2 2 Q c,rad 2 Ḣ1 c .
Since Q c,rad is a solution to the (4.5), we see that E c (Q c,rad ) = 0. This shows that E c (u 0 ) < 0. Thus the corresponding solution blows up in finite time.

Remark 6.2. Let us show Item 5 of Remark 1.4, that is to show when c > 0 there exists a radial blowup solution to the mass-critical (NLS c ) with

u 0 L 2 = Q c,rad L 2 . Since Q c,rad is a solution to the elliptic equation -P c Q c,rad -Q c,rad + Q α +1
c,rad = 0, it is easy to see that u(t) = e it Q c,rad is a solution to the mass-critical (NLS c ). Then a direct computation shows that for any 0 < T < +∞, the function

u T (t, x) = 1 |t -T | d/2 e -i |x| 2 4(t-T ) + i t-T Q c,rad
x t -T is also a solution to the mass-critical (NLS c ) which blows up at T and u T (0) L 2 = Q c,rad L 2 . 6.2. Intercritical case. Again thanks to the local well-posedness of the (NLS c ) given in Theorem 3.1. It suffices to show that u(t) H 1 c is bounded as long as t belongs to the existence time. Let u 0 ∈ H 1 be such that (1.12) and (1.13) hold. By the definition of energy and multiplying both sides of E c (u(t)) by M (u(t)) σ , the sharp Gagliardo-Nirenberg inequality (4.1) implies

E c (u(t))M (u(t)) σ = 1 2 u(t) Ḣ1 c u(t) σ L 2 2 - 1 α + 2 u(t) α+2 L α+2 u(t) 2σ L 2 ≥ 1 2 u(t) Ḣ1 c u(t) σ L 2 2 - C GN (c) α + 2 u(t) 4-(d-2)α 2 +2σ L 2 u(t) dα 2 Ḣ1 c = f ( u(t) Ḣ1 c u(t) σ L 2 ), (6.1) 
where

f (x) = 1 2 x 2 - C GN (c) α + 2 x dα 2 . (6.2)
Using (4.12) and (4.13), we see that

f (K(c)) = dα -4 2dα K(c) 2 = H(c). ( 6.3) 
We have from (6.1), the conservations of mass and energy and the assumption (1.12) that

f ( u(t) Ḣ1 c u(t) σ L 2 ) ≤ E c (u 0 )M (u 0 ) σ < H(c). ( 6.4) 
Using this together with (1.13), (6.3) and (6.4), the continuity argument shows

u(t) Ḣ1 c u(t) σ L 2 < K(c
), for any t as long as the solution exists. The conservation of mass then implies the boundedness of u(t) H 1 c . The global existence of Theorem 1.8 is proved similarly as above using Item 4 of Remark 4.2.

Blowup

This section is devoted to the proofs of blowup solutions given in Theorem 1.3, Theorem 1.6 and Theorem 1.12. 7.1. Mass-critical case. Let us consider the case E c (u 0 ) < 0 and xu 0 ∈ L 2 . By the standard virial identity (5.5),

d 2 dt 2 xu(t) 2 L 2 = 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α +2 L α +2 = 16E c (u 0 ) < 0.
By the classical argument of Glassey [11], it follows that the solution u blows up in finite time.

We next consider the case E c (u 0 ) < 0 and u 0 is radial. Applying the localized virial estimate (5.13), we have

d 2 dt 2 V ϕ R (t) ≤ 16E c (u 0 ) -4 |x|>R χ 1,R - d + 2 χ d 2 2,R |∇u(t)| 2 dx + O R -2 + -2 d-2 R -2 ,
where χ 1,R = 2 -ϕ R and χ 2,R = 2d -∆ϕ R . We seek for a radial function ϕ R defined by (5.7) so that

χ 1,R - d + 2 χ d 2 2,R ≥ 0, ∀r > R, ( 7.1) 
for a sufficiently small > 0. If (7.1) is satisfied, then by choosing R > 1 sufficiently large depending on , we see that It is easy to see that θ satisfies (5.6). Define ϕ R as in (5.7). We will show that (7.1) holds true for this choice of ϕ R . Indeed, by definition,

d 2 dt 2 V ϕ R (t) ≤ 8E c (u 0 ) < 0,
       2r if 0 ≤ r ≤ 1, 2[r -(r -1) 3 ] if 1 < r ≤ 1 + 1/ √ 3, ϑ < 0 if 1 + 1/ √ 3 < r < 2, 0 if r ≥ 2,
ϕ R (r) = Rθ (r/R) = Rϑ(r/R), ϕ R (r) = θ (r/R) = ϑ (r/R), ∆ϕ R (x) = ϕ R (r) + d -1 r ϕ R (r). When r > (1 + 1/ √ 3)R, we see that ϑ (r/R) ≤ 0, so χ 1,R (r) = 2 -ϕ R (r) ≥ 2.
We also have χ 2,R (r) ≤ C for some constant C > 0. Thus by choosing > 0 small enough, we have (7.1).

When R < r

≤ (1 + 1/ √ 3)R, we have χ 1,R (r) = 6 r R -1 2 , χ 2,R (r) = 6 r R -1 2 1 + (d -1)(r/R -1) 3r/R < 6 r R -1 2 1 + d -1 3 √ 3 .
Since 0 < r/R -1 < 1/ √ 3, we can choose > 0 small enough, for instance,

< (d + 2) 1 + d -1 3 √ 3 -d/2
to get (7.1). The proof is complete.

Remark 7.1. We now show Item 4 of Remark 1.4 that is to show the condition E c (u 0 ) < 0 is a sufficient condition but it is not necessary. Let E c > 0. We find data u 0 ∈ H 1 so that E c (u 0 ) = E c and the corresponding solution u blows up in finite time. We follow the standard argument (see e.g. [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]Remark 6.5.8]). Using the standard virial identity with α = α , we have

d 2 dt 2 xu(t) 2 L 2 = 16E c (u 0 ), hence xu(t) 2 L 2 = 8t 2 E c (u 0 ) + 4t Im u 0 x • ∇u 0 dx + xu 0 2 L 2 =: f (t).
Note that if f (t) takes negative values, then the solution u must blow up in finite time. In order to make f (t) takes negative values, we need

Im u 0 x • ∇u 0 dx 2 > 2E c (u 0 ) xu 0 2 L 2 . (7.2) Now fix θ ∈ C ∞ 0 (R d ) a real-valued function and set ψ(x) = e -i|x| 2 θ(x). We see that ψ ∈ C ∞ 0 (R d ) and Im ψx • ∇ψdx = -2 |x| 2 θ 2 (x)dx < 0. We now set A = 1 2 ψ 2 Ḣ1 c , B = 1 α + 2 ψ α +2 L α +2 , C = xψ 2 L 2 , D = -Im ψx • ∇ψdx.
Let λ, µ > 0 be chosen later and set u 0 (x) = λψ(µx). We will choose λ, µ > 0 so that E c (u 0 ) = E c and (7.2) holds true. A direct computation shows

E c (u 0 ) = λ 2 µ 2 µ -d 1 2 ψ 2 Ḣ1 c -λ α +2 µ -d 1 α + 2 ψ α +2 L α +2 = λ 2 µ 2-d A - λ α µ 2 B , and Im u 0 x • ∇u 0 dx = λ 2 µ -d Im ψx • ∇ψdx = -λ 2 µ -d D, and xu 0 2 L 2 = λ 2 µ -d-2 xψ 2 L 2 = λ 2 µ -d-2 C. Thus, the conditions E c (u 0 ) = E c and (7.2) yield λ 2 µ 2-d A - λ α µ 2 B = E c , (7.3) D 2 C > 2 A - λ α µ 2 B . (7.4) Fix 0 < < min A, D 2

2C

and choose

λ α µ 2 B = A -.
It is obvious that (7.4) is satisfied. Condition (7.3) implies

λ 2 µ 2-d = E c or B A - 2-d 2 λ 2+ (2-d)α 2 = E c .
This holds true by choosing a suitable value of λ. 7.2. Intercritical case. We firstly show (1.16). We have from (6.1) that

f ( u(t) Ḣ1 c u(t) σ L 2 ) ≤ E c (u(t))M (u(t)) σ
, where f is defined as in (6.2). Note that f (K(c)) = H(c). By our assumption (1.12), we have f ( u(t) Ḣ1 c u(t) σ L 2 ) < H(c). Using (1.15) and the continuity argument, we get u(t) Ḣ1 c u(t) σ L 2 > K(c), for any t in the existence time. This proves (1.16).

We next pick δ > 0 small enough so that The conservations of mass and energy, (7.5), (7.7) and (4.13) then yield LHS(7.8) × M (u 0 ) σ ≤ 4dα(1 -δ)H(c)

E c (u 0 )M (u 0 ) σ ≤ (1 -
+ (8 + -2dα)(1 + δ ) 2 K(c) 2 = 2(dα -4)(1 -δ)K(c) 2 + (8 + -2dα)(1 + δ ) 2 K(c) 2 = K(c) 2 2(dα -4)(1 -δ -(1 + δ ) 2 ) + (1 + δ ) 2 .
By taking > 0 small enough, we prove (7.8).

Let us consider the case xu 0 ∈ L 2 satisfying (1.12) and (1.15). By the standard virial identity (5.5) We now consider the case u 0 is radial, and satisfies (1.12) and (1.15). Using the localized virial estimate (5.9), we have (7.12) Using (7.9) and (4.19), we have from (7.12) that d 2

d 2 dt 2 V ϕ R (t) ≤ 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α+2 L α+2 + O R -2 + R -(d-
u(t) Ḣ1 c W c Ḣ1 c 2 - d -2 2 u(t) Ḣ1 c W c Ḣ1 c α +2 ≤ 1 -δ.
The continuity argument shows that there exists δ > 0 depending on δ so that u(t) Ḣ1 The conservations of mass and energy, (7.11), (7.13), (4.17 . By the standard virial identity (5.5) and (7.14),

d 2 dt 2 xu(t) 2 L 2 = 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α +2
L α +2 ≤ -c < 0. This shows that the solution blows up in finite time.

We now consider the case u 0 is radial, and satisfies E c (u 0 ) < E c (W c ) and u 0 Ḣ1 c > W c Ḣ1 c . Using the localized virial estimate (5.9), we have

d 2 dt 2 V ϕ R (t) ≤ 8 u(t) 2 Ḣ1 c - 4dα α + 2 u(t) α +2 L α +2 + O R -2 + R -(d-1)α 2 u(t) α 2 Ḣ1 c .
Using the fact α 2 = 2 d-2 ≤ 2, the uniform bound (7.10) and (7.14), we see that for R > 1 large enough, d 2 dt 2 V ϕ R (t) ≤ -c/2 < 0. Therefore, the solution must blow up in finite time.

The blowup of Theorem 1.14 follows by the same argument as above and (4.20) -(4.22).
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	≤	1 2	u(t) 2 Ḣ1 c	-	[C SE (c)] α +2 α + 2	u(t) α +2 Ḣ1 c	=: g( u(t) Ḣ1 c ),
	where						
				g(y) =	1 2	y 2 -	[C SE (c)] α +2 α + 2	y α +2 .	(7.9)
	We have from (4.19) that						
					g( W c Ḣ1
								1)α 2	u(t)	α 2 Ḣ1 c	.

The (NLSc) does not enjoy the space translation invariance and the Galilean invariance.
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