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This paper develops nonsmooth Lyapunov stability theory and LaSalle's invariance principle for a class of nonsmooth Lipschitz continuous Lyapunov functions and absolutely continuous state trajec• tories. Computable tests based on Filipov's differential inclusion and Clarke's generalized gradient are derived. The primary use of these results is in analyzing the stability of equilibria of differential equations with discontinuous right-hand side such as in nonsmooth dynamic systems or variable structure control.

I. INTRODUCTION

There are many systems which have nonsmooth dynamics. Examples include systems with Coulomb friction, contact interactions, and variable structure systems where control inputs are allowed to be discontinuous. It is essential to rigorously analyze these systems and address such issues as the existence of equilibria, their stability, and quaiitative dynamics. As important as nonsmooth systems are in practice, techniques are still lacking for their analysis. All classical existence theorems for ordinary differential equations require vector fields which are at least Lipschitz continuous. The aforementioned examples, and many others, fail this requirement. With respect to these classical techniques, one cannot even define a solution, much less discuss existence of equilibria and stability.

What is needed is a set of tools which allow the analysis of differential equations with discontinuous right-hand sides. The seminal contribution in this area was made by Filipov [START_REF] Filipov | Differential equations with discontinuous right-hand side[END_REF] who developed a solution concept for differential equations whose right-hand sides were only required to be Lebesgue measurable in the state and time variables. Using this framework, theorems were proved for existence, uniqueness, and continuous dependence on initial conditions. One area missing from this program is the stability analysis of equilibria using nonsmooth Lyapunov functions.

Yoshizawa [START_REF] Yoshizawa | Stability Theory by Lyapunov's Second Method[END_REF] developed the Lyapunov theory for Lipschitz potential functions, but this work assumed a continuous vector field and smooth trajectories. In his book [START_REF]Differential Equations with Discontinuous Right Hand Sides[END_REF], Filipov studies the equilibria of differential equations with discontinuous right-hand sides, but deals with smooth Lyapunov functions.

There has been work on Lyapunov stability theory in variable structure systems; see [START_REF] Utldn | Sliding Modes and Their Applications in Variable Structure Systems[END_REF], [START_REF] Decar1o | Variable structure control of nonlinear multivariable systems: A tutorial[END_REF] for a detailed list of references. In variable structure systems one tries to pick a sliding surface and show that nearby trajectories converge first to this surface, then once on the surface, to an equilibrium point. The control is chosen in such a way that the dynamics of the closed-loop system never pass through the surface and all analysis can be done from a single side of the switching surface, and then once the trajectory is on the switching surface and smooth dynamics are restored, ordinary Lyapunov theory is adequate. As a result of this piecewise approach, the nonsmoothness of the trajectory is unimportant and differentiable Lyapunov functions suffice in many cases. For our purposes, the "kinks" are an essential part of the dynamics, and this one-sided analysis is inadequate.

The nonsmooth Lyapunov analysis of equilibria is present in the differential inclusions literature [START_REF] Aubin | Differential Inclusions[END_REF], [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF], of which Filipov's differential inclusion is a special example. Theorems are developed which rely on the notions of set valued maps and derivatives. An alternative formulation using Dini derivatives was developed by Roxin [START_REF] Roxin | Stability in general control systems[END_REF]. Although very general, both these techniques lack a calculus for computing derivatives of nonsmooth Lyapunov functions. We resolve this problem by exploiting the additional structure ofFilipov's solution to develop more useful tools in this context. Additionally, the motivation for studying general differential inclusions is different in that the fqcus is on integral funnels, in which one searches for monotone trajectories which tend to the equilibrium.

The purpose of this work is to provide some tools of generalized Lyapunov analysis with which the stability properties of nonsmooth dynamic systems can be determined. These tools will turn out to be computable and easily applicable making nonsmooth Lyapunov analysis no more difficult than its smooth counterpart. Specifically, our contribution is weakening the restriction of differentiability to a broad class of nonsmooth Lipschitz continuous Lyapunov function!f; the trajectories are only required to be absolutely continuous: This is important because we will show there are nonsmooth dynamic systems whose equilibria cannot be proved stable using continuously differentiable Lyapunov theory. In addition, nonsmooth Lyapunov functions are natural for nonsmooth dynamic systems.

MATHEMATICAL FRAMEWORK

In this section we review the Filipov solution concept for differential equations with discontinuous right-hand sides, the nonsmooth analysis of Clarke's generalized gradient, and develop a connection via a new chain rule for differentiating regular functions along Filipov solution trajectories.

Filipov Solutions

We consider the vector differential equation

:i: = J(x, t) (l)
where f: Rn x R ____. Rn is measurable and essentially locally bounded. We must first define what it means to be a solution of this equation.

Definition 2.1 ( Filipov ):

A vector function x ( •) is called a solution of (1) on [to, t 1 ] if x(•)
is absolutely continuous on [to, tl] and for almost all t E (to , h]

x E K[f](x, t) (2) 
where

K[f](x, t) := n n co f(B(x, 6)-N, t ) (3) 8 > 011-N =O
and n i-'N=O denotes the intersection over all sets N of Lebesgue measure zero. An equivalent definition [START_REF]Differential equations with second members discontinuous on intersecting surfaces[END_REF], [START_REF] Paden | A calculus for computing Filipov' s differential inclusion with application to the variable structure control of robot manipulators[END_REF] is: there exists

Nf C Rm, J1NJ = 0 such that for all N C R m, 11N = 0 K[f](x) = co{!imf(x;) I x; ____. x, x ; rf. Nf UN}. ( 4 
)
The content of Filipov' s solution is that the tangent vector to a solution, where it exists, must lie in the convex closure of the limiting values of the vector field in progressively smaller neighborhoods around the solution point. It is important in the above definition that we discard sets of measure zero. This technical detail allows solutions to be defined at points even where the vector field itself is not defined, such as at the interface of two regions in a piecewise

f[B(x,o)-N]

Fig. I. The limiting procedure used to calculate K[f)(x, t) .
defined vector field. Fig. 1 helps illustrate the limiting procedure used to define I<[!] ( x, t). This figure shows the vector images of a small neighborhood around the base point x. The interface is a neglected set of measure zero where the vector field is not defined. The set

I<[f](x, t
) reduces to the convex hull of two limit vectors as the neighborhood becomes vanishingly small. Example: A nontrivial example of a nonsmooth dynamic system is the following defined for almost all x E R 2 ( 0 -1)

x = 1 0 Y'llxlh [START_REF]Differential equations with second members discontinuous on intersecting surfaces[END_REF] where llxlh = lx1l + lx2l• The gradient in [START_REF]Differential equations with second members discontinuous on intersecting surfaces[END_REF] is not defined on the x1 and x2 axes, sets of measure zero. Off the axes, the Filipov set

I<[/] ( x) is a singleton { {(-1, +1f} for x E quadrant 1 K[/](x t) = {( -1, -1f} for x E quadrant 2 ' {(+1, -1)T} for x E quadrant 3 {(+1, +1f} for x E quadrant 4. (6) 
On the x1 and x2 axes, K[f](x, t) is the convex hull of each of the vectors in (6) corresponding to the quadrants which the point x borders. For example, on the positive x1 axis K[fJ(x) = eo{ ( -1, 1 f, (1, 1)r }. Any Filipov solution to the differential equation (5) traces a square. observe that the trajectories in this example move along level sets of llxll1, a natural (nonsmooth) Lyapunov function for this system.

In most applications the calculation of K[f](x, t) involves functions f(x, t) expressed as sums, products, and compositions of other functions. Hence a calculus is needed for computing the Filipov set. This calculus was derived in our earlier work [10].

We do not require Lipschitz continuity of f(x, t) in x or t and therefore cannot in general expect uniqueness and continuous dependence on initial conditions, although we will assume both in what follows. Readers interested in more detailed discussions are referred to the original literature [4], [5] .

Generalized Gradients

As shown in the example above, nonsmooth Lyapunov functions arise naturally in the stability theory of differential equations with discontinuous right-hand sides. In the application of the machinery of nonsmooth analysis, Clarke's generalized gradient [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] is particularly useful in simplifying proofs.

Definition 2.2 (Clarke's Generalized Gradient): For a locally Lipschitz function V: Rn x R-+ R define the generalized gradient of V at (x, t) by 8V(x, t) = co{lim V'V(x, t) I (x;, t;)-+ (x, t), (x;, t ;) fi Dv} [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF] where Dv is the set of measure zero where the gradient of V is not defined.

The gradient V' includes the derivative with respect to time ( 8 j 8t). In this definition, Lipschitz means Lipschitz in (x, t) (discontinuities in tare not allowed). For notational brevity, if a function V(x, t ) has no explicit t dependence, we shall adopt the convention of dropping the last component of av which is identically zero.

One way to view the generalized gradient at a point x is a set valued map equal to the convex closure of the limiting gradients near x. For example, the function

V(x) = lx l, x ER
has a generalized gradient which equals

av c x) = { -1} x E R- = {+1} X ER+ = [-1, 1] X= 0. (8) (9) 
The next lemma states that the generalized directional derivative, which is defined presently, is the support function in the sense of convex analysis for the generalized gradient. Both the definition and result are due to Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF].

Definition 2.3: The generalized directional derivative is defined

f o( ) 1 .
f(y + tv)f(y )

x; V = 1msup . y~x , ttO t ( 10 
)
Lemma 2.1: Let f be Lipschitz near x, then

rcx; v) = max{(~, v) I~ E 8f(x)}. ( 11 
)
Our chain rule will be for a useful class of functions, called regular functions [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF].

Definition 2.4: f(x, t ): Rm X R-+ R is called regular if 1)
for all v, the usual one-sided directional derivative !' (x; v) exists,

2) for all V, j'(x; v) = r(x; v).

Examples of regular functions include smooth functions and functions which can be written as the pointwise maximum of a set of smooth where

V(x, t): = n ~T (K[f](~(t), t)).
eEBV(x(t) , t ) [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF] Proof That V(x(t), t) is absolutely continuous and (dfdt)V(x(t), t) exists almost everywhere is a consequence of the fact that the composition of a Lipschitz function, V ( •), with an absolutely continuous function, ( x ( t), t), is absolutely continuous (see, for example, [9]). At a point where x(t) and V(x(t) , t) are both differentiable (this is true almost everywhere)

d dt V(x(t), t) (14) 
= lim V(x(t +h), t +h)-V(x(t), t) hto

h (15) = lim V(x(t) + xh, t +h)+ o(h)-V(x(t), t) htO h (16) (17) 
(18)

= V'((x, tl; (x, 1f) = V 0 ((x, tl; (x, 1f) by regularity = max{(~i(x, 1)T)i~ E aV(x, t)}.

a similar argument shows lim _V_,_( x__,_(_t +_h:..:.. ) ,_t _+::-h_,_) _-_V -'('-x~( t:..:..) ,-'-t)

h!O h = min { (~i(x, 1)T )i~ E aV(x, t). Therefore :t V(x(t), t) =(~I (x, 1)T) V~ E aV(x, t). Now, x is a Filipov solution so that x(t) E K[f](x(t)), a.e. ( 20 
) (21) (22) (23) 
Thus almost everywhere, V = e (i) for all~ E aV(x, t) and some Tf E K[f](x, t). Equivalently

V e•e.Y = n ~T (K[f] (~(t), t)).

{ E8V(x(t), t) D (24)

Example: Let V(x) = llxll1 and f(x) as in the example, (5), above. Let x(t) be the solution passing through (1, O)T at time t = 0. We have

aV(x(O), 0) = C-1, 1 +1]) (25) 
(where we have employed our convention of dropping the last term in aV(x, t) when V is independent of time) and

K[f](x(O) , 0) = e-1 • 1 +l]). (26)
Let (1, 6), 6 E [-1, 1] be an arbitrary element of aV(x(O), 0)

then [; 2 ] K[j](x(O), 0) = 6 + [-1, +1] = [6 -1, 6 + 1] (27) implies V(x(O) , 0) = n [6-1, 6 + 1] = 0. (28) { 2E[ -1, 1]
'fhis does not guarantee that V = 0 (or even exists) at this point, but V ( x) ~ 0 by which we mean v < 0 for all v E V, does guarantee stability. The theorems of the next section formalize this.

Ill. STABILITY THEOREMS

In this section we state two existing Lyapunov theorems (uniform stability ~d uniform asymptotic stability) in terms of the set valued map V. The proofs are omitted because they are identical to their smooth counterparts except for some relations holding "almost everywhere" instead of everywhere. See Khalil and Vidyasagar [8], [START_REF] Vidyasagar | Nonlinear Systems Analysis[END_REF] for the smooth versions. Proofs exist for the other versions of stability, such as nonuniform, global, etc., but for the sake of brevity we have omitted them. An application of this theorem is made, and the stability of the spring-mass-coulomb friction system is proved. Theorem 3.1: Let x = f(x , t) be essentially locally bounded and 0 E K[f](O, t) in a region Q :J {x E Rn l ll x ll < r} X {tito ~ t < oo} . Also, let V: Rn x R --+ R be a regular function satisfying [8] for a definition of class K functions.) Then 1) V(x, t) ~ 0 in Q implies x(t) = 0 is a uniformly stable solution.

V(O,t)=O (29) and (30) in Q for some V 1 , V 2 E class K. (See
2) If in addition, there exists a class lC functions w ( •) in Q with the property

V(x, t) ~ -w(x) < 0 (31)
then the solution x( t) = 0 is uniformly asymptotically stable.

Example ({6], [10]): Let R(x, t) be a matrix which is continuous and uniformly positive definite when symmetrized and

x = -R(x(t), t) \7llxlll• (32) 
Then x(t) = 0 is asymptotically stable. Proof: Choose V(x) = llxlh-Then V(x , t) = n e K[-R(x , t) \7llxlhJ(x, t ) (33) {E&IIxlll (since V is time independent) and by the calculus for J( [10], we have

V(x, t) = n -~T R (x, t )aii xlll • (34) { Eoll xll1
Since R is uniformly positive definite when symmetrized, there exists

p > 0 such that aJJ xlll is convex so satisfies ~o(x, t) = argmin e (R( x , t) + RT (x, t) )~ eE&IIxlh 2
e ( R(x , t) ~ RT (x, t) )~a (x, t )

;:::: ~o(x, t)T ( R(x, t) ~ R T(x, t) ) eo(x , t)

;::::

P li~o (x , t)ll 2 (35) (36) 
(37) for all ~ E a 11 X Il l. Equation ( 37) is a consequence of the fact that for a convex domain D and a smooth function f at the point xo = arg min f ( x ), the point so V ~ -p almost everywhere. This implies x(t) ---+ 0 asymptotically (converges in finite time in fact by the finite time stability theorem in [10]). The proof just demonstrated shows, with minor modifications, the example in the last section where

R(x, t) = (~ ~1 ) (41)
has zero as a stable equilibrium point. We now argue that this equilibrium cannot be shown stable by any smooth time independent Lyapunov function.

The trajectories of this dynamic system are squares. Any nonincreasing function along a closed curve must be a constant, therefore the level sets of any proposed Lyapunov function must be squares. The level sets of any smooth function with nonzero gradients are smooth precluding the possibility of any smooth Lyapunov function for this example. A similar argument also shows the impossibility of finding a continuously differential time dependent Lyapunov function.

We now prove a nonsmooth version of LaSalle's theorem. Theorem 3.2 (LaSalle): Let n be a compact set such that every Filipov solution to the autonomous system x = f(x), x(O) = x(to) starting in 0 is unique and remains in 0 for all t 2:: to. Let V: 0 ---+ R be a .time jndependent regular function such that v ~ 0 for all 

v E V (if V
x = f(x), xo
x(to). Since s(t, xo, t9) lies in L+, (d/dt)V(s(t, xo, to)) = 0. Since V(x(t)) E V(x) a.e., in t, we have s(t, x 0 , t 0 ) E S a.e. Thus s(t, x 0 , t 0 ) E S for some t E [to, t 0 +b) and all b > 0. Since s(t, x 0 , t 0 ) is continuous (absolutely) we have that there are points in S arbitrarily close to x 0 implying x 0 E S. Hence L + C S. See Fig. 2 for a phase portrait.

IV. CONCLUSION

In this paper we have extended basic Lyapunov stability theorems to the nonsmooth case using the Filipov solution concept and Clarke's generalized gradient. The result is a theory applicable to systems with switches for which natural Lyapunov functions are often only piecewise smooth. This machinery should find application in variable structure control theory, the analysis and control of mechanical systems, and the analysis of pulse width modulated control systems.

  x 0 satisfies \7f(xo)•(y-xo);::::O forallyED .At .r = 0, 8llxll1 = [-1, +1t. Since llxll1 is convex, 8llxll1l:r:;to n (-1, +1)" = 0 (this follows from [2, Proposition 2.2.9]

0

  The following theorem is a special case of a viability result in the study of differential inclusions (see[1, p. 180] for a general statement and complete proof). Theorem 3.4: If M is an invariant set in a smooth k-dimensional manifold S, then TmS n K[/](m) I 0 (43) for all m E M.

2 3 XFig. 2 .

 232 Fig. 2. The phase portraitofmx+bsgn (:i:)+kx = 0 with m= b = k = 1.

  It follows by the lemma below that L + C S. Since L + is contained in the largest invariant set in S the theorem is proved. 0 Let xo E £+ and s(t, xo, to) be the solution to

	Lemma 3.3: Under the conditions of the theorem above
	(42)
	Proof•

is the .empty set then this is trivially satisfied). Define s = {x E n I 0 E V}. Then every trajectory inn converges to the largest invariant set, M, in the closure of S.

Proof• Let x(t) be a Filipov. solution starting in 0. Since V(x(t)) is absolutely continuous, V is bounded below zero, and V is bounded above zero, V(x) tends to a constant, a, as t ---+ oo.

Uniqueness of trajectories implies continuous dependence on initial conditions so the positive limit set, L +, of x ( t) is an invariant set. Moreover, L+ C 0 because 0 is closed. By continuity of V, V (p) = a for all p E L +. Since L + _is invariant we have V = 0 on L + , hence by Theorem 2.2, 0 E V ( x), a. e. in t.
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