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Abstract This paper deals with the optimal design of a ti-
tanium mesoscale implant in a cortical bone for which the
apparent elasticity tensor is modeled by a non-Gaussian ran-
dom field at mesoscale, which has been experimentally iden-
tified. The external applied forces are also random. The de-
sign parameters are geometrical dimensions related to the
geometry of the implant. The stochastic elastostatic bound-
ary value problem is discretized by the finite element method.
The objective function and the constraints are related to nor-
mal, shear, and von Mises stresses inside the cortical bone.
The constrained nonconvex optimization problem in pres-
ence of uncertainties is solved by using a probabilistic learn-
ing algorithm that allows for considerably reducing the nu-
merical cost with respect to the classical approaches.

Keywords Optimization under uncertainty · Probabilistic
optimization · Nonconvex constrained optimization ·
Probability learning · Probability distribution on manifolds ·
Heterogeneous microstructure · Random elasticity field ·
Implants · Cortical bone

1 Introduction

This paper concerns the optimal design of a titanium meso-
scale implant in a cortical bone (biological tissue), which re-
quires to solve a Constrained Nonconvex Optimization Prob-
lem in Presence of Uncertainties (CNOPPU) that means that
there are an underlying stochastic operator and stochastic
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constraints. These stochastic aspects are due to the hetero-
geneous elastic random medium (the cortical bone) at the
microscale and also to the random forces that are applied
to the titanium implant. This paper deals with the optimiza-
tion of geometrical parameters (design parameters) of the
implant in order to minimize some stresses in a given region
located at the interface between the titanium implant and the
cortical bone (objective function), and also to limit stresses
in some regions of the cortical bone (nonlinear constraint
functions). For each given value of the design parameters,
the evaluation of the objective and constraints functions is
numerically expensive because a stochastic boundary value
problem must be solved. Due to the nonconvexity of such an
optimization problem, random search algorithms or genetic
algorithm must, for instance, be used, inducing a very high
numerical cost. The use of an algorithm based on a prob-
abilistic learning methodology can thus help to circumvent
these difficulties.

In order to well explain the existing approaches, the dif-
ficulties encountered for solving the design optimization of
a mesoscale implant in biological tissues, and the methodol-
ogy proposed for circumvent these difficulties, the following
items are briefly presented:

- Design optimization of implants in bone.
- Stochastic modeling of biological tissues.
- Uncertainty quantification in computational mechanics.
- Algorithms for solving optimization problems under un-

certainties.
- Probabilistic learning algorithm used in this paper.
- Main objectives and novelties of the methodology pro-

posed.
- Organization of the paper.

1. Design optimization of implants in bone. The biome-
chanical aspects play an important role in the techniques re-
lated to implants in bones and many research have been per-
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formed, in particular by using experimental investigations
and by developing computational mechanical models for un-
derstanding the aging and the implants stability as a function
of the geometric shape and of the dimensions of implants
(see for instance [2,4,9,17,19,32,37] and also [44,49,58,
60,71,78,92,95]). Design optimization of implants in bone
at macroscale by using deterministic computational models
has also received increased attention (see for instance [36,
43,50,53,56,74]). However, there are only a few works in
the framework of the optimization under uncertainties in
biomechanics (see for instance [34,65,67,73]). Neverthe-
less, this type of works does not exactly correspond to the
framework of the present paper that concerns the optimiza-
tion of the geometry of a mesoscale implant in a cortical
bone that must be modeled by a heterogeneous random elas-
tic medium at this scale. Consequently, the CNOPPU that
has to be solved, is very expensive because it requires the
computation of quantities of interest for each realization of
the random elasticity field.

2. Stochastic modeling of biological tissues. When the
random microstructure of a heterogeneous material can be
described in terms of its constituents, the homogenization
method allows for calculating the effective mechanical prop-
erties and their bounds at the macroscale. Often, the proba-
bilistic model of a random microstructure (such as a com-
posite constituted of several constituents) can directly be
constructed from the geometry and mechanical properties
of its constituents. This is the case for the class of random
heterogeneous materials whose microstructures can be mod-
eled as a distribution of inclusions or cavities of well-defined
geometry in a given matrix. This is also the case of ran-
dom heterogeneous materials having a cellular structure for
which the probabilistic model is directly constructed using
cell statistics, random field models, percolation, and clus-
tering (see for instance [18,20,42,47,38–40,59,62,66,76,
77,94]). However, at microscale, a biological tissue such
as the cortical bone appears as a random medium and its
elastic heterogeneous microstructure cannot be described in
terms of its constituents. Consequently, its elasticity field is
modeled by a tensor-valued random field at mesoscale (see
for instance [86]) and therefore, the derived computational
model exhibits uncertainties. That is the case considered in
this paper. In addition, since the implant is at the mesoscale,
it is necessary to use a stochastic modeling of the random
elasticity field adapted to this scale. Note that the problem
under consideration is not relevant of stochastic homoge-
nization because the coupling of the implant with the corti-
cal bone is at the mesoscale.

3. Uncertainty quantification in computational mechan-
ics. Concerning uncertainties, it is recognized that uncer-
tainty quantification plays an increasing role in computa-
tional mechanics and more generally, for large-scale com-
putational models in sciences and engineering. The reader

will be able to find an excellent extended, complete, and ad-
vanced presentation in the handbook of uncertainty quan-
tification [26] recently published in which the UQ ideas, the
useful mathematical tools, and applications in many fields
can be found, and which corresponds to the present state
of the art. Relatively recently, it has been recognized that
multiscale modelings and simulations with uncertain com-
putational model require adapted algorithms and very pow-
erful computers [93]. In this framework, advanced multi-
scale modelings under uncertainties have been developed
(see for instance [13,52,55,83,84,101]). When these works
were published, design optimization with stochastic com-
putational model was not still really possible for large scale
multiscale computational models. The applications that have
been published (see for instance [1,5,11,12,16,22,29] and
also [35,54,57,68,70,72,80,99,96]) were devoted to opti-
mization problems under uncertainties for which the com-
putational models had a reasonable number of degrees of
freedom, for which the optimizers were based on the use
of relatively classical optimization algorithms and/or the in-
troduction of approximations such as surface responses and
surrogate models.

4. Algorithms for solving optimization problems under
uncertainties. The algorithms for solving optimization prob-
lems without uncertainties have extensively been developed
for several decades and are today really efficient (see for
instance [102]). Nevertheless, for optimization with large-
scale nonlinear computational models, the introduction of
parametric reduced-order models are often necessary (see
for instance [3,24]). Concerning the algorithms for solving
optimization problems under uncertainties, many methods
have been proposed in the literature such as the gradient-
based learning that is adapted to convex problems [48,89],
the global search algorithms such as the stochastic algo-
rithms, the genetic algorithm, and the evolutionary algorithms
[14,46]. The statistical learning methods have also been de-
veloped for solving deterministic optimization problems that
are interpreted as representatives of stochastic problem fam-
ilies with the benefit of enabling statistical learning [41].
The learning process is often implemented by using sur-
rogate models that allow for constructing approximations
of the functions whose evaluations are numerically expen-
sive [10,75]. The resulting error and its repercussions on
the optimal solution depend on the various algorithms that
are proposed [33], in particular for calculating the mathe-
matical expectations that must be estimated for evaluating
the expensive functions for each design point and that re-
quire the computation of a large number of statistical real-
izations of the model outputs. The global character of the
surrogate models is usually satisfied either by using a deter-
ministic interpolation process or by using a stochastic model
whereby the complex dependencies between model outputs
and design parameters are expressed by computing statis-
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tical correlations. Gaussian process models are most com-
monly used in this context [45,90]. However, more robust
alternatives based on Bayesian optimization [28,41,97,98]
have also proven useful. For expensive evaluations of func-
tions that depend on uncertainties, computational difficul-
ties still remain important enough to require the introduction
of simplifying assumptions in the form of surrogate models
and approximations for estimating probabilities [10,21,23,
100].

5. Probabilistic learning algorithm used in this paper.
In this paper, the probabilistic learning used for solving the
optimization problem under uncertainties refers to an algo-
rithm that is based on the use of the two following method-
ologies.
(i) The first one is the novel methodology that is proposed
in [25,88] for solving the CNOPPU, which consists in using

– an optimizer that is adapted to the nature of the optimiza-
tion problem under consideration,

– a dataset that is made up of a small number of points
generated by the optimizer for which only a small num-
ber of expensive evaluations of functions is carried out.

It is well known that the choice of the optimizer depends
on the number of design parameters and on the nature of the
optimization problem. A possible optimizer can, a priori, be
a grid search algorithm [8], a gradient-based algorithm [7],
a bayesian optimization algorithm [81], a random search al-
gorithm [8] or a genetic algorithm [27]. It should be noted
that, for the nonconvex optimization problem under consid-
eration, a random search algorithm or the genetic algorithm
is better adapted. Nevertheless, if the number of the design
parameters is 1, 2 or 3, a grid search algorithm is efficient
for solving a nonconvex optimization problem. In this pa-
per, the number of design parameters being 2, we will use
the grid search algorithm.
(ii) The second one is also a new methodology recently pro-
posed in [85,87], which is devoted to the probabilistic learn-
ing on manifold from a dataset made up of a small number
of points and, which allows

– for identifying, from a database made up of realizations
of a Rν-valued random variable, its non-Gaussian prob-
ability distribution that is unknown and that is concen-
trated on an unknown subset Sν (a manifold) of Rν .

– for generating additional realizations that follow the un-
known probability distribution by preserving the con-
centration on Sν and consequently, by avoiding the scat-
tering of the realizations when they are generated by the
classical Markov Chain Monte Carlo (MCMC) method.

Such a probabilistic learning algorithm allows for estimating
the objective function and the nonlinear constraint functions
for each design point proposed by the optimizer without us-
ing the stochastic computational model.

6. Main objectives and novelties of the methodology pro-
posed. The two main objectives and the novelties of this pa-
per are the following.
(i) The optimization problem is formulated for the design
of the geometry of a mesoscale titanium implant in a corti-
cal bone by introducing a realistic probabilistic model of the
heterogeneous random elasticity field of the cortical bone at
the mesoscale. This non-Gaussian random field has exper-
imentally been identified by using an experimental multi-
scale measurements on the basis of a digital image correla-
tion technique [64]. Note that the heterogeneous medium at
mesoscale is not modeled by using only a few real-valued
random variables related to the elasticity tensor, but is mod-
eled by using a complete non-Gaussian tensor-valued aniso-
tropic random field for the elasticity field [82,83,87]. Note
also that the two spatial correlation lengths of this field in
the plane perpendicular to the mean direction of the Haver-
sian canals of the osteons of the cortical bone is of the same
order that the thickness of the titanium implant. This means
that there is a strong effect of the statistical fluctuations in
the cortical bone at mesoscale on the optimal design of the
implant.
(ii) As previously explained, the CNOPPU is solved with
a combination of the algorithms recently introduced in [25,
85,87], which will allow us to solve the design optimization
of a mesoscale implant in a cortical bone with a reasonable
numerical cost. The algorithm proposed is different from
those existing and does not introduce any approximations
such as surface responses, surrogate models, etc. The con-
siderable gain that is obtained with the algorithm proposed
opens a way for design optimization under uncertainties of
more complex biomechanical systems.
It should be noted that, although the objective of the paper is
not to validate the used probabilistic learning algorithm that
has already been published, one obtains an additional valida-
tion. The main objective of this paper is above all to demon-
strate how the optimization of the design of a mesoscale
implant in a biological tissue can effectively be performed
in a realistic framework by considering the cortical bone
as a random medium at the mesoscale. Such an objective
can be reached thanks to the use of an advanced algorithm
that allows for solving this very difficult constrained non-
convex optimization problem in presence of uncertainties in
biomechanics, problems that generate extremely high com-
putational costs without the use of this type of algorithm.

7. Organization of the paper. Section 2 deals with the
definition of the optimum design problem with a stochas-
tic computational model. In Section 3, the stochastic mod-
eling of the cortical bone is presented. Section 4 is devoted
to the construction of the stochastic computational model.
In Section 5, we first discuss the major difficulties encoun-
tered for solving the nonconvex optimization problem un-
der uncertainties. Then, we present the method that is pro-
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posed for solving the optimization design problem with an
advanced probabilistic learning algorithm. Section 6 is de-
voted to the construction of the reference optimal solution
with the stochastic computational model for which a stochas-
tic convergence analysis has been performed. Section 7 deals
with the computation of the optimal solution by using the
probabilistic learning algorithm and Section 8 presents an
analysis of the CPU-time gain. Additional details related to
the construction of the non-Gaussian tensor-valued random
field of the cortical bone medium are given in Appendix A.
In order to confer a good readability to the paper, the prob-
abilistic learning algorithm is summarized in Appendices B
and C.

Notations

A lower case letter such as y, η, or u, is a real deterministic
variable.
A boldface lower case letter such as y, η, or u is a real de-
terministic vector.
An upper case letter such as Y , H , or U , is a real random
variable.
A boldface upper case letter, Y, H, or U, is a real random
vector.
A lower case letter between brackets such as [y], [η], or [u]),
is a real deterministic matrix.
A boldface upper case letter between brackets such as [Y],
[H], or [U], is a real random matrix.

R: set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
‖x‖: usual Euclidean norm in Rn.
Mn,N : set of all the (n×N) real matrices.
Mn: set of all the square (n× n) real matrices.
M+
n : set of all the positive-definite symmetric (n × n) real

matrices.
[y]kj : entry of matrix [y].
[y]T : transpose of matrix [y].
[In]: identity matrix in Mn.
δ: dispersion parameter δkk′ : Kronecker’s symbol such that
δkk′ = 0 if k 6= k′ and = 1 if k = k′.
E: Mathematical expectation.
pdf: probability density function.
CNOPPU: Constrained Nonconvex Optimization Problem
in Presence of Uncertainties.
ISDE: Itô Stochastic Differential Equation.
MCMC: Markov Chain Monte Carlo.
PCA: Principal Component Analysis.
SCM: Stochastic Computational Model.

2 Definition of the optimum design problem under
uncertainties

In this paper, we have voluntary chosen a geometry rela-
tively simple in order that all data can be described and that
the computation can be reproduced by any people. Never-
theless, the case proposed for the analysis contains all the
difficulties that can be encountered in such a problem, which
requires solving a CNOPPU.

2.1 Mechanical framework associated with a mesoscale
implant in a cortical bone

The physical space R3 is referred to a cartesian reference
system Ox1x2x3 and the generic point of R3 is denoted by
x = (x1, x2, x3). For any function g(x), the notation g,j des-
ignates the partial derivative with respect to xj . The classi-
cal convention for summations over repeated Latin indices is
used. The mean direction of the Haversian canals of the os-
teons of the cortical bone is the longitudinal direction Ox1.
In the cortical bone medium at mesoscale, since the spatial
correlation length λ1 in the longitudinal direction Ox1 is
much more larger than the spatial-correlation lengths λ2 and
λ3 in the transversal directions Ox2 and Ox3, we consider
a 2.5D-problem that is a layer with thickness L1 = 10−4m,
which is analyzed as a 3D-problem. At mesoscale, we thus
consider a 3D open bounded domain Ω that is constituted
of a titanium implant occupying the open bounded domain
ΩTi, inserted in a cortical bone (biological tissue) occupying
the open bounded domain Ωcb. Domain Ω is a rectangular
parallelepiped for which the length sides are L1 = 10−4m,
L2 = L3 = 10−3m (see Fig. 1). At mesoscale, the me-
chanical properties of the two media are the following.

– The titanium domainΩTi is assumed to be a linear elastic
homogeneous isotropic material for which the elasticity
tensor is a constant tensor that is denoted by CTi and for
which the Young modulus is ETi = 110 × 109 Pa and
the Poisson coefficient is νTi = 0.35.

– At microscale (see Fig. 2), the cortical bone that occu-
pies domain Ωcb is a linear elastic heterogeneous mate-
rial that cannot be described in terms of its constituents.
Therefore, its microstructure is described by a random
medium at the mesoscale, for which its apparent elas-
ticity field is modeled by a non-Gaussian fourth-order
tensor-valued random field, Ccb = {Ccb(x), x ∈ Ωcb} de-
fined on a probability space (Θ, T ,P). Note that due to
the positiveness property of the elasticity tensor, the ran-
dom elasticity field cannot be a Gaussian random field [82].
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Fig. 1 Parameterization of the geometry for a tinanium implant oc-
cupying domain ΩTi (right part of the scheme) in a biological tissue
occupying domain Ωcb (left part of the scheme).

Fig. 2 Microstructure of a cortical bone at scale 5×10−4 m (left) and
one osteon at scale 5 × 10−5 m. [Photo from Julius Wolff Institute,
Charité - Universitatsmedizin Berlin]

2.2 Formulation of the constrained nonconvex optimal
design problem under uncertainties

Boundary value problem. The elastostatic system is assumed
to be in linear deformation around a static equilibrium state
taken as a natural state at rest. At equilibrium, the microstruc-
ture occupies the three-dimensional open bounded domain
Ω and the displacement field defined on Ω is denoted by
u(x) = (u1(x), u2(x), u3(x)). The boundary ∂Ω of Ω is
written as Γ ∪ Γ0 ∪ Γ1. The outward unit normal to ∂Ω is
denoted by n = (n1, n2, n3). The part Γ0 is the plane sur-
face EFGH belonging to the boundary of Ωcb, on which
there is a zero Dirichlet condition for u (see Fig. 1). The
part Γ1 is the plane surface ABCD belonging to the bound-
ary of ΩTi, on which a random surface force field F(x) =

(F1(x), F2(x), F3(x)) is applied (see Fig. 1). On the com-
plementary part Γ = ∂Ω\(Γ0∪Γ1), there is neither applied
force field nor Dirichlet condition. Let σ = {σij}ij be the

symmetric stress tensor and let Γc = ∂Ωcb ∩ ∂ΩTi be the
coupling interface between the cortical bone and the tita-
nium implant. It is assumed that the displacements u and
the surface-forces interaction σn = {σijnj}i are continu-
ous through Γc. In order to be able to define the objective
function, we introduce Γ2 ⊂ Γc as the plane surface ABIJ
that is a part of the coupling interface Γc (see Fig. 1).

The stochastic boundary value problem is written, for
i = 1, 2, 3, as

−σij,j = 0 in Ω , (1)

σijnj = Fj on Γ1 , (2)

ui = 0 on Γ0 . (3)

The stress tensor is written as σij = Cijkh εkh in which the
symmetric strain tensor εkh is such that εkh = 1

2 (uk,h(x) +
uh,k(x)). The elasticity field C is such that

C(x) = CTi , ∀ x ∈ ΩTi , (4)

C(x) = Ccb(x) , ∀ x ∈ Ωcb . (5)

Definition of the random surface force field F. The random
field {F(x), x ∈ Γ1} is also defined on probability space
(Θ, T ,P), is statistically independent of random elasticity
field Ccb, and is defined as follows. Let f = (f1, f2, f3) be
the R3-valued random variable independent of Ccb such that

f1 = 0 , f2 = −2 cosΦ , f3 = −2 sinΦ ,

in which Φ = (π/2)U where U is a uniform random vari-
able on [0 , 1]. Let ‖f‖ be the Euclidean norm of f. The ran-
dom surface force field F indexed by Γ1 is such that

F(x) =
100

|Γ1|‖f‖
f , x ∈ Γ1 ,

which is a random force expressed in Newton (N) per square
meter (m2) and where |Γ1| =

∫
Γ1
ds(x) is the area of sur-

face Γ1. It can be seen that∫
Γ1

‖F(x)‖ ds(x) = 100 N a.s.

Note that random surface force field F is independent of x,
will be independent of the design parameters (because x2s
will be fixed), belongs to plane Ox2 x3, has a random angle
with values in [0 , π/2] in this plane, and finally, F2(x) and
F3(x) are negative almost surely. This random surface force
field induces a traction of the normal stress through the part
Γ2 of coupling interface Γc.

Definition of the design parameters. We refer the reader to
Fig. 1 for the definition of the parameterization of the ge-
ometry. The length x2s is fixed to the value 0.4× L2. There
are two design parameters, the length a (channel depth) that
belongs to the admissible set Ca and the length b (thread or
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channel width) that belongs to the admissible set Cb such
that

Ca = [0.1 , 0.298]× L2 , Cb = [0.85 , 0.898]× L3 . (6)

For any given value of a and b, the geometry of domain ΩTi

and the geometry of domain Ωcb are symmetric with respect
to the plane of equation x3 = L3/2. Let w = (w1, w2) be
the two-dimensional design parameter, such that w1 = a

and w2 = b, with values in the admissible set Cw such that

Cw = Ca × Cb ⊂ R2 . (7)

Definition of the objective function. The objective function is
related to the normal stress to the part Γ2 of coupling inter-
face Γc between the cortical bone and the titanium implant.
For all w fixed in Cw, the objective function J(w) is defined
by

J(w) =
√
E{Q(w)2} , (8)

in which the positive-valued random variable Q(w) is de-
fined on (Θ, T ,P) and is written as

Q(w) = max
x∈Γ2

|σ22(x;w)| , (9)

where σ22(x;w) is the normal component along x2 of the
random stress tensor at point x in Γ2 (which depends on de-
sign parameter w) and where E is the mathematical expec-
tation.

Definition of the constraint function. Let Ωcb0 be the open
subset of Ωcb, which is defined as the set of all the points
x = (x1, x2, x3) such that 0 < x1 < L1, x2s − a < x2 <

x2s, and (L3 − b)/2 < x3 < (L3 + b)/2. The constraint
function w 7→ c(w) = (c1(w), c2(w)) is the mapping from
Cw into R2, such that c(w) < 0 that means c1(w) < 0

and c2(w) < 0. The two components of c(w) are related
to the maximum of the absolute value |σ13(x;w)| of the
shear stress for x ∈ Ωcb0 and to the maximum of the Von
Mises stress σVM(x;w) = 2−1/2{(κ1−κ2)2+(κ2−κ3)2+
(κ3 − κ1)2}1/2 for x ∈ Ωcb0 in which κα is a notation for
κα(x;w) that are the three eigenvalues of the stress matrix
[σ(x;w)]ij = σij(x;w). For all w fixed in Cw, the constraint
functions are thus defined by

ck(w) =
√
E{Bk(w)2} − clim

k , k ∈ {1, 2} , (10)

in which clim
1 = 5.0 × 109 Pa and clim

2 = 1.8 × 1010 Pa.
The positive-valued random variables B1(w) and B2(w) are
defined on probability space (Θ, T ,P) and are such that

B1(w) = max
x∈Ωcb0

|σ13(x;w)| , (11)

B2(w) = max
x∈Ωcb0

σVM(x;w) . (12)

Formulation of the optimization problem under uncertain-
ties. We formulate the optimization problem under uncer-
tainties for any dimension mw of the design parameter w =

(w1, . . . , wmw) that belongs to the admissible set Cw ⊂ Rmw
and for any value mc of the number of components of con-
straint function c(w) = (c1(w), . . . , cmc(w)) from Cw into
Rmc . In our case, we have mw = 2 and mc = 2. We
consider the following constrained nonconvex optimization
problem in presence of uncertainties with nonlinear con-
straints,

wopt = arg min
w∈Cw

c(w)<0

J(w) . (13)

Remark on the existence of a second-order solution. LetQ =

{Q(w),w ∈ Cw} and B = {B(w) = (B1(w), . . . ,Bmc(w)),

w ∈ Cw} be the dependent stochastic processes on (Θ, T ,P),
indexed by Cw, with values in R and Rmc respectively, de-
fined by Eqs. (9), (11), and (12). The stochastic modeling
of non-Gaussian random field Ccb, presented in Section 3,
is constructed in order that the stochastic elliptic bound-
ary value problem defined by Eqs. (1) to (5) has a unique
second-order stochastic solution such that the non-Gaussian
dependent stochastic processes Q and B are second-order
stochastic processes, that is to say, for all w in Cw,

E{Q(w)2} =
∫
Θ

Q(w; θ)2 dP(θ) < +∞ ,

E{‖B(w)‖2} =
∫
Θ

‖B(w; θ)‖2 dP(θ) < +∞ .

Consequently, for all w in Cw, J(w) and c(w) defined by
Eqs. (8) and (10) are finite.

3 Stochastic modeling of the biological tissue

In order to complete the probabilistic modeling of the bound-
ary value problem, we have to properly define the stochastic
model of the elasticity field of the cortical bone at mesoscale.

3.1 Random matrix representation of the fourth-order
tensor-valued random elasticity field for the cortical bone
medium

At mesoscale, the probabilistic model of the apparent elas-
ticity field {Ccb(x), x ∈ Ωcb} is carried out by introducing
a prior stochastic model for which the construction is based
on the following hypotheses.

1. Its statistical mean value Ccb = E{Ccb(x)} is assumed
to be independent of x and is also assumed to belong to
the material symmetry class of the transversely isotropic
elastic materials for which the symmetry axis is Ox1.
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2. Around the mean value, the statistical fluctuations field,
{Ccb(x)−Ccb, x ∈ Ωcb} is a non-Gaussian second-order
centered fourth-order tensor-valued random field that be-
longs to the material symmetry class of the anisotropic
elastic materials.

3. Random field {Ccb(x), x ∈ Ωcb} is the restriction to
bounded domainΩcb of a statistically homogeneous (sta-
tionary) random field {Ccb(x), x ∈ Rd} indexed by Rd
with d = 3 (we keep the same notation for the random
field indexed by Rd and its restriction to Ωcb).

In order to simplify the presentation, we introduce the ran-
dom elasticity field {[K(x)], x ∈ Rd}, indexed by Rd with
d = 3, with values in M+

n with n = 6, such that the fourth-
order elasticity tensor {Ccb(x), x ∈ Ωcb} is written as

Ccb
ijkh(x) = [K(x)]IJ , ∀ x ∈ Ωcb , (14)

in which the indices I = (i, j) and J = (k, h) belong to
the set {1, . . . , 6} (Kelvin matrix representation). Eq. (14)
means that random field Ccb indexed by Ωcb ⊂ Rd is repre-
sented by the restriction to Ωcb of the statistically homoge-
neous random field [K] indexed by Rd.

3.2 Prior stochastic model of the elasticity field for the
cortical bone medium

In this section, in order to give a sufficient readability of
this paper, the prior stochastic model that is used is briefly
summarized and additional details are given in Appendix A.
For the mesoscale stochastic modeling of apparent elasticity
field {[K(x)] , x ∈ Rd}, we use the prior stochastic model
initially introduced in [82], for which the parameterization
consists of the spatial-correlation lengths, a dispersion pa-
rameter, and a positive-definite lower bound [83,86]. This
model has been used for modeling and identifying cortical
bone in [61,63]. Note that extensions of this model can be
found in [30,31,86] for some positive-definite lower and
upper bounds introduced as constraints and also for ran-
dom fields with any material symmetry property. Let [K] =

E{[K(x)]} be the mean matrix in M+
n , which corresponds to

the positive-definite fourth-order tensor Ccb such that Ccb
ijkh

= [K]IJ . The Cholesky factorization of matrix [K] is writ-
ten as

[K] = [L]T [L] . (15)

Introduction of an adapted representation. The random field
{[K(x)], x ∈ Rd}, defined on probability space (Θ, T ,P),
indexed by Rd, with values in M+

n , is a non-Gaussian homo-
geneous second-order random field such that

[K(x)] = [K`] + [Lε]T [G0(x)] [Lε] , ∀x ∈ Rd . (16)

In Eq. (16), the positive-definite symmetric (n × n) real
matrix [K`] that is independent of x is the lower bound.

For the heterogeneous material that we are considering at
mesoscale, there is no available information concerning such
a lower bound. Therefore, the following model is used for
preserving the uniform ellipticity of the elasticity differen-
tial operator: the upper triangular (n × n) real matrix [Lε]
and the positive-definite symmetric (n×n) real matrix [K`],
which are independent of x, are written as

[Lε] =
1√
1 + ε

[L] , [K`] =
ε

1 + ε
[K] , (17)

in which ε > 0 is any fixed positive real number (for in-
stance, ε = 10−6). In Eq. (16), the random field {[G0(x)], x ∈
Rd} is defined on (Θ, T ,P), is indexed by Rd with values in
M+
n , is homogeneous on Rd, and is a non-Gaussian second-

order random field such that, for all x in Rd,

E{[G0(x)]} = [In] , [G0(x)] > 0 a.s. (18)

The construction of the prior stochastic model of the non-
Gaussian random field [G0] and its generator of realizations
are detailed in Appendix A. Finally, it can easily be seen
that, for all x in Rd,

E{[K(x)]} = [K] ∈M+
n , [K(x)]− [K`] > 0 a.s. , (19)

in which the notation, [A] > 0 a.s., means that all the ran-
dom eigenvalues of the symmetric real random matrix [A]

are strictly positive almost surely.

Summarizing the hyperparameters of the prior stochastic
model. Let s = (s1, . . . , sµ) be the vector of the hyperpa-
rameters of the prior stochastic model {[K(x; s)], x ∈ Rd}
that has been constructed for a transversely isotropic mean
model with anisotropic statistical fluctuations. Vector s be-
longs to Cad ⊂ Rµ and its components are constituted of

1. the reshaping of [K] ∈ M+
n (R). Since the mean value

is assumed to be in the transversely isotropic class for
which the symmetry is with respect to a rotation around
symmetry axisOx1, matrix [K ] depends only on the five
mechanical parameters of the constitutive equation: E1,
ν12, and G12 for the longitudinal direction Ox1 and, E2

and ν23 for the transverse direction Ox2.
2. the three spatial-correlation lengths, λ1, λ2, λ3, which

are defined in Appendix A.
3. the dispersion parameter δ that allows the statistical fluc-

tuations to be controlled in the anisotropic class, which
must be such that 0 < δ <

√
(n+ 1)/(n+ 5), and

which is defined in Appendix A.

3.3 Experimental identification of the prior stochastic
model of the cortical bone medium at mesoscale

For the prior stochastic model of the apparent elasticity field
of the cortical bone medium at mesoscale, we reuse the me-
chanical properties and the values of the hyperparameters
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that have experimentally been identified in [63,64] by the
means of a multiscale experiment based on a digital image
correlation technique (see Fig. 3). For such an experiment,
only a single specimen was measured, was submitted to a
given load applied at the macroscale, and was tested. The
displacement field was measured at the macroscale (with a
spatial resolution 10−3m), and simultaneously, was mea-
sured at the mesoscale (with a spatial resolution 10−5m).
The measured strain fields were directly deduced from the
measured displacement fields. The experimental identifica-
tion of the hyperparameters of the prior stochastic model has
given the following values for the cortical bone at mesoscale:
- for the transversely isotropic parameters of the mean elas-
ticity tensor: E1 = 16.6 × 109 Pa, ν12 = 0.37, G12 =

4.7× 109 Pa, E2 = 9.5× 109 Pa, and ν23 = 0.37.
- for the 3 spatial-correlation lengths: λ1 = 10−2m, λ2 =

λ3 = 5× 10−5m.
- for the dispersion parameter δ = 0.28.

4 Stochastic computational model

The stochastic computational model (SCM) is obtained by
the finite element discretization of the stochastic boundary
value problem defined by Eqs. (1) to (5). This finite ele-
ment model is constructed using a regular cartesian mesh
of 11× 101× 101 = 112,211 nodes and 10× 100× 100 =

100,000 finite elements that are 8-nodes solid elements with
2 × 2 × 2 Gauss-Legendre quadrature points. This mesh
is fixed and then independent of the value of the design
parameter w. For any given value of the design parameter
w belonging to its admissible set Cw, the cortical bone do-
main ΩTi(w) and the titanium implant domain Ωcb(w) de-
pend on w and are defined in order that the coupling inter-
face Γc(w) = ∂Ωcb(w) ∩ ∂ΩTi(w) between these two do-
mains coincides with the mesh faces of the finite element
mesh of Ω. Before applying the zero Dirichlet condition
on Γ0, there are 336,333 degrees of freedom and 800,000

Gauss-Legendre quadrature points.
Random field {[K(x)] , x ∈ Ωcb(w)} is discretized at all

the Gauss-Legendre quadrature points {xα(w)}α belonging
to Ωcb(w). In the three directions, the mesh sizes are suffi-
cient small with respect to the spatial correlation lengths of

Fig. 3 The specimen of cortical bone is a cube with dimensions
0.01×0.01×0.01m3 (left figure). Measuring bench at LMS of Ecole
Polytechnique (right figure). [Figures from [64]].

the random elasticity field for guarantying the mean-square
convergence of the integrals related to the computation of
the random elementary stiffness matrices (see [83]).

For any value w` of w and for θ′` and θ′′` inΘ, let F(·; θ′`)
be a realization of the random surface force field F (that is
independent of w) and let {[K(xα(w`)); θ′′` )]}α be a real-
ization of the discretized random elasticity field. The corre-
sponding realization q` = Q(w`; θ′`, θ′′` ) of random variable
Q(w`) and the corresponding realization b` = B(w`; θ′`, θ′′` )
of random variable B(w`) are then computed with the SCM
by solving a linear matrix equation for the discretized dis-
placement field and by using Eqs. (9), (11), and (12).

5 Solving the optimization design problem under
uncertainties with a probabilistic learning algorithm

5.1 Major difficulties encountered for solving the
optimization problem under uncertainties

We start this section in describing the most classical method
that will allow for constructing the reference solution but
for which the numerical cost is very high. Such a method
has been evoked in Section 1. The optimization problem de-
fined by Eq. (13) is solved by using an optimization algo-
rithm such as the grid search. For each value of w given in
Cw, which is proposed by the optimization algorithm, the
mathematical expectations E{Q(w)2} and E{Bk(w)2} are
estimated with the Monte Carlo method as follows. For ev-
ery w given in Cw,N ′s independent realizationsQ(w; θ′`, θ

′′
` ),

B1(w; θ′`, θ
′′
` ), andB2(w; θ′`, θ

′′
` ) are computed with the SCM.

ForN ′s sufficiently large, an accurate estimation of the math-
ematical expectations can be computed according to,

E{Q(w)2} ' 1
N ′s

∑N ′s
`=1Q(w; θ′`, θ

′′
` )

2 , (20)

E{Bk(w)2} ' 1
N ′s

∑N ′s
`=1 Bk(w; θ′`, θ

′′
` )

2 . (21)

It can be seen that, if the optimization algorithm requiresNs
evaluations of the objective and constraint functions, then
the SCM must be used N ′s× Ns times, which is generally
very prohibitive. The probabilistic learning proposed in Sec-
tion 5.2 will allow drastically for reducing the number of
calls to the SCM by using only N calls with N � N ′s×Ns.

5.2 Probabilistic learning algorithm proposed for
circumvent the major difficulties

In this section, we summarize the methodology that we pro-
pose to use. The ingredients of the probabilistic learning al-
gorithm and smoothing technique are the following.

(i) The first ingredient is the probabilistic learning on
manifold that has been presented in [85,87]. This algorithm
allows for generating additional realizations concentrated on
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the manifold that is identified by using a dataset, without
performing additional function evaluations by using the SCM.

(ii) The second ingredient is a smoothing technique [25,
88] for estimating J(w0) and c(w0) at any point w0 in Cw,
by using only the additional realizations generated from the
given dataset. The points w0 are those that are generated for
the optimization algorithm.

5.3 Probabilistic learning algorithm and smoothing
technique for avoiding a large number of functions
evaluations with the SCM

The algorithm is constituted of 3 steps.

Step 1: Construction of a dataset by using only N functions
evaluations. Such a number N is defined as follows. Let us
consider a fixed number N0 of values w̃1

, . . . , w̃N0 in Cw of
vector w, which are the values of w generated by the opti-
mization algorithm as it explores the admissible set Cw. For
`′ = 1, . . . , N0, for `′′ = 1, . . . , Nsd, for ` = (`′, `′′) in
{1, . . . , N} with N = N0 ×Nsd, and for θ′`′′ and θ′′`′′ in Θ,
let

w` = w̃`
′
, q` = Q(w`

′
; θ′`′′ , θ

′′
`′′) , b` = B(w`

′
; θ′`′′ , θ

′′
`′′) ,

(22)

be the realizations of the dependent random variablesQ(w`′)
and B(w`

′
) computed using the SCM, where Nsd is a num-

ber of realizations. In general, Nsd is chosen as 1 but, for
increasing the quality of the geometry identification of the
manifold on which is concentrated the probability distribu-
tion, Nsd can sometimes be chosen as a few units (for in-
stance, Nsd = 5 or 10, but stays such that Nsd � N ′s. Let
be n = mw + 1 +mc and let us now introduce the N data
points y1, . . . , yN in Rn such that, for ` = 1, . . . , N ,

y` = (w`, q`,b`) ∈ Rn = Rmw × R× Rmc . (23)

Step 2: Construction of the diffusion-maps basis and gen-
erator of additional realizations. We introduce the random
variable

Y = (W, Q,B) , (24)

with values in Rn such that y` = (w`, q`,b`) are N in-
dependent realizations of Y. Note that mathematical sym-
bol Q must carefully be distinguished from Q defined by
Eq. (9). The diffusion-maps basis is constructed by using
{y`}`=1,...,N . Then, without performing additional function
evaluations with the SCM, νsim � N additional realizations

y`ar = (w`ar, q
`
ar,b

`
ar) , ` = 1, . . . , νsim (25)

are computed by solving a nonlinear Itô stochastic differen-
tial equation. The algorithm is summarized in Appendix B.

Step 3: Smoothing technique by using a nonparametric sta-
tistical estimation. For any point w0 in Cw, the values J(w0)

and c(w0) of J and c are calculated by using the follow-
ing smoothing technique of the mathematical expectations,
E{Q(w0)2} and E{Bk(w0)2}:

E{Q(w0)2} ' E{Q2 |W = w0} , (26)

E{Bk(w0)2} ' E{B2
k |W = w0} , k = 1, . . . ,mc . (27)

The calculation of the conditional mathematical expectations
appearing in the right-hand sides of Eqs. (26) and (27) is
carried out by using the kernel density estimation method
with the additional realizations {y`ar = (w`ar, q

`
ar,b

`
ar), ` =

1, . . . , νsim} computed in Step 2 without performing addi-
tional function evaluations with the SCM. For such a calcu-
lation, two explicit numerical formulas have been developed
and are given in Appendix C.

5.4 Remark on the efficiency of the probabilistic learning
algorithm with respect to the number of design parameters

There is no theoretical limit to the value of the number mw

of design parameters in the proposed probabilistic learn-
ing method. However, the larger the mw number is and the
larger the computing resource should be, but this is true
for any optimization algorithm that is adapted for solving
nonconvex problems, especially when a genetic algorithm
is used. However, for the probabilistic learning algorithm to
be effective, the numberN of points in the dataset for which
each point y` is computed using the SCM must be adapted
to the dimension mw of the w parameter, so that the algo-
rithm can actually learn. In general, if the numbermw of de-
sign parameters increases, then the number N of points will
have to increase, but a genetic algorithm coupled to the pro-
posed probabilistic learning algorithm, will always show a
very important gain. For example, it would be quite feasible
to do topological optimization with the proposed methodol-
ogy.

6 Computation of the reference optimal solution with
the SCM and convergence analysis of the stochastic
solver

In this section, we compute the reference optimal solution
by using Eqs. (20) and (21) with N ′s calls to the SCM as ex-
plained in Section 5.1. A convergence analysis with respect
to N ′s is carried out in order to obtain the converged value of
the reference optimal solution.

Optimizer. The optimization problem defined by Eq. (13) is
solved by using the grid search algorithm. The admissible
set Cw = Ca × Cb defined by Eq. (7) is replaced by the finite
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subset Cgrid
w of Cw, which has been constructed by an adapted

training procedure, such that

Cgrid
w = Cgrid

a × C
grid
b ⊂ Cw ⊂ R2 ,

in which Cgrid
a = L2×{0.1, 0.13, 0.16, 0.19, 0.197, 0.2, 0.203,

0.206, 0.209, 0.212, 0.216, 0.218, 0.221, 0.224, 0.227, 0.230,

0.232, 0.234, 0.237, 0.24, 0.25, 0.26, 0.28, 0.298} is made up
of 24 points and where Cgrid

b = L3 × {0.850, 0.862, 0.874,
0.886, 0.898} is made up of 5 points. The number of points
in Cgrid

w is thus 120 = 24 × 5 and has voluntary been lim-
ited so that the computation of the optimal reference solu-
tion can be effectively performed with a feasible elapse time
(see Section 8). Note that pre-calculations have been done
in order to study the shape of the objective function in or-
der to validate the training procedure that has been done for
defining the points in Cgrid

w . The reference optimal solution is
denoted by wopt

ref and is obtained by solving the approximate
optimization problem,

wopt
ref = arg min

w∈Cgrid
w

c(w)<0

J(w) .

Stochastic solver and convergence analysis of the reference
optimal solution. The stochastic solver used for construct-
ing the solution with the SCM is the Monte Carlo method.
For each w belonging to the grid Cgrid

w ⊂ Cw, Eqs. (20) and
(21) are computed with N ′s independent realizations such
that N ′s ∈ [5 , 175] (the closed interval is made of integers
5 to 175 by step of 5). The convergence analysis of the op-
timal solution wopt(N ′s) shows that the component wopt

1 (N ′s)

of wopt(N ′s) is converged for N ′s ≥ 145 while the compo-
nent wopt

2 (N ′s) of wopt(N ′s) is converged as soon as N ′s ≥ 5.
Fig. 4 displays the graph of the function N ′s 7→ wopt

1 (N ′s) for
N ′s ∈ [5 , 175].

The reference optimal solution is thus defined as the op-
timal solution for N ′s = 145 and is denoted by wopt

ref =

(aopt
ref , b

opt
ref ) with aopt

ref = wopt
1 (N ′s) and bopt

ref = wopt
2 (N ′s). We

have obtained,

aopt
ref = 2.60× 10−4m , bopt

ref = 8.50× 10−4m.

The corresponding value of the objective function is

J(wopt
ref ) = 6.014× 109 Pa .

The constraint c1 defined by Eqs. (10) and (11) is saturated
and is such that

c1(wopt
ref ) = 5.00× 109 − 5.00× 109 = 0Pa ,

while the constraint c2 defined by Eqs. (10) and (12) is al-
most saturated and is such that

c2(wopt
ref ) = 1.77× 1010− 1.80× 1010 = −0.03× 1010 Pa .

Remark. In Fig. 4, the ”oscillations” that appear in the curve,

Fig. 4 Converge analysis of the reference optimal solution. Graph of
N ′s 7→ wopt

1 (N ′s) in whichw1 is the design parameter a of the implant
and where N ′s ∈ [5 , 175] is the number of realizations used by the
stochastic solver (Monte Carlo numerical method).

N ′s 7→ wopt
1 (N ′s), are not directly due the mean-square con-

vergence with respect toN ′s of the random solution {u(x;w),

x ∈ Ω} for a fixed value of w, but are relative to the func-
tion N ′s 7→ wopt

1 (N ′s) that is the solution of the optimization
problem defined by Eq. (13), which involves the family of
random fields, {{u(x;w), x ∈ Ω},w ∈ Cw, c(w) < 0}. For
every fixed number N ′s of realizations for which the conver-
gence is not reached, there is no reason for that the values
of w that are proposed by the optimizer correspond to the
same rate of convergence. Consequently, before the conver-
gence be reached, the graph of function N ′s 7→ wopt

1 (N ′s) can
oscillated a lot before convergence with respect to N ′s. The
convergence is stabilized for N ′s ≥ 110 and is converged
for N ′s ≥ 150. On the other hand, the oscillations that ap-
pear in Figs. 5 to 7, for which the value of N ′s is fixed to a
value for which the convergence of the optimal solution is
reached, are not due the smoothing technique used for plot-
ting the graphs. These oscillations are due to the variability
of the random stress field in the cortical bone in the neigh-
borhood of the implant when the geometry of the implant
changes with w.

3D visualization of the reference objective function and of
the reference constraint functions. For the 3D visualization,
we introduce a grid of points in Cw, which is defined as fol-
lows. Let Cg be the finite subset of Cw made up of Ng =

10,000 points, {wig = (wig,1, w
i
g,2), i = 1, . . . , Ng}, ob-

tained by a uniform cartesian mesh of 100 × 100 points of
Cw = Ca × Cb ⊂ R2. For N ′s = 145, Fig. 5 displays the
graph of function w 7→ J(w) restricted to Cg while Figs. 6
and 7 display the graphs of functions w 7→ c1(w) + clim

1

and w 7→ c2(w) + clim
2 also restricted to Cg . Note that for

every point wig in Cg , J(wig) and c(wig) are computed by us-
ing a smoothing technique similar to the one presented in
Appendix C. This smoothing technique will not be detailed
here, because this 3D visualization is only performed for a
qualitative analysis of the geometrical surfaces that are rela-
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Fig. 5 Graph of the reference objective function w 7→ J(w) =√
E{Q(w)2} computed with N ′s = 145 realizations for the stochas-

tic solver (Monte Carlo numerical method) and for w belonging to the
finite subset Cg of Cw made up of Ng = 10,000 points wig .

tively complex and that show that the optimization problem
is effectively nonconvex.

Remark 1. The reference optimal solution has been solved
on Cgrid

w and not on Cg for the following reasons. The number
of points in Cg is too large (Ng = 10,000) for being able to
do the computation with a reasonable elapse time (see Sec-
tion 8). If the optimal solution had been constructed as the
minimum over the set {J(wig), i = 1, . . . , Ng}, we would
have constructed an approximation of the optimal solution
due to the use of the smoothing technique and not the refer-
ence optimal solution.

Remark 2. The convergence analysis with respect to N ′s dis-
played in Fig. 4 shows that a significant number of realiza-
tions (N ′s ≥ 150) is required for obtaining the convergence
of the optimal solution. This means that the statistical fluc-
tuations of Q(w) (related to the solution of the stochastic
boundary value problem), induced by the statistical fluctu-
ations of the apparent elasticity field of the heterogeneous
medium at mesoscale (x-dependent coefficients of the stochas-
tic elliptic operator), are significant. This relatively large
value of N ′s that is required for reaching convergence is the
major reason for which the optimization problem is numer-
ically expensive with a classical optimization algorithm (as
explained at the end of Section 5.1), because, for each value
w proposed by the optimizer, the stochastic computational
model must be called N ′S times.

7 Computation of the optimal solution using the
probabilistic learning algorithm

In this section, we compute an approximation of the opti-
mal solution by using the probabilistic learning algorithm
presented in Section 5.3 and we compare the approximation
computed with a low numerical cost to the reference optimal

Fig. 6 Graph of the reference constraint function w 7→ c1(w) + clim
1

computed withN ′s = 145 realizations for the stochastic solver (Monte
Carlo numerical method) and for w belonging to the finite subset Cg of
Cw made up of Ng = 10,000 points wig .

Fig. 7 Graph of the reference constraint function w 7→ c2(w) + clim
2

computed withN ′s = 145 realizations for the stochastic solver (Monte
Carlo numerical method) and for w belonging to the finite subset Cg of
Cw made up of Ng = 10,000 points wig .

solution computed with a very high numerical cost.

Optimizer. As for the computation of the reference optimal
solution presented in Section 6, the optimization problem
defined by Eq. (13) is solved by using the grid search algo-
rithm for which the admissible set Cw = Ca × Cb defined by
Eq. (7) is replaced by the finite subset Cg of Cw made up of
Ng = 10,000 points {wig, i = 1, . . . , Ng} defined in Sec-
tion 6.

Construction of the dataset by using only the N evaluations
of the SCM. We consider N = 600 points w1, . . . ,wN that
are generated as follows. For N0 = 120, let w̃1

, . . . , w̃N0

be the points that are randomly generated with a uniform
distribution on the subset [0.1, 0.298] × [0.8075, 0.898] of
R2. For Nsd = 5, we generate the N = N0 × Nsd =

120 × 5 = 600 points w1, . . . ,wN as explained in Step 1
of Section 5.3 (see Eq. (22)). The N data points y1, . . . , yN
with y` = (w`, q`,b`) in Rn defined by Eq. (23) are then
computed by using the SCM with w`, q`, and b` defined by
Eq. (22).
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Remark. As explained in Step 1 of Section 5.3, the value of
Nsd must be chosen small enough, a few units. Since the
geometry of the surface defined by the objective function
is relatively complex (see Fig. 5), the grid search algorithm
needs sufficient information for identifying the optimal so-
lution. The minimum value, Nsd = 1, has been tried, but
this value of Nsd is not sufficient for that the probabilistic
learning algorithm sufficiently learns from the correspond-
ing N = N0×Nsd points. This is the reason why, the value
Nsd = 5 has been retained.

Diffusion-maps basis and generator of additional realiza-
tions. Step 2 of Section 5.3, for which the details of the al-
gorithm are summarized in Appendix B, is used for con-
structing the additional realizations. In order to analyze the
convergence of the optimal solution with respect to the value
of parameter nMC, the calculations have been carried out for
nMC ∈ {50, 100, 150, 200, 250, 300}. Therefore, the number
νsim = nMC × N of additional realizations vary in the inter-
val [3 , 18] × 104. The additional realizations are generated
without using the SCM as follows.

1. The N = 600 data points are normalized by using the
PCA presented in Paragraph 1 of Appendix B. As n = 5

is small and as all the eigenvalues are strictly positive, ν
is chosen equal to n and therefore, ν = 5.

2. The diffusion-maps basis is computed as explained in
Paragraph 2 of Appendix B. The smoothing parameter is
chosen as ε = 10. Figure 8 displays the graph α 7→ Λα
of the 20 largest eigenvalues of the transition matrix [P].
This graph shows that the first six eigenvalues are signif-
icant. Eliminating the first eigenvalue Λ1 = 1 that cor-
respond to the constant vector basis, the final dimension
of the diffusion-maps basis is m = 5 and the vectors
g1, . . . , gm are such that gα = Λα+1ψ

α+1 ∈ RN .
3. For each given value of nMC, νsim = nMC×600 additional

realizations y`ar = (w`ar, q
`
ar, b`ar) with ` = 1, . . . , νsim

are generated (without using the SCM) by using Para-
graphs 4 and 5 of Appendix B with the following values
for the parameters: f0 = 150, ∆r = 0.12352, M0 = 1,
and M = M0 × nMC. For instance, for N = 600 points
(w`1, w

`
2, q

`) and nMC = 250, Fig. 9 displays the νsim =

150,000 additional realizations (w`ar,1, w
`
ar,2, q

`
ar) gener-

ated with the probabilistic learning algorithm.

Remark. The diffusion-maps basis depends on ε but is not
very sensitive to ε. Value ε = 10 has been estimated by con-
structing the graph of the eigenvalues shows in Fig. 8 for
several values of ε (the numerical cost of such an analysis
is negligible). The value retained corresponds to the one for
which the graph of the eigenvalues is not continuously de-
creasing but exhibits a clear discontinuity as shown in Fig. 8
(see [85]).

Fig. 8 For N = 600 (number of points in the dataset used as the
input for the probabilistic learning algorithm and constructed by using
the stochastic computational model), the figure displays the first twenty
largest eigenvalues (in log10-scale) of the transition matrix [P] ∈ MN ,
which allows for constructing the diffusion basis as explained in Para-
graph 2 of Appendix B.

Fig. 9 Dataset of N = 600 points (w`1, w
`
2, q

`) (blue symbols)
and νsim = nMC × N = 250 × 600 = 150,000 additional
points (w`ar,1, w

`
ar,2, q

`
ar) (red symbols) generated with the probabilis-

tic learning algorithm.

Smoothing technique and solving the optimization problem.
For a given value of nMC yielding a value of νsim, the optimal
solution computed with the probabilistic learning algorithm
is denoted by wopt

pla(nMC) and is obtained by solving the ap-
proximate optimization problem,

wopt
pla(nMC) = arg min

w∈Cg
c(w)<0

J(w) ,

which is equivalent to

wopt
pla(nMC) = min

i=1,...,Ng
c(wig)<0

J(wig) .

For every point wig in Cg , J(wig) and c(wig) are computed by
using Appendix C in which w0 has to be chosen as wig .

Convergence analysis of the optimal solution wopt
pla(nMC) with

respect to nMC. For nMC in [50 , 300], the optimal solution
is rewritten as wopt

pla(nMC) = (aopt
pla(nMC), b

opt
pla(nMC)). Figure 10

displays the graph of function nMC 7→ aopt
pla(nMC) for nMC ∈
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[50 , 300] while nMC 7→ bopt
pla(nMC) is constant and equal to

8.50× 10−4m.
Optimal solution for nMC = 250. Figure 10 shows that the
optimal solution is converged for nMC ≥ 250. The converged
optimal solution, which is denoted by wopt

pla = (aopt
pla , b

opt
pla), is

such that

aopt
pla = 2.56× 10−4m , bopt

pla = 8.50× 10−4m.

The corresponding value of the objective function is

J(wopt
pla) = 7.29× 109 Pa .

The constraint c1 defined by Eqs. (10) and (11) is saturated
and is such that

c1(wopt
pla) = 4.61× 109 − 5.00× 109 = −0.39× 109 Pa ,

while the constraint c2 defined by Eqs. (10) and (12) is al-
most saturated and is such that

c2(wopt
pla) = 1.67× 1010− 1.80× 1010 = −0.13× 1010 Pa .

The comparison of this solution wopt
pla computed with the prob-

abilistic algorithm, with the reference optimal solution wopt
ref

is very good although a small bias induced by the statisti-
cal mean of the additional realizations appears, and lightly
shifts the values of the objective and constraints functions.

8 Analysis of the CPU-time gain

In this section, we present the CPU-time gain obtained by
using the probabilistic learning algorithm with respect to the
usual approach. The computation have been performed with
a Linux work station using parallel computing with 40 work-
ers (cores). The parallelization is carried out with respect to
the values of the design parameters (each worker is devoted
to a given value of the design parameter). The CPU time is
equal to the elapse time multiplied by the number of work-
ers (40).

Fig. 10 Convergence analysis of the optimal solution: graph of func-
tion nMC 7→ aopt

pla(nMC) for nMC ∈ [50 , 300].

– For the construction of the reference optimal solution us-
ing the SCM with N ′s = 145 corresponding to the con-
vergence, the elapse time is 64 hours (CPU time 2,560

hours).
– For the construction of the optimal solution using the

probabilistic learning algorithm withNsd = 5, the elapse
time is 2.6 hours (CPU time 104 hours).

It can be seen that the CPU-time gain factor is N ′s/nsd,
which is coherent. For the case analyzed the gain factor is
about 25.

9 Conclusion

We have presented an efficient methodology for the design
optimization of an implant in biological tissue at the meso-
scale for which it is necessary to use a realistic stochastic
model of the elasticity tensor field, because a separation of
the scales cannot be obtained and consequently, the stress
and the strain fields used for calculating the objective and
the constraint functions strongly depend on the statistical
fluctuations in the biological tissue. The numerical model
used has been chosen sufficiently simple to be in capabil-
ity to describe all data so that the results could be repro-
duced by anyone. To solve the problem of constrained non-
convex optimization in the presence of uncertainties corre-
sponding to design optimization, an advanced algorithm of
probabilistic learning has been used to reduce the computa-
tion time. The two ingredients of this algorithm have already
been published in three papers, but we have preferred syn-
thesized and summarized the algorithm in the appendices in
order to confer a readability to the paper. The results and
the gain obtained would seem open an interesting way for
making the design optimization of implants in biological tis-
sues using computers of intermediate power and certainly,
to perform the design optimization with very high fidelity
computational models of implants having a very complex
3D geometry by using powerful computers. The methodol-
ogy presented could also help to solve design optimization
problems for large-scale uncertain computational models in
computational mechanics. Finally, it should be noted that
the probabilistic learning algorithm proposed for solving the
optimization problem is not intrusive. The dataset used by
the probabilistic learning algorithm can be constructed with
any commercial software that has the capability to analyze
stochastic computational models and that can be considered
as a black box. The optimization performed with the proba-
bilistic learning algorithm is a post processing, independent
of the black box, for which the input of the algorithm is the
dataset constructed with the black box.
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A Construction of the non-Gaussian random field [G0]

and its generator of realizations

The non-Gaussian random field {[G0(x)], x ∈ Rd} is defined on
(Θ, T ,P), is indexed by Rd with values in M+

n (R), and is constructed
by using a family of Gaussian random fields {Ujk(x), x ∈ Rd} for
1 ≤ j ≤ k ≤ n, which will be defined after. The spatial-correlation
structure of non-Gaussian random field [G0] is induced by the spatial-
correlation structure of Gaussian random fields {Ujk}jk and its sta-
tistical fluctuations will be controlled by a positive hyperparameter δ
that is taken independent of x and such that

0 < δ <
√

(n+ 1)/(n+ 5) < 1 . (28)

The construction of random field {[G0] is the following and gives a
generator of independent realizations.

− For all x fixed in Rd, the random matrix [G0(x)] is written as

[G0(x)] = [L(x)]T [L(x)] , (29)

in which [L(x)] is the upper (n×n) real triangular random matrix.
− For 1 ≤ j ≤ k ≤ n, the random fields {[L(x)]jk, x ∈ Rd} are

independent.
− For j < k, the real-valued random field {[L(x)]jk, x ∈ Rd}

is defined by [L(x)]jk = σn Ujk(x) in which σn is such that
σn = δ/

√
n+ 1.

− For j = k, the positive-valued random field {[L(x)]jj , x ∈ Rd}
is defined by [L(x)]jj = σn

√
2h(Ujj(x), aj) in which aj =

(n+ 1)/(2δ2) + (1− j)/2. Function u 7→ h(u, α) is such that
Γα = h(U,α) is a gamma random variable with parameter α
when U is a normalized Gaussian random variable.

Concerning the construction of the family of Gaussian random
fields, a more general formulation can be found in [83,86] than the
one presented hereinafter and that corresponds to the stochastic model
that has been experimentally identified. Such a family {Ujk(x), x ∈
Rd}1≤j≤k≤n of random fields can be viewed as the Gaussian stochas-
tic germs of the non-Gaussian random field [G0] and is constructed
as follows. Each random field Ujk of the family is an independent
copy of a unique Gaussian, homogeneous, second-order, real-valued
random field, U = {U(x), x ∈ Rd} that is defined on probability
space (Θ, T ,P) and that is such that

E{U(x)} = 0 , E{U(x)2} = 1 . (30)

Random field U is thus completely and uniquely defined by its auto-
correlation function

ζ 7→ RU (ζ) = E{U(x + ζ)U(x)} , (31)

from Rd into R, such that RU (0) = 1. Let ζ = (ζ1, . . . , ζd) be in
Rd. The spatial-correlation lengths λ1, . . . , λd of random field U are
defined, for α = 1, . . . d, by

λα =

∫ +∞

0

|RU (0, . . . , ζα, . . . , 0)| dζα , (32)

and are chosen as hyperparameters. The autocorrelation function is
written as

RU (ζ) = ρ1(ζ1)× . . .× ρd(ζd) , (33)

ρα(ζα) = {4(λα)2/(π2ζ2α)} sin2(πζα/(2λα)) . (34)

Consequently, random fieldU is mean-square continuous on Rd and its
power spectral density function defined on Rd has a compact support
that is written as,

[−π/λ1 , π/λ1]× . . .× [−π/λd , π/λd] . (35)

It should be noted that any other autocorrelation function could be cho-
sen in such a construction. Nevertheless, the great interest of this sim-
ple choice is briefly summarized as follows: (1) the spatial-correlation
lengths are directly controlled for U and consequently, are controlled
for [G0] and [K], (2) the support of the spectral measure is compact that
implies the regularity of the sample paths and in addition, allows for
controlling the space sampling of the random field [K] for construct-
ing the finite element discretization by using the Shannon theorem, (3)
this model exhibit only d real parameters that is well adapted for the
experimental identification that requires to solve a statistical inverse
problem related to a boundary value problem. The details concerning
the generation of realizations of random field U can be found in [82,
83]. One possible method is based on the usual numerical simulation
of homogeneous Gaussian vector-valued random field constructed with
the stochastic integral representation of homogeneous stochastic fields
(see [69,79]).

B Construction of the diffusion-maps basis and
generator of additional realizations

In this Appendix, we summarize the probabilistic learning algorithm
[85,87] that we use. This appendix gives the algorithm for construct-
ing the diffusion-maps basis and gives the algorithm for generating
additional realizations by solving a nonlinear Itô stochastic differential
equation.

Let {y` = (w`, q`, b`), ` = 1, . . . , N} be the set of the N data points
in Rn = Rmw × R × Rmc that have been computed using the SCM
as explained in Section 5.3. Let Y be the random variable

Y = (W, Q,B) , (36)

with values in Rn = Rmw ×R×Rmc , with W = (W1, . . . ,Wmw
)

and B = (B1, . . . , Bmc
), introduced in Step 2 of Section 5.3, for

which {y`, ` = 1, . . . , N} constitutes N independent realizations.
The objective of this Appendix is to summarize the probabilistic learn-
ing algorithm that allows for generating νsim � N additional realiza-
tions,

y`ar = (w`ar, q
`
ar, b

`
ar) , ` = 1, . . . , νsim ,

without performing additional function evaluations with the SCM.

1. Data normalization. Let Y be the Rn-valued second-order random
vector defined by Eq. (36) for which theN independent realizations are
theN data points in Rn, represented by the matrix [yd] = [y1 . . . yN ]
in Mn,N . Let [Y] = [Y1, . . . ,YN ] be the random matrix with values
in Mn,N , whose columns are N independent copies of random vector
Y. The normalization of random matrix [Y] is attained with random
matrix [H] = [H1, . . . ,HN ] with values in Mν,N , whose columns
areN independent copies of a random vector H, with ν ≤ n, obtained
by using the principal component analysis that allows us to write [Y]
as

[Y] = [y] + [ϕ] [λ]1/2 [H] , (37)

in which [λ] is the (ν × ν) diagonal matrix of the ν positive eigenval-
ues of the empirical estimate of the covariance matrix of Y (computed
using y1, . . . , yN ), where [ϕ] is the (n × ν) matrix of the associated
eigenvectors such [ϕ]T [ϕ] = [Iν ], and where [y] is the matrix in
Mn,N with identical columns, each one being equal to the empirical
estimate y ∈ Rn of the mean value of random vector y (computed us-
ing using y1, . . . , yN ). The sample [ηd] = [η1 . . .ηN ] ∈ Mν,N of
[H] (associated with the sample [yd] of [Y]) is computed by

[ηd] = [λ]−1/2[ϕ]T ([yd]− [y]) .
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When n is small, ν can be chosen as n. If some eigenvalues are zero,
they must be eliminated and then ν < n. When n is high, a statistical
reduction can be done as usual and therefore ν < n in such a case.

2. Diffusion-maps basis. For 1 < m+1 ≤ N , let [g] = [g1 . . . gm] ∈
MN,m be the ”diffusion-maps basis” that is constructed by using the
diffusion maps proposed in [15]. Let [b] be the positive-definite diago-
nal real matrix in MN such that [b]ij = δij

∑N
j′=1[K]ij′ in which

[K]ij′ = exp(− 1
4ε
‖ηi − ηj′‖2), depending on a real smoothing

parameter ε > 0. Let [P] be the transition matrix in MN such that
[P] = [b]−1 [K]. Let ψ1, . . . ,ψm+1 be the right eigenvectors of
[P], associated with the eigenvalues 1 = Λ1 > Λ2 > . . . > Λm+1,
such that

[P]ψα = Λα ψ
α .

The normalization of the right eigenvectors of [P] is such that the ma-
trix [ψ] = [ψ1 . . .ψm+1] is chosen for that [ψ]T [b] [ψ] = [Im+1].
The eigenvector ψ1 associated with the largest eigenvalue Λ1 = 1 is
a constant vector (all its components are equal). The ”diffusion-maps
basis” is defined by [g] = [g1 . . . gm] ∈ MN,m such that

gα = Λα+1 ψ
α+1 ∈ RN .

3. Reduced-order representation of random matrices [H] and [Y]. The
diffusion-maps vectors g1, . . . , gm ∈ RN span a subspace of RN that
characterizes the local geometry structure of the dataset concentrated
in the neighborhood of a subset of RN . The reduced-order representa-
tion is obtained in projecting each column of the MN,ν -valued random
matrix [H]T on the subspace of RN , spanned by {g1 . . . gm}. Let [Z]
be the random matrix with values in Mν,m such that [H] = [Z] [g]T .
As the matrix [g]T [g] ∈ Mm is invertible, the least squares approxi-
mation of Z is written as [Z] = [H] [a] in which

[a] = [g] ([g]T [g])−1 ∈ MN,m ,

and the realization [zd] ∈ Mν,m of [Z] is written as

[zd] = [ηd] [a] ∈ Mν,m .

The representation of random matrix [Y] as function of random matrix
[Z] is then given by

[Y] = [y] + [ϕ] [λ]1/2 [Z] [g]T . (38)

The dimension m of the reduced-order representation is estimated by
analyzing the convergence of the representation with respect to m (see
[85,87]). It should be noted that the reduced-order representation con-
structed with the diffusion-maps basis is not a reduction of the dimen-
sion of random vector Y with respect to the number of its components
(reduction that has already be made with the PCA as explained in Para-
graph 1 above), but is a reduction with respect to dimensionN of data.

4. Generation of additional realizations {y`ar, ` = 1, . . . , νsim} of ran-
dom vector Y. The generation of additional realizations [z1ar], . . . , [z

nMC
ar ]

of random matrix [Z] is carried out by using an unusual MCMC method
based on a reduced-order Itô stochastic differential equation (ISDE)
that is constructed as the projection on the diffusion-maps basis of the
ISDE related to a dissipative Hamiltonian dynamical system for which
the invariant measure is the pdf of random matrix [H] constructed with
the Gaussian kernel-density estimation method and [ηd]. This method
preserves the concentration of the probability measure and avoids the
scatter phenomenon. The constructed reduced-order ISDE is then used
for generating nMC additional realizations, [z1ar], . . . , [z

nMC
ar ] in Mν,m,

of random matrix [Z], and therefore, for deducing the nMC additional
realizations, [η1ar], . . . , [η

nMC
ar ] in Mν,N of random matrix [H], such

that [η`ar] = [z`ar] [g]
T for ` = 1, . . . , nMC. Let {([Z(r)], [Y(r)]),

r ∈ R+} be the unique asymptotic (for r → +∞) stationary and

ergodic diffusion stochastic process with values in Mν,m×Mν,m, of
the following reduced-order ISDE (stochastic nonlinear second-order
dissipative Hamiltonian dynamical system), for r > 0,

d[Z(r)] = [Y(r)] dr ,

d[Y(r)] = [L([Z(r)])] dr −
1

2
f0 [Y(r)] dr +

√
f0 [dW(r)] ,

with the initial condition

[Z(0)] = [zd] , [Y(0)] = [N ] [a] a.s .

(i) The random matrix [L([Z(r)])] with values in Mν,m is such that
[L([Z(r)])] = [L([Z(r)] [g]T )] [a]. For all [u] = [u1 . . . uN ] in
Mν,N with u` = (u`1, . . . , u

`
ν) in Rν , the matrix [L([u])] in Mν,N

is defined, for all k = 1, . . . , ν and for all ` = 1, . . . , N , by

[L([u])]k` =
1

p(u`)
{∇u` p(u`)}k ,

p(u`) =
1

N

N∑
j=1

exp{−
1

2ŝ 2
ν

‖
ŝν

sν
ηj − u`‖2} ,

∇u` p(u`) =
1

ŝ 2
ν

1

N

N∑
j=1

(
ŝν

sν
ηj −u`) exp{−

1

2ŝ 2
ν

‖
ŝν

sν
ηj −u`‖2} ,

sν =

{
4

N(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2ν + N−1
N

.

(ii) [dW(r)] = [dW(r)] [a] where [dW(r)] is the Mν,N -valued
normalized Wiener stochastic process.
(iii) [N ] is the Mν,N -valued normalized Gaussian random matrix.
(iv) The free parameter f0 > 0 allows the dissipation term of the non-
linear second-order dynamical system (dissipative Hamiltonian sys-
tem) to be controlled in order to kill the transient part induced by the
initial conditions.
(v) We then have [Z] = limr→+∞ [Z(r)] in probability distribution,
which allows for generating the additional realizations, [z1ar], . . . , [z

nMC
ar ],

and then, generating the additional realizations [y1ar], . . . , [y
nMC
ar ] by us-

ing Eq. (38), which are reshaped in order to deduce the νsim = nMC×N
additional realizations, {y`ar, ` = 1, . . . , νsim}.

5. Algorithm for solving the reduced-order ISDE. The algorithm for
solving the reduced-order ISDE is detailed in [85] and is summarized
hereinafter. The Störmer-Verlet scheme is used. Let M = nMC ×
M0 be the positive integer in which nMC and M0 are integers. The
reduced-order ISDE is solved on the finite interval R = [0 ,M ∆r],
in which ∆r is the sampling step of the continuous index parameter
r. The integration scheme is based on the use of the M + 1 sampling
points r`′ such that r`′ = `′∆r for `′ = 0, . . . ,M . The follow-
ing notations are introduced: [Z`′ ] = [Z(r`′)], [Y`′ ] = [Y(r`′)],
and [W`′ ] = [W(r`′)], for `′ = 0, . . . ,M , with [Z0] = [zd],
[Y0] = [N ] [a], and [W0] = [0ν,m]. For `′ = 0, . . . ,M − 1,
let [∆W`′+1] = [∆W`′+1] [a] be the sequence of random matrices
with values in Mν,m, in which [∆W`′+1] = [W`′+1] − [W`′ ]. The
increments [∆W1], . . . , [∆WM ] areM independent random matrices
with values in Mν,N . For all k = 1, . . . , ν and for all j = 1, . . . , N ,
the real-valued random variables {[∆W`′+1]kj}kj are independent,
Gaussian, second-order, and centered random variables such that

E{[∆W`′+1]kj [∆W`′+1]k′j′} = ∆r δkk′ δjj′ .

For `′ = 0, . . . ,M − 1, the Störmer-Verlet scheme applied to the
reduced-order ISDE yields

[Z`′+ 1

2
] = [Z`′ ] +

∆r

2
[Y`′ ] ,
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[Y`′+1] =
1− b
1 + b

[Y`′ ] +
∆r

1 + b
[L`′+ 1

2
] +

√
f0

1 + b
[∆W`′+1] ,

[Z`′+1] = [Z`′+ 1

2
] +

∆r

2
[Y`′+1] ,

with the initial condition defined before, where b = f0∆r /4, and
where [L`′+ 1

2
] is the Mν,m-valued random variable such that

[L`′+ 1

2
] = [L([Z`′+ 1

2
])] = [L([Z`′+ 1

2
] [g]T )] [a] .

C Smoothing technique by using a nonparametric
statistical estimation

In this Appendix, we summarize the smoothing algorithm [25,88] that
is used for estimating J(w0) and c(w0) at any point w0 in Cw, by us-
ing only the additional realizations {y`ar, ` = 1, . . . , νsim} that have
been generated with the probabilistic learning algorithm summarized
in Appendix B. The points w0 are those that are generated by the op-
timization algorithm. The smoothing algorithm is derived from a non-
parametric statistical estimate of the probability density function pY of
Y. The construction of this algorithm is detailed in [25,88] and is sum-
marized hereinafter.

The steps of the algorithm for estimating the objective function J(w0)
and the constraints function c(w0) at a point w0 given in Cw using only
the νsim additional realizations are the following.
1. From the νsim = nMC × N additional realizations, {y`ar, ` =

1, . . . , νsim}, extracting:
(a) the νsim realizations (w`ar, q

`
ar) ∈ Rmw × R.

(b) the νsim realizations (w`ar, b`ar) ∈ Rmw × Rmc .
2. Computing

(a) q
ar
= 1
νsim

∑νsim
`=1 q

`
ar.

(b) σ2
qar =

1
νsim

∑νsim
`=1(q

`
ar − qar

)2.

(c) bar,k = 1
νsim

∑νsim
`=1 b

`
ar,k, k = 1, . . . ,mc.

(d) σ2
bar,k

= 1
νsim

∑νsim
`=1(b

`
ar,k − bar,k)

2, k = 1, . . . ,mc.

3. Normalizing the additional realizations: for j = 1, . . . ,mw , let
war,j and σar,j be the empirical estimates of the mean value and
of the standard deviation of random variableWj constructed using
the νsim independent additional realizations {w`ar,j , ` = 1, . . . ,
νsim}. LetR be the real-valued random variable that denotes either
Q, either B1, or B2. Let rar and σar be the empirical estimates of
the mean value and of the standard deviation of random variableR
constructed with the νsim independent additional realizations {r`ar,
` = 1, . . . , νsim}. We then introduce the normalized random vari-
ables Ŵj for j = 1, . . . ,mw and R̂ defined by

Ŵj = (Wj − war,j)/σar,j , R̂ = (R− rar)/σar ,

for which the νsim independent normalized realizations are written,
for ` = 1, . . . , νsim, as

ŵ`ar,j = (w`ar,j − war,j)/σar,j , r̂`ar,j = (r`ar − rar)/σar .

The νsim independent normalized realizations are written, for ` =
1, . . . , νsim, as
(a) (ŵ`ar, q̂

`
ar) ∈ Rmw × R.

(b) (ŵ`ar, b̂
`
ar,k) ∈ Rmw × R for k = 1, . . . ,mc.

4. Computing s by

s =

{
4

νsim(2 +mw + 1)

}1/(4+mw+1)

.

5. For w0 given in Cw, the normalization ŵ0 of w0 is computed by

ŵ0
j = (w0

j − war,j)/σar,j , j = 1, . . . ,mw .

Introducing the joint pdf pŴ,R̂(ŵ, r̂) of Ŵ = (Ŵ1, . . . , Ŵmw
)

and R̂, and introducing the pdf pŴ(ŵ) =
∫
R pŴ,R̂(ŵ, r̂) dr̂ of

Ŵ, the conditional mathematical expectation E{R |W = w0} is
written as

E{R |W = w0} ' rar + σar
1

pŴ(ŵ0)

∫
R
r̂ pŴ,R̂(ŵ

0, r̂) dr̂ .

For each point w0 in Cw, J(w0) and c(w0) are computed by using
the following algorithm:

(a) Computing e`(ŵ0) = exp{− 1
2s2
‖ŵ`ar − ŵ0‖2} for ` =

1, . . . , νsim.

(b) Computing γ(ŵ0) =
∑νsim
`=1 e

`(ŵ0).

(c) Computing the estimate of J(w0) by

J(w0) ' qar +
σqar

γ(ŵ0)

νsim∑
`=1

q̂`ar e
`(ŵ0) .

(d) For k = 1, . . . ,mc, computing the estimate of ck(w0) by

ck(w0) ' bar,k +
σbar,k

γ(ŵ0)

νsim∑
`=1

b̂`ar,k e
`(ŵ0) .
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