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Abstract

Game semantics is a rich and successful class of denotational mod-

els for programming languages. Most gamemodels feature a rather

intuitive setup, yet surprisingly di�cult proofs of such basic results

as associativity of composition of strategies. We set out to unify

these models into a basic abstract framework for game semantics,

game settings. Our main contribution is the generic construction,

for any game setting, of a category of games and strategies. Fur-

thermore, we extend the framework to deal with innocence, and

prove that innocent strategies form a subcategory.We �nally show

that our constructions cover many concrete cases, mainly among

the early models [6, 20] and the very recent sheaf-based ones [37].

1 Introduction

Game semantics has provided adequatemodels for a variety of (ide-

alised) programming languages. We will here mainly be concerned

with the numerous variations on arena games. This comprises, e.g.,

the original dialogue game model of PCF [20, 33], Abramsky et al.’s

model for general references [5], Harmer and McCusker’s model

for �nite nondeterminism [15, 17], Laird’s model for control op-

erators [24], and the recent model by Tsukada and Ong [37]. We

will also brie�y consider other models of PCF [6] and of linear

logic [10].

This rich literature shares many features. E.g., all these models

follow the same simple conceptual route: the types of the consid-

ered language are interpreted as games and programs as strategies.

Games form the objects, and strategies the morphisms of a cate-

gory, which is compared to the ‘syntactic’ category generated from

the operational description of the language. However, as noted,

e.g., in Harmer et al. [16], a less advantageous feature shared by

all models is the surprising di�culty of certain proofs like associa-

tivity of composition or the fact that innocent strategies are closed

under composition.

This raises the issue of unifying all these models into a satisfac-

tory theory, with an emphasis on factoring out such di�cult proofs.

This is an ambitious goal, because although game models clearly

share a lot of ideas, they are also rather diverse. E.g., depending

on the considered language, various constraints are imposed upon

strategies, like innocence or well-bracketing. Further sources of di-

versity have appeared with recent extensions, e.g., sheaf-based in-

nocence [37], nominal models [32], tensorial logic [30], or concur-

rent extensions [18, 34].

This paper is an attempt at improving the situation. Focussing

on the construction of game models, our main contributions are:

• We organise the basic data underlying typical game mod-

els into a simple categorical structure called a game setting,
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emphasising its simplicial features. Each game setting gives

rise to a candidate category of games and strategies.

• Wedelineate mild hypotheses under which games and strate-

gies do form a category, heavily relying on high-level cat-

egorical techniques, including (presheaf) polynomial func-

tors [23, Chapter 16] and Guitart’s exact squares [14].

• We extend the framework to deal with innocence, an em-

blematic constraint put on strategies to capture purely func-

tional computation. We enrich game settings with a notion

of view and, under mild hypotheses, we derive a category of

innocent strategies. Our approach exploits the recent recast-

ing of innocence as a sheaf condition [18, 37], and again re-

lies on advanced category theory to give high-level proofs.

• We show that a number of game models fall into our frame-

work, namely variants of the original Hyland-Ong/Nickau

(HON) model [15, 20, 26], AJM games [6] and Tsukada and

Ong’s model [37].

• Wework out the limits of our techniques in twowell-known

dead ends of game semantics: non-associativity of composi-

tion in Blass games [4] and non-stability of innocent strate-

gies under composition in the absence of determinism [15].

• In passing, we prove a categorical result of possibly indepen-

dent interest, stating that certain commuting squares of cat-

egories and functors, called local pushforward squares, are

distributive, in the sense that doing left then right (Kan) ex-

tension along one side is isomorphic to doing right then left

along the other.

Our framework deals with various notions of composition and in-

nocence. For clarity, let us readily �x some terminology. An impor-

tant distinction is whether plays are considered as a poset (with

the pre�x ordering) or as a category. Another is whether the con-

sidered strategies are general or boolean presheaves. We annotate

composition and innocence with the following codes.

Plays Strategies

poset category boolean general

p c b s

Example 1.1. Standard strategies, being pre�x-closed sets of plays,

are boolean presheaves on the pre�x ordering, so their composi-

tion is pb-composition. Moreover, standard innocent strategies are

innocent pb-strategies. Similarly, Tsukada and Ong [37] use proper

categories of plays and their strategies are presheaves, hence their

composition and innocent strategies are cs-composition and in-

nocent cs-strategies. Unspeci�ed items denote either possibility.

E.g., s-compositionmeans composition of presheaves, in either the

poset-based or category-based setting.

Much e�ort is put into linking the di�erent variants together, as

summarised in the following table.
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Section relates to

2.8 s-composition b-composition

4.2 cs-innocence ps-innocence

4.3 cs-innocence pb-innocence

The established links are of various nature. E.g., in Section 2.8, we

both infer associativity of b-composition from associativity of s-

composition, and express b-composition in terms of s-composition.

1.1 Related work

Although signi�cant work has been devoted to giving e�cient proofs

in particular models [16, 28, 30], the only attempts at abstraction

we are aware of are our Hirschowitz [18] and Eberhart and Hir-

schowitz [12]. Both papers focus on the link between naive and

innocent strategies as well as the interpretation of programs, but

both fail to capture composition of strategies.

1.2 Plan

In Section 2, we gradually introduce game settings, following the

successive steps for constructing a typical game model. We also

state our main results for the basic setup along the way. We re-

main very informal about game semantics, and only start to con-

sider the particulars of various game models in Section 3, where

we establish that the announced game models �t into our frame-

work. We then re�ne game settings to deal with innocence in Sec-

tion 4, covering in passing Tsukada and Ong’s model [37]. Finally,

we conclude in Section 5. Most proofs are deferred to appendices.

1.3 Notation and prerequisites

For all n ∈ N, [n] denotes the �nite ordinal with n elements, i.e.,

the set {0, . . . ,n − 1}, and we sometimes use just n to denote the

set {1, . . . ,n}.
We assume some basic knowledge of category theory, namely

categories, functors and natural transformations, as well as adjunc-

tions. The category of presheaves over any category C is the func-

tor category [Cop, Set] of contravariant functors to sets and natu-

ral transformations between them, which we denote by Ĉ. For any

presheafX : Cop → Set, objects c, c ′ ∈ C, morphism f : c ′ → c , and

element x ∈ X (c), we use a right action notation x · f for X (f )(x).
By functoriality, we have x · f · д = x · (f ◦д), for any д : c ′′ → c ′.
Replacing Set with 2, the ordinal 2 viewed as a category, we get

the category C̃ of boolean presheaves.

2 Game settings

2.1 Categories of plays in game semantics

In this section, we sketch several notions of play typically involved

in the construction of a game model. We do this without referring

to any particular model. In the next sections, we will organise this

data into a coherent categorical structure, which we will then ex-

ploit to give an abstract construction of a category of games and

strategies.

The construction of a typical game model relies on the de�ni-

tion of increasingly complex notions of play. There is �rst a no-

tion of game. Each gameA involves two playersO (Opponent) and

P (Proponent), and features in particular a set of plays PA, which

may be endowed with the pre�x ordering or with a more sophisti-

cated notion of morphism, thus forming a category of plays. Such

two-player games form the basis of the model.

The crucial step to view strategies as morphisms is to consider

the arrow gameA→ B, which intuitively describes the interaction

of a middle playerM playing Opponent against a left player L and

Proponent against a right player R, as in

L M R

B B

qR

qM

tL

fM .

(1)

In this example, M plays like the negation function on booleans:

R asks its return value by playing the move qR ; M in turn asks L

for the value of the argument by playing qM , to which L answers

‘true’ by playing tL ;M eventually answers the original question by

playing fM .

However, there is a subtlety: one often needs to restrict plays in

PA→B with additional constraints, so that the relevant category is

a subcategory PA,B ֒→ PA→B . Of course, there are projections to

PA and PB .

Example 2.1. We will provide more precise de�nitions later on,

but for now, to �x intuition, in HON-style games (without brack-

eting) PA would consist of all justi�ed sequences, and PA,B would

restrict to alternating sequences of even length of PA→B . The pro-

jections of a play in PA,B to A and B may not be alternating, so it

is crucial to be liberal in the choice of PA.

In order to de�ne composition of strategies, the situation (1) is

then scaled up to combinations of two such situations in which a

�rst middle player M1 plays on the right with a second one, say

M2, as in

L M1 M2 R

B B B.

(2)

Plays in such combinations are standardly called interaction se-

quences, and typically form a subcategory PA,B,C ֒→ P(A→B)→C .

An important point is that interaction sequences admit projections

to PA,B , PB,C and PA,C , which satisfy the obvious equations w.r.t.

further projections to PA, PB and PC , e.g., the following square

commutes:

PA,B,C PA,C

PB,C PC .

Example 2.2. In HON games, PA,B,C typically consists of alter-

nating justi�ed sequences on (A → B) → C which end in A or C

and whose projections to A→ B and B → C are plays.

Finally, in order to prove associativity of composition, one de-

�nes generalised interaction sequences as a subcategory PA,B,C,D ֒→
P((A→B)→C )→D , again with projections satisfying the obvious equa-

tions.

2.2 Plays as a category-valued presheaf

Let us now organise all this data (PA, PA,B , PA,B,C , PA,B,C,D) into

a simple categorical structure. First, as suggested by our notation,
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for all lists L = (A0, . . . ,An−1) of games, we may construct a cate-

gory PL .

Example 2.3. In the HON case, we may take PL to consist of al-

ternating justi�ed sequences on (. . . (A0 → A2) → . . .) → An−1
whose projection to each Ai → Ai+1 is a play, and which end in

A0 or An−1, the rightmost arena.

For the same reasons as before, we get projections δk : PL →
PL\Ak

(for ‘delete k’), for all k ∈ [n]. A similar construction, rele-

vant for de�ning identity strategies (so-called copycat strategies),

is insertions ιk : PL → PL+k (for ‘insert k’), where k ∈ [n] and L+k
denotes L with the kth game duplicated. E.g., ι1 : PA,B → PA,B,B .
Intuitively, this functor maps any play u in PA,B to the interac-

tion sequence in PA,B,B which duplicates all moves on B. So in a

situation like (2),M2 would act as a ‘proxy’ betweenM1 and R, re-

peating M1’s moves to R and conversely. For a precise de�nition

and an example in the case of HON games, see Section 3.1.

This may all be packed up into the comma category ∆/A, or
more precisely i/pAq, where
• pAq : 1→ Set is the functor picking A;

• i : ∆ ֒→ Set is the embedding of the simplicial category ∆

into sets.

Let us recall that ∆ has �nite ordinals [n] as objects, withmonotone

maps as morphisms. So concretely, ∆/A has �nite lists of games as

objects, i.e., maps L : [n] → A for some n = {0, . . . ,n − 1}, and
as morphisms (n,L) → (n′,L′) all monotone maps f making the

following triangle commute:

[n] [n′]

A.
L

f

L′

Example 2.4. Let dn
k
: [n] → [n + 1] miss k ∈ [n], i.e., dn

k
(i) = i

for i < k and dn
k
(j) = j + 1 for j ≥ k . Then, e.g., d21 yields a

map (A,C) → (A,B,C) for all games A,B,C . Similarly, consider

in
k
: [n+1] → [n]which collapsesk ∈ [n] ⊆ [n+1] andk+1 ∈ [n+1].

E.g., for n = 2 and k = 0, it yields a map (A,A,B) → (A,B) for all
A and B.

As promised, this yields away to organise the various categories

of plays involved in a typical game model into a coherent categor-

ical structure. Indeed, we will show below that, for quite a few

game models, the assignment L 7→ PL induces a category-valued

presheaf on ∆/A, i.e., a functor (∆/A)op → Cat. Furthermore, the

maps δk and ιk introduced earlier will respectively be given by

P(dk ) and P(ik ).
In the following, we will only need to use this structure up to

lists of length 4:

De�nition 2.5. For any p ≤ q and set A, let A[p,q] denote the full
subcategory of ∆/A spanning lists L of length between p and q.

In the next sections, we will de�ne strategies, composition and

copycat strategies abstractly, based on the category-valued presheaf

P on A[1,4]. This is quite demanding, but we are rewarded with a

higher-level view of composition, which yields abstract proofs of

associativity and unitality, assuming a few additional properties of

P.Wewill de�ne a game setting to consist of a setA and a category-

valued presheaf satisfying these additional properties.

2.3 Notions of strategy

Let us now start our reconstruction of a game model from an arbi-

trary category-valued presheaf P on A[1,4]. Our �rst step is to de-

�ne strategies. Standardly, a strategy σ : A → B is a pre�x-closed

set of plays in PA,B (generally required to be non-empty). Equiv-

alently, it is a functor P
op
A,B
→ 2, the ordinal 2 viewed as a cate-

gory. In Tsukada and Ong’s model [37], PA,B is a proper category,

and strategies are generalised to presheaves on PA,B , i.e., functors

P
op
A,B
→ Set. This is indeed a generalisation because 2 embeds into

Set (more on this in Section 2.8).

The basis of our approach will be the general notion:

De�nition 2.6. Let the category of strategies fromA to B be �PA,B .
The category of boolean strategies is �PA,B .

2.4 Polynomial functors

The next step in our reconstruction of a game model from A and

P is to de�ne identities and composition, which will rely on poly-

nomial functors, which we now brie�y recall.

Notation 1. Any functor F : C → D induces a restriction, or pre-

composition functor ∆F : D̂ → Ĉ mapping any X : Dop → Set to

X ◦ F op , where F op : Cop → Dop acts just as F but on opposite cat-

egories. When C and D are small, this restriction functor has both a

left and a right adjoint, which we respectively denote by
∑
F and

∏
F ,

as in

Ĉ D̂.

∑
F

∆F

∏
F

⊥

⊥

The left and right adjoints are respectively given by left and

right extension, and enjoy explicit descriptions, both in terms of

coends and ends and in terms of colimits and limits [25, 35]. A brief

description of how they work is included for completeness in Ap-

pendix A.1, but most of the paper should be accessible without

reading it.

De�nition2.7. A functor is polynomial i� it is isomorphic to some

�nite composite of functors of the form ∆F ,
∏

F and
∑
F .

This de�nition is very close to Kock [23, Chapter 16] – it might

even turn out to be the same if Kock’s presheaf polynomial func-

tors are ever proved to be closed under composition.

2.5 Copycat as a polynomial functor

As a warm-up before considering composition, we would like to

start with our abstract de�nition of identities, which are standardly

given by copycat strategies. A natural way to de�ne the copycat

strategy idA : A → A is to decree that it accepts all plays in PA,A
which are in the image of the insertion functor ι0 : PA → PA,A.
Indeed, recalling (1) and according to the discussion of insertions,

right after Example 2.3, such plays are precisely those in whichM

acts as a proxy between L and R, which agrees with the standard

de�nition of copycat strategies.

This de�nition has the advantage of concreteness, but as an-

nounced we need to give an equivalent, polynomial de�nition. Be-

cause an object of a category C is the same as a functor 1 → C,
we may de�ne idA as a functor 1 → �PA,A. Furthermore, 1 is a
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presheaf category: indeed it is ∅̂, presheaves over the empty cate-

gory. So we may view copycat over A as a functor ∅̂ → �PA,A. In
order to present it as a polynomial functor, we will need to assume

that the insertion functor ι0 : PA → PA,A is a discrete �bration.

Let us recall the de�nition:

De�nition 2.8. A functor p : E → B is a discrete �bration when

for all objects e ∈ E and morphisms f : b → p(e) there exists a

unique morphism u : e ′ → e such that p(u) = f . Such a morphism

is called a cartesian lifting of e along f . Let DFibB denote the full

subcategory of Cat/B spanning discrete �brations.

For us, the relevant property of discrete �brations is the follow-

ing characterisation of left extension along them:

Lemma 2.9. For any discrete �bration p : E→ B, presheaf X ∈ Ê,
and object b ∈ B, we have

∑
p (X )(b) �

∑
e |p(e )=b X (e), where

∑

means left extension in the left-hand side and disjoint union on the

right-hand one.

Here is our polynomial presentation of copycat:

Proposition 2.10. If the insertion functor ι0 : PA → PA,A is a dis-

crete �bration, then the functor

∅̂
∏

!−−→ P̂A
∑
ι0−−−→�PA,A

is isomorphic the copycat strategy idA.

Proof. See Section B.1. �

2.6 Composition as a polynomial functor

The next step is to express compositionof strategies using the same

language of polynomial functors. Let us �rst recall the standard

de�nition in the boolean case: the composite σ ; τ of two boolean

strategies σ and τ over (A,B) and (B,C) respectively, is de�ned to

accept all plays p ∈ PA,C for which there exists u ∈ PA,B,C such

that δ1(u) = p and

δ2(u) ∈ σ and δ0(u) ∈ τ .
In Tsukada and Ong [37], this is extended to a polynomial func-

tor �PA,B ×�PB,C → �PA,C , whose de�nition is essentially a proof-

relevant version of the boolean one. If we understand ‘σ accepts

play p’ as σ (p) = {⋆}, then, e.g., δ2(u) ∈ σ above becomes ⋆ ∈
σ (δ2(u)). We get:

De�nition 2.11. The composite σ ; τ of two strategies σ and τ

over (A,B) and (B,C) respectively, is de�ned to map any play p ∈
PA,C to the set of triples (u,x,y) where u ∈ PA,B,C is such that

δ1(u) = p and

x ∈ σ (δ2(u)) and y ∈ τ (δ0(u)).

Let us present this polynomially. First, by universal property of

coproduct we have �PA,B ×�PB,C � �PA,B + PA,B , so we reduce to

de�ning a functor �PA,B + PB,C → �PA,C . Here is our candidate

composition:

De�nition 2.12. Let m denote the polynomial functor

�PA,B + PB,C
∆δ2+δ0−−−−−−→ �PA,B,C + PA,B,C

∏
[id, id]−−−−−−→ �PA,B,C

∑
δ1−−−→�PA,C .

This de�nition is legitimated by:

Proposition 2.13. The functor m agrees with De�nition 2.11, i.e.,

for all σ and τ , we have (σ ; τ ) � m[σ , τ ].

Proof sketch (see Section B.1 for a full proof). By discrete �bredness,

the �nal
∑
δ1 says that for all p ∈ PA,C , the formula for m[σ , τ ](p)

will start by ∑

u ∈PA,B,C |δ1(u)=p
. . . (u).

By a very general computation, the
∏
[id, id] says that, viewing the

intermediate result in �PA,B,C + PA,B,C as a pair [σ ′, τ ′], the for-

mula continues with σ ′(u) × τ ′(u), which in our case directly in-

stantiates to σ (δ2(u)) × τ (δ0(u)), as desired. �

Remark 1. The discrete �bredness hypothesis is satis�ed in most

game models, with the notable exception of the saturated interpreta-

tion of AJM games (see Section 3.4), in which the projection is a non-

discrete �bration. The construction still goes through, but we here

stick to discrete �brations for simplicity.

2.7 Game settings, associativity and unitality

We have now expressed copycat strategies and composition ab-

stractly, relying only on the postulated category-valued presheaf.

Let us now consider associativity. It has become standard in game

semantics to prove associativity of composition using a zipping re-

sult [8] stating that both squares

PA,B,C,D PA,B,D

PB,C,D PB,D

PA,B,C,D PA,C,D

PA,B,C PA,C

(3)

are pullbacks on objects. This holds in all considered game models,

and constitutes the last bit of our axiomatisation:

De�nition 2.14. A game setting consists of a set A (whose ele-

ments we call arenas) and a category-valued presheaf P on A[1,4]
such that all projections PA,B,C → PA,C and insertions PA →
PA,A are discrete �brations, and all squares (3) are pullbacks on

objects.

We call both squares (3) the zipping squares of P.

One of our main results is:

Theorem 2.15. In any game setting, composition of strategies is

associative up to isomorphism, and copycat strategies are units up to

isomorphism.

Proof. See Section B.2. �

2.8 The boolean case

Let us conclude this section by treating the boolean case: until now,

our strategies were given by general presheaves (De�nition 2.6).

We would like to derive from Theorem 2.15 that boolean strategies

also form a category.

The bridge to the boolean case is given by the embedding r : 2 ֒→
Set mapping 0 ≤ 1 to ∅ → 1. This functor has a left adjoint l

mapping ∅ to 0 and collapsing all non-empty sets to 1. Further-

more, r being fully faithful, we have in fact a full re�ection (please

note: this means that the right adjoint is fully faithful, not the

left adjoint!), which induces a further one between presheaves and

boolean presheaves:

Proposition 2.16. For any small category C, post-composition by l

and r yield a full re�ection

4
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[Cop, Set] ⊥ [Cop, 2].
l!

r!

The left adjoint l! is called booleanisation.

Proof. The functor r! is clearly a continuous full embedding, hence

a right adjoint by the special adjoint functor theorem, and thus a

full, re�ective embedding. �

Because 2 is complete and cocomplete, replacing Set with 2 in

Notation 1 yields a notion of boolean polynomial functor.

Notation 2. Any functor F : C → D induces restriction, left exten-

sion and right extension functors between boolean presheaf categories

C̃ and D̃, respectively denoted by ∆F ,
∑
F and

∏
F . Accordingly, the

boolean version of any polynomial functor P will be denoted by P .

Wemay thus transfer our polynomial de�nitions of copycat and

composition to boolean strategies. Concrete examples of game set-

tings will be considered in Section 3, for which we have:

Proposition 2.17. In all the game settings of Section 3,m coincides

with standard composition.

As desired, we obtain:

Proposition 2.18. In any game setting, composition of boolean strate-

gies is associative and unital up to isomorphism.

Proof. See Section B.4. �

Remark 2. Please note that we have not claimed that boolean com-

position agrees with general, set-based composition, i.e., commuta-

tion of the left-hand diagram below.

�PA,B + PB,C �PA,C

�PA,B + PB,C �PA,C

m

r!

m

r!

In fact it does not in general, and this is the main cause for the fail-

ure of stability of boolean, innocent strategies under composition [15,

Section 3.7.2]. What does hold, however, is

• commutation of booleanisation with composition as on the left

below (this is the main idea for the proof of Proposition 2.18),

• the characterisation of boolean composition given below right,

as set-based composition followed by booleanisation.

�PA,B + PB,C �PA,C

�PA,B + PB,C �PA,C

m

l!

m

l!

�PA,B + PB,C �PA,C

�PA,B + PB,C �PA,C

m

r!

m

l!

Let us move on to exhibit a few concrete game settings. We

will return to the boolean case in Section 4.3 where we consider

boolean innocence.

3 Applications

3.1 Hyland-Ong games and strategies

Let us now consider Hyland-Ong games in more detail, and show

that they form a game setting. We mostly follow Harmer’s [15]

presentation. For simplicity, we adopt the following innocuous1

modi�cation of the standard notion of arena:

1Tsukada and Ong use forest-shaped arenas.

De�nition 3.1. An arena is a simple, countable, directed acyclic

graphA equippedwith a subset
√
A of initial vertices, or roots, such

that for all verticesm, all paths fromm to some initial vertex have

the same parity.

In particular, simple, upside-down forests form arenas. The in-

tuition is that reachable vertices of an arena are moves in a two-

player game, and that an edge m → m′ in the forest means that

m is enabled, or justi�ed by m′. If the path from m to some root

has even length, thenO (for Opponent) is playing; otherwise P (for

Proponent) is. E.g., all roots are played by O .

Example 3.2. A very simple arena, called o, is the single-vertex

graph. For a less trivial example, the boolean type B may be inter-

preted as the arena q

t f.

Now that we have de�ned arenas, let us move on to de�ne plays.

The idea, explained at length, e.g., in McCusker [27], is that plays

are sequences of moves in whichO and P take turns. But a subtlety

is that moves may be played several times. So for any edgem →m′

in the considered arena, there may be several occurrences of m

and m′. We thus decorate sequences of moves with justi�cation

pointers matching those of the considered arena.

De�nition 3.3. A justi�ed sequence on any arena A consists of a

natural number n ∈ N, equipped with maps f : n → ob(A) and
φ : n→ {0} ⊎ n (recalling Section 1.3) such that, for all i ∈ n,
• φ(i) < i ,

• if φ(i) = 0 then f (i) ∈
√
A, and

• if φ(i) , 0, then there is an edge f (i) → f (φ(i)) in A.

Let PA denote the poset of justi�ed sequences on A, with pre�x

ordering.

We will draw justi�ed sequences (n, f ,φ) as the sequence of

their f (i)’s, with arrows to denote φ, as is standard in game se-

mantics.

Example 3.4. Here is a justi�ed sequence in the boolean arena:

q q t f , where times �ows to the right.

As mentioned in (1), game semantics proceeds by letting a mid-

dle playerM play on two arenas A and B, with speci�c restrictions

on when switching between A and B is allowed. For this, we form

the compound arena A→ B:

De�nition 3.5. For any two arenasA and B, letA→ B denote the

arena obtained by taking the disjoint union ofA and B as directed

graphs, adding an edgem →m′ for allm ∈
√
A andm′ ∈

√
B, and

taking
√
B as
√
A→ B (if B is not empty, otherwise we takeA→ B

to be empty).

The switching constraints mentioned above are implemented

by considering a subposet of PA→B :

De�nition 3.6. For any two arenas A and B, let PA,B denote the

poset of plays on (A,B), i.e., alternating justi�ed sequences of even
length on A→ B.

Alternation here means that, for any s = (n, f ,φ), f (i) is played
by O i� i is odd.

Example 3.7. Recalling the arena o from Example 3.2, and calling

its unique move r , here is an example play on ((B→ o),o):
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(B o) o

r ′

r

q

r

q

f

q

r ,

where time �ows downwards (so the play really is r ′rqrqfqr ) and
arrows denote justi�cation pointers.

We are now in a position to de�ne the insertion functors ι0 : PA →
PA,A: they send any justi�ed sequencem1 . . .mn to some play in

which P mimics the behaviour ofO . The technical de�nition is not

particularly illuminating, but the example following it should con-

vince the reader that nothing really di�cult is going on here.

De�nition 3.8. For any justi�ed sequence p = (m1 . . .mn) on A,

let ι0(p) be the sequence (m1,k1)(m1, l1) . . . (mn,kn)(mn, ln), where
ki and li denote either 0 or 1, according to the component ofA→ A

in which the move is played. Ifmi is an O-move, then ki = 1 and

li = 0; and otherwise ki = 0 and li = 1. Pointers are as in p ex-

cept for initial moves on the left, i.e., moves of the form (m, 0)with
m ∈
√
A, which are justi�ed by the corresponding (m, 1).

Example 3.9. The justi�ed sequence onB below left, which is not

alternating, yields the copycat play on the right:

B

q

q

a

B B

q

q

q

q

a

a.

The next step is interaction sequences, for which the basic idea

is: any play in (A → B) → C may be projected to PA→B , PB→C ,

and even PA→C , by prolongating pointers (i.e., a → b → c be-

comes a→ c). Following Example 2.2, we put:

De�nition 3.10. An interaction sequence is a justi�ed sequence

on (A → B) → C ending in A or C , whose projections to A → B

and B → C are plays. Let PA,B,C denote the poset of interaction

sequences with pre�x ordering.

As desired, the projection to A→ C is also a play, and we have

monotone maps δk : PA0,A1,A2 → PAi,Aj
with i < j in {0, 1, 2} \

{k}.
We may de�ne generalised interaction sequences similarly to ob-

tain:

Proposition 3.11. The category-valued presheaf P de�ned by re-

spectively taking PA, PA,B , PA,B,C and PA,B,C,D to be the posets of

all justi�ed sequences, plays, interaction sequences and generalised

interaction sequences, for all arenas A,B,C,D, with projections and

insertions as above, forms a game setting.

Proof. Projections δ1 : PA,B,C → PA,C are discrete �brations: the

restriction of any u ∈ PA,B,C along any p ≤ δ1(u)may be taken to

be the shortest pre�x of u whose projection is p (longer such pre-

�xes do not end in A or C). The fact that squares (3) are pullbacks

on objects is the standard zipping lemma. �

3.2 Constraining strategies: local constraints

In the previous section, we consider a rather rough notion of play.

Standardly, further constraints are considered on strategies, such

as P-visibility,O-visibility, well-threadedness, and well-bracketing

(when games are equipped with an appropriate question-answer

discipline). E.g., a P-visible strategy is one which only accepts P-

visible plays. One then needs to prove that such constraints are

robust, i.e., are preserved by composition and satis�ed by identi-

ties. This is done in a very clean and modular way in Harmer’s

thesis [15, Chapter 3].

In order for our framework to apply to such constrained strate-

gies, we may start from the game setting for unconstrained plays

and convert the proof of robustness of constraint c into the con-

struction of a sub-game setting Pc .

For each constraint c ∈ {P-vis,O-vis,wb,wt}, respectively de-

noting P-visibility,O-visibility, well-bracketing andwell-threadedness:

• Pc
A,B

is the full sub-poset of PA,B consisting of plays satis-

fying the constraint c;

• Pc
A
is the full sub-poset of PA whose insertions are in Pc

A,A
;

• Pc
A,B,C

is the full sub-poset of PA,B,C whose projections to

PA,B and PB,C respectively factor through Pc
A,B

and Pc
B,C

;

• Pc
A,B,C,D

is the full sub-poset of PA,B,C,D whose projec-

tions to PA,B , PB,C and PC,D respectively factor through

P
c
A,B

, Pc
B,C

and Pc
C,D

.

One delicate point is then to show that unmentioned projections

also factor through the appropriate constrained posets.

Proposition 3.12. For all constraints c , Pc
A,B,C

→ PA,C factors

through Pc
A,C

.

Proof. For P-visibility, this is [15, Proposition 3.4.3]. The (implicit)

proof of [26, Lemma 2.8] handles O-visibility and well-bracketing.

Well-threadedness follows similarly to P-visibility. �

Proposition 3.13. For all constraints c , Pc forms a sub-game set-

ting of P.

Proof. First, to see that projections δ1 are discrete �brations, it is

enough to observe that all involved constraints are stable under

pre�x. It remains to show that constrained plays satisfy zipping.

But constraints are merely imposed on the projections of interac-

tion sequences, and thus are clearly stable under zipping. �

Corollary 3.14. For all sets of constraints in {P-vis,O-vis,wb,wt},
arenas and strategies satisfying these constraints form a category.

As satisfactory as it seems, this result does not tell us that com-

position is the considered sub-game settings agrees with the origi-

nal. Let us show that it does, by considering the general case. Con-

sider any embedding c : Pc ֒→ P of game settings sharing a com-

mon set of arenas. We need to prove that the polynomial functor,

say mc , mimicking our polynomial composition m on Pc is com-

patible with the inclusion c : Pc ֒→ P. In order to make this more

precise, let us observe that each strategy σ ∈ �Pc
A,B

is canonically

mapped to
∑
c(σ ) ∈�PA,B . Intuitively,

∑
c(σ ) should act just as σ on

P
c
A,B

and be empty elsewhere. In order for this to hold, we merely
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need to assume that the considered constraint is stable under pre-

�x, which in the general case amounts to requiring c to be a dis-

crete �bration.

Lemma 3.15. If c is a discrete �bration, then for any σ we have

• ∑
c(σ )(c(p)) � σ (p) for all p ∈ Pc

A,B
and

• ∑
c(σ )(q) = ∅ for all q ∈ PA,B outside the essential image

of c.

Proof. By Lemma 2.9. �

We may now express the desired compatibility of composition

with c asm(∑c(σ ),
∑
c(τ )) �

∑
c(mc (σ , τ )). This however requires

an additional hypothesis, saying that an interaction sequence u ∈
PA,B,C is in Pc

A,B
as soon as its projections to PA,B and PB,C are.

Example 3.16. To see why, imagine that there exists some inter-

action sequence u ∈ PA,B,C \ PcA,B,C such that δ2(u) and δ0(u)
are in the respective essential images of Pc

A,B
and Pc

B,C
, say as

c(p1) and c(p2). Further assuming that σ and τ accept p1 and p2,

m(∑c(σ ),
∑
c(τ )) clearly acceptsδ1(u),while

∑
c(mc (σ , τ )) does not,

because the interaction sequence which could witness it lies out-

side Pc (assuming that no interaction sequence from Pc projects

to δ1(u)).

This hypothesis essentially says that the considered constraint

may be checked locally, hence our terminology:

De�nition 3.17. An embedding c : Pc ֒→ P between game set-

tings sharing the same set of arenas is a local constraint i� its com-

ponents are discrete �brations and any u ∈ PA,B,C is essentially

in the image of c if δ2(u) and δ0(u) are.

Remark 3. The locality constraint may be expressed concisely as a

sheaf condition (see Lemma B.9).

Proposition 3.18. For all local constraints c : Pc ֒→ P, the square
�Pc
A,B
×�Pc

B,C
�Pc
A,C

�PA,B ×�PB,C �PA,C

mc

∑
c ×

∑
c

m

∑
c

commutes up to isomorphism.

Proof. See Section B.5. �

3.3 Constraining strategies: predicates

Beyond the constraints mentioned above, a similar result may be

proved for the re�ned notion of game in McCusker’s thesis [26].

McCusker’s games A are just like arenas, except that they come

equipped with an abstract validity predicate PA , which is a subset

of the set LA of legal plays, i.e., alternated, well-bracketed, P- and

O-visible justi�ed sequences. This predicate is only required to be

non-empty, pre�x-closed, and such that for all p ∈ PA and set I of

occurrences of initial moves in p, the restriction p |I of p to moves

hereditarily justi�ed by some move in I is again in PA .

McCusker then de�nes PA→B to consist of legal plays in LA→B

whose projections to A and B are in PA and PB (instead of simply

LA and LB ), respectively. Interaction sequences are then de�ned as

in the standard case, with the additional constraint that both pro-

jections to (A,B) and (B,C) are in PA→B and PB→C , respectively.

Let us now show that this again yields a game setting. Denoting

the new posets by PP
A
, P

P
A,B

, etc., we have:

Proposition 3.19. Projections PP
A,B,C

→ PA,C factors throughPP
A,C

.

Proof. Being in PA→C is only about projections being in PA and

PC , which is taken care of by the condition on projections to (A,B)
and (B,C). �

Similarly:

Proposition 3.20. PP is a game setting, and a local constraint of P.

Proof. As before, projections are discrete �brations because valid-

ity predicates are stable under pre�x. It only remains to show that

zipping holds, which again follows from PA→B being only about

projections to A and B. �

There are other kinds of constraints like innocence or single-

threadedness, whichmay not be treated this way.Wewill deal with

innocence in Section 4.

3.4 AJM games: a partial answer

Let us now brie�y consider an alternative approach to game se-

mantics by Abramsky et al. [6]. On the one hand, this approach

is more elementary than Hyland and Ong’s in that games do not

feature justi�cation pointers. So, e.g., composition of strategies is

signi�cantly simpler. On the other hand, games feature a partial

equivalence relation between plays, which needs to be dealt with

at the level of strategies.

In order to organise such games into a game setting, we have

two sensible choices for the notion ofmorphism between plays: be-

yond the pre�x ordering, we may also incorporate equivalence be-

tween plays. Presheaves then amount to so-called saturated strate-

gies. We adopt Harmer’s presentation [15].

De�nition 3.21. A game A consists of two sets OA and PA, re-

spectively of Opponent and Proponent moves, equipped with a par-

tial, pre�x-closed equivalence relation ≈ on alternated sequences

of moves started by Opponent, for which any two equivalent plays

have the same length, and such that

if s ≈ t and sa ≈ sa, then there exists a′ such that sa ≈ ta′.

Let PA consist of all alternated sequences of moves s started by

Opponent, such that s ≈ s . Then, for any games A and B, we form

the game A→ B, which hasOA→B = PA +OB and PA→B = OA +

PB and s ≈A→B t i� s and t play in the same component at each

stage and their projections are equivalent in A, resp. B. The poset

PA,B may then be de�ned as the set of plays in A → B equipped

with pre�x ordering. Similarly de�ning PA,B,C and PA,B,C,D we

obtain:

Proposition 3.22. AJM games form a game setting.

Proof. Squares (3) being pullbacks on objects is the standard zip-

ping lemma. To show that projections δ1 : PA,B,C → PA,C are

discrete �brations, we need to be able to canonically restrict any

u ∈ PA,B,C along any s ≤ δ1(u): just take the longest pre�x of u

mapped to s . �

For saturated strategies, the idea is to incorporate for all A,B

the partial equivalence relations ≈A and ≈B into the category of

plays.

Proposition 3.23. AJM games form a category-valued presheaf by

mapping each list of games to the corresponding set of plays with as

morphisms between any two plays u and v :

7
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• a singleton when there exists some playw such that u ≈ w ≤
v , or equivalently there exists w such that u ≤ w ≈ v ;
• none otherwise.

However, the obtained category-valued presheaf is not a game

setting, because projections PA,B,C → PA,C and insertions PA →
PA,A are not discrete �brations. Indeed, the �bres of PA,B,C →
PA,C are proper groupoids in general, thusmaking it a non-discrete

Grothendieck �bration. The case of PA → PA,A is worse: the re-

striction of a play in s ∈ PA along a morphism p → q in PA,A
may at best be mapped to some p ′ isomorphic to p in general, thus

making it a Street �bration. Our approach may generalise in this

direction, but this will involve advanced categorical concepts such

as stacks (which are to �brations as sheaves are to discrete �bra-

tions), so we leave it for future work.

3.5 A non-example: Blass games

In the previous sections, we have shown that several approaches

to game semantics form game settings, with the exception of the

saturated AJM setting. It may be instructive to consider Blass’s

games [9, 10], as they are well-known for their non-associative

composition. Our account essentially follows Abramsky [4, Sec-

tion 3], through the lens of game settings.

De�nition 3.24. A Blass game consists of a family of rooted trees,

together with a polarity in {P ,O}.

Vertices are thought of as positions in the game, with alternat-

ing polarities. The given polarity indicates which player is to start

the game, by choosing the initial position. The fact that Proponent

may start is a notable di�erence with arena games. Another dif-

ference is that the given family of trees genuinely represents the

‘game tree’ – no move may be played twice. This determines the

de�nition of PA, for any game A = (T ,π ): it is the poset consisting
of positions (i.e., vertices of T , plus a formal initial position), with

x ≤ y when x is above y in T .

ForPA,B things become a bitmore complicated. Strategies should

be based on the linear implication game A → B, which is con-

structed much as in, e.g., AJM games. First, one lets A⊥ denote

the game with the same family of trees as A but with opposite po-

larity. Then, one de�nes A → B by interleaving moves from A⊥

and B with natural switching conditions: Opponent is to play as

soon as possible. In other words, if the respective polarities in A⊥

and B are OP , PO , or OO , then O is to play; otherwise P is. There

is a catch, however: if the polarity is OO and Opponent plays, say

in B, we reach a position with polarity OP , and Opponent is to

play again, which breaks alternation. This is recti�ed by de�ning

A→ B to comprise compound moves fromOO to PP , for each pair

of moves in A⊥ and B. This settles the de�nition of PA,B , up to

some technicalities.

The next level is to de�ne PA,B,C . Glossing over the details, this

should consist of sequences of moves in A, B and C , whose pro-

jections to PA,B , PB,C and PA,C are well-de�ned. However, we

may show that with these de�nitions, the squares (3) cannot both

be pullbacks in general. Indeed, consider the case where the re-

spective polarities of A, B, C and D are O , P , O and P , and A is

non-empty. Then, let Pl
A,B,C,D

denote the left-hand pullback and

P
r
A,B,C,D

denote the right-hand one. We will show that both pull-

backs cannot be the same category by exhibiting a play in Pl
A,B,C,D

which is not in Pr
A,B,C,D

. First, let us observe that the initial polar-

ities from the respective points of view of A → B, B → C and

C → D are like so:

A B B C C D

A⊥ B B⊥ C C⊥ D

P P O O P P .

Letting a denote any root of A, the sequence a is then legal in

PA,B,D (the polarities are PP both in A → B and A → D) and

the empty sequence is legal in PB,C,D . Thus, a is legal in P
l
A,B,C,D

by the left-hand pullback. However, if the two pullbacks were iso-

morphic, then by the properties of projections a ∈ Pl
A,B,C,D

would

be mapped to a ∈ Pr
A,B,C,D

under the isomorphism. But Pr
A,B,C,D

cannot contain a because this play is illegal in PA,B,C (because the

polarity is PO in A→ C).

4 Innocence

4.1 Concurrent innocence

In the previous sections, we have constructed a category of games

and strategies parameterised over an arbitrary game setting which

presents the advantage of unifying a number of such categories as

instances of the same construction. However, in many game mod-

els, notably of purely functional languages, the relevant category

is the identity-on-objects subcategory of innocent strategies. This

raises the question of whether game settings are appropriate for an

abstract account of innocence. More precisely, this should involve

de�ning innocent strategies and proving that innocent strategies

form a subcategory.

In order to achieve this, we will use the recent recasting of inno-

cence as a sheaf condition [18, 19, 37]. Starting from Hyland-Ong

games, the �rst step is to re�ne the posets PA,PA,B, . . . into proper

categories (with exactly the same objects), say P+
A
,P
+

A,B
, . . ., with

the crucial feature that for any play p ∈ P+
A,B

and move m ∈ p,

there is a morphism ⌈p⌉m → p from the P-view ofm to p2. This of

course does not hold with the pre�x ordering, as the view is rarely

a pre�x. This idea was introduced by Melliès [28] in a slightly dif-

ferent setting.

Passing from P to P+ raises the issue of how to extend the ab-

stract framework. Should it now contain two category-valued presheaves?

Or should we simply forget about pre�x-based strategies and ac-

cept P+ as the new basic set up? We do not make any de�nitive

choice here, but for simplicity and modularity reasons, we choose

to �rst work with P+ only, and in a second round explore the con-

nection with P.

Indeed, perhaps surprisingly, we have:

Proposition 4.1. Tsukada and Ong’s P+ forms a game setting.

Proof. Follows from Lemmas 39, 46 and 47 of Tsukada and Ong

[36]. �

Returning to the abstract setting, the new data thus merely con-

sists of a full subcategory iA,B : VA,B ֒→ P+A,B , for all A,B, whose
objects are called views.

De�nition 4.2. The category of innocent strategies is the essen-

tial image of
∏

iA,B :
�VA,B →�P+

A,B
. The domain �VA,B is the cate-

gory of behaviours.

2We omit the de�nition of views, as it is unnecessary for understanding the rest.
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Wenowwould like to establish that in any game setting equipped

with such full embeddings, innocent strategies form a subcategory.

However, our proof relies on two additional properties. The �rst,

already observed by Tsukada and Ong [37, Lemma 32], states that

one can reconstruct uniquely any interaction sequence from its

projection to PA,C , say u , together with a compatible family, for

each view v of u of an interaction sequence projecting to v . The

second property essentially says that any morphism v → δ2(u)
from a viewv ∈ VA,B to the projection of someu ∈ P+

A,B,C
factors

canonically through the projection of some view (and similarly for

δ0).

Let us introduce introduce both properties in more detail.

The �rst property essentially says that interaction is local. To

state it, we need to recall the following standard construction and

its prime property.

De�nition 4.3. The category of elementsC/X of any presheafX ∈
Ĉ has as objects all pairs (c,x) with x ∈ X (c) and as morphisms

(c,x) → (c ′,x ′) all morphisms f : c → c ′ such that x ′ · f = x . Let

pX : C/X → C map any (c, x) to c , and any f to itself.

Proposition 4.4. The assignment X 7→ (C/X , pX ) extends to a

functor el : Ĉ→ DFibC (recalling De�nition 2.8).

Proof. The cartesian lifting of (c ′,x ′) along any f : c → c ′ is given
by f itself, viewed as a morphism (c,x ′ · f ) → (c ′,x ′) in C/X . �

This functor el is in fact an adjoint equivalence.

De�nition 4.5. Consider the functor sing : DFibC → Ĉ mapping

any discrete �brationp : E→ C to the presheaf sing(p)(c) = p−1(c),
with action on morphisms given by cartesian lifting.

Proposition 4.6. The functors

Ĉ ⊥ DFibC

el

sing

form an adjoint equivalence.

Let us now state the �rst property we need to impose on game

settings with embeddings iA,B : VA,B ֒→ P+A,B . The projection

PA,B,C → PA,C , as a discrete �bration, induces a presheaf sing(PA,B,C)
on PA,C which we will require to be in the essential image of

∏

iA,B

: �VA,C →�PA,C .

This is equivalent to requiring that sing(PA,B,C) be a sheaf for the
Grothendieck topology induced by the embedding VA,C → PA,C .
Similarly, we require the presheaf induced by ι0 : PA → PA,A to be

a sheaf for the Grothendieck topology induced by the embedding

VA,A → PA,A. Let us record this as:

De�nition 4.7. A game setting (A,P) equipped with full embed-

dings iA,B : VA,B ֒→ PA,B is local i� sing(PA,B,C) and sing(PA)
are sheaves.

Proposition 4.8. Tsukada and Ong’s P+ is local.

Proof. For PA,B,C , the result is precisely [37, Lemma 32]. For PA,

just observe that a play is copycat i� all its views are. �

So locality is the �rst property we need to require of our game

settings with views. The second property has to do with projec-

tions, e.g., δ2 : PA,B,C → PA,B . It essentially says that any mor-

phism v → δ2(u) with v ∈ VA,B and u ∈ PA,B,C factors ‘canon-

ically’ through some δ2(w) with w ∈ VA,B,C , where VA,B,C de-

notes the full subcategory of PA,B,C projecting to VA,C (or other-

wise said, VA,B,C = PA,B,C ×PA,C VA,C ). In order to de�ne such

canonicity, we appeal to the theory of analytic functors [21, 38, 39].

De�nition 4.9 (Weber [38, 39]). A functor T : C → D admits

generic factorisations relative to an object d ∈ D i� any f : d → Tc

admits a factorisation as below left

d

Ta Tc

д
f

Th

d Tb

Ta Tc

д

д′

Th

Th′
Tk

such that for all commuting squares as the exterior above right,

there exists a lifting k as shown making the diagram commute, or

more precisely such that д′ = Tk ◦ д and h = h′k . The middle

object a is called the arity of f – all such factorisations share the

same a up to isomorphism.

For all subcategories B ֒→ C and E ֒→ D, a functor C → D
admitting generic factorisations relative to all objects of E with

arities in B is called (B,E)-analytic [13].
De�nition 4.10. A game setting (A,P) equipped with full embed-

dings iA,B : VA,B ֒→ PA,B is view-analyticwhen δ2 is (VA,B,C ,VA,B)-
analytic and δ0 is (VA,B,C ,VB,C )-analytic.
Proposition 4.11. Tsukada and Ong’s game setting [37] is view-

analytic.

Proof. This follows from [36, Lemma 36]. �

We may now state our main result about innocence:

De�nition 4.12. An innocent game setting is a game setting (A, P)
equippedwith full embeddings iA,B : VA,B ֒→ PA,B , which is both
local and view-analytic.

Theorem 4.13. In any innocent game setting, innocent strategies

form a subcategory.

Again, we defer the proof to the more technical Section B.6.

4.2 Pre�x-based innocence

In the previous section, we have shown that innocent strategies

behave well in any innocent game setting. However, our only con-

crete example of an innocent game setting for now is Tsukada and

Ong’s P+. There is in fact a further example, given by enriching

arenas with bracketing information and restricting P+
A,B

to well-

bracketed plays [37, Section VII]. This shows that innocence is

stable under cs-composition. How about pb-composition? As men-

tioned before, innocence is not stable under pb-composition in gen-

eral [15, Section 3.7.2], unless one restricts to deterministic strate-

gies. In an attempt to better understand this phenomenon, we �rst

move in this section from cs-composition to ps-composition, and

prove that innocence remains stable. In the next section, we will

explain why this does not carry over to pb-composition, although,

as is well-known, it does on deterministic strategies.

We here proceed by �rst de�ning innocent, pre�x-based strate-

gies in an extended framework and then showing that our def-

inition agrees with the standard one (which is only de�ned on

9
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boolean behaviours). We then show that ps-innocent strategies in-

clude copycats and are closed under composition.

De�nition 4.14. Consider game settings (A,P+) and (A,P) with
the same set of arenas andVmaking P+ innocent, further equipped

with a componentwise identity-on-objects natural embedding k : P ֒→
P
+. Let a presheaf on PA,B be innocent via P+, or P+-innocent, i� it

is in the essential image of �VA,B
∏

iA,B−−−−−→�P+
A,B

∆kA,B−−−−−→ �PA,B . Simi-

larly, let a presheaf on PA,A be P+-copycat i� it is in the essential

image of 1 � ∅̂
∏

!−−→ P̂+
A

∑
ι0−−−→�P+

A,A

∆kA,A−−−−−→�PA,A.

Proposition 4.15. A strategy in the standardHON sense is innocent

i� it is P+-innocent. It is copycat i� it is P+-copycat.

Proof. Weprove themore speci�c statement that the innocent strat-

egy associated to any boolean behaviour (i.e., in this case, a be-

haviour in the image of rr!) in standard HON games is given up

to isomorphism by the functor ∆kA,B ◦
∏

iA,B . Similarly, the copy-

cat on A is given by the image of the unique element of 1 under

∆kA,A ◦
∑
ι0 ◦

∏
!. For innocence, consider any boolean behaviour

B. As is standard, right extension may in this case be computed as

a conjunction, which entails that B is mapped to

B ′(p) =
∧

{v ∈VA,B |P+A,B (v,p),∅}
B(v),

i.e., p is accepted i� B accepts all its views. The case of copycats is

similar. �

By the proposition, we may understand ps-innocence through

cs-innocence. Let us now state the transfer result.

Proposition 4.16. In the setting of De�nition 4.14, if all naturality

squares

PA,B,C PA,C

P
+

A,B,C
P
+

A,C

and

PA PA,A

P
+

A
P
+

A,A

are pullbacks, then P+-innocent strategies are closed under composi-

tion and comprise P+-copycat strategies.

The proof is in Section B.7. Of course, both hypotheses are sat-

is�ed in the case of Hyland-Ong games.

4.3 Boolean innocence

We �nally consider boolean innocence. As mentioned before, in-

nocent boolean strategies are not closed under composition. One

usually either imposes a further determinism constraint, or relaxes

the innocence constraint. It might be instructive to see how trying

to derive the boolean case from the set-based one using our meth-

ods directly points to the problem.

Indeed, suppose given any innocent game setting (A,P,V, i). We

would like to show that two boolean polynomial functors, say

P1, P2 : �VA,B + VB,C →�PA,C
coincide. Here P1 is innocentisation followed by composition and

P2 is the same, followed by another pass of innocentisation (and P

could very well be replaced by P+). If we could show that each Pi
factors as

�VA,B + VB,C �PA,C

�VA,B + VB,C �PA,C ,

Pi

r!

Pi

l!

where r! and l! are as in Proposition 2.16, then because we have

already shown that P1 � P2, we would automatically get P1 � P2
as desired.

Now, in all cases, both functors have the form

�VA,B + VB,C
Q
−−→ �PA,B,C

∑
δ1−−−→�PA,C

R−→�PA,C ,

where Q and R are only composed of ∆s and
∏
s. Using the fact

that
∏
s and ∆s commute with r!, we may thus hope to be able to

prove the desired factorisation like so:

�VA,B + VB,C �PA,B,C �PA,C �PA,C

�VA,B + VB,C �PA,B,C �PA,C �PA,C �PA,C
r!

Q

Q

r!

∑
δ1

∑
δ1

r!

R

R

r!
l!∼?

where the right triangle commutes up to isomorphism because l! ⊣
r! is a re�ection. The only problematic square is the marked one.

And indeed, if the considered boolean strategies, sayX1 andX2, are

non-deterministic,
∑
δ1 (r!(Q[X1,X2])) may accept some p ∈ PA,C

inmore than oneway (see Harmer [15, 3.7.2]), which readilymakes

it non-isomorphic to any presheaf in the image of r!.

Remark 4. Exactly the same argument explains why boolean com-

position cannot agree with set-based composition in general (as was

noted in Remark 2).

Standardly, the problem is overcome by restricting to determin-

istic strategies, for which themarked square commutes. Again, this

works indi�erently in the ps or cs settings.

Finally, we proceed similarly in the case of copycat strategies.

In this case, the problematic square

P̂A
�PA,A

P̃A
�PA,A

∑
ι0

r!

∑
ι0

r!

does commute, because the involved colimits are coproductswhich

are either empty or singleton:

Proposition 4.17. In any innocent game setting (A, P,V, i), boolean
copycat strategies are innocent. This extends to the setting of Proposi-

tion 4.16, so that, as is standard, copycats are innocent pb-strategies.

Proof. By discrete �bredness of ι0, for all p ∈ PA,A, the comma

category p/ι0 is either empty or connected. But
∑
ι0 (r!(X ))(p) is

the colimit of

(p/ι0)op
codop−−−−→ Pop

A

X−−→ 2
r−→ Set,

which is thus ∅ or 1, hence isomorphic to r!(
∑
ι0 (X ))(p). �

5 Conclusion and perspectives

Wehave introduced game settings and their innocent variant, a cat-

egorical framework for game semantics, with the hope of facilitat-

ing the construction of new gamemodels. A lot remains to be done,

starting with the incorporation of further instances. The saturated

10
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view of AJM games (Section 3.4) seems at hand, but will involve sig-

ni�cantly more advanced category theory, as Street �brations and

stacks will replace discrete �brations and sheaves. Less obvious is

the treatment of more exotic game models [7, 11, 16, 28–31, 34],

notably those based on event structures. Another direction is cate-

gori�cation: instead of reasoning up to isomorphism, we could re-

�ne our point of view and prove that games and strategies in fact

form a bicategory, as, e.g., in Rideau and Winskel [34]. Finally, be-

yond game models, we should investigate game semantics, i.e., the

correspondence with operational semantics, as initiated in Eber-

hart and Hirschowitz [12] in a di�erent setting.
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A Categorical background

A.1 Presheaves, restriction, extensions

This section is a brief introduction to the description of both ad-

joints to restriction,
∑
F and

∏
F (see Notation 1), in terms of co-

ends and ends, respectively.

Consider the left adjoint �rst,
∑
F . It is determined up to canon-

ical isomorphism by the coend
∑
F (X )(d) �

∫ c ∈C
X (c) ×D(d, F (c)),

which we abbreviate as
∫ c ∈C

X (c) × [d, F (c)], (4)

using the standard bracket notation for hom-sets (the ambient cat-

egory should be clear from context). It will be enough to know

that it is the quotient of the corresponding coproduct
∐

c ∈C X (c)×
D(d, F (c)) by the smallest equivalence relation ∼ satisfying

(x, F (f ) ◦ д) ∼ (x · f ,д)
for all x ∈ X (c ′), д ∈ D(d, F (c)) and f ∈ C(c, c ′). Graphically, this
relation may be visualised by the following commuting ‘diagram’:

1

X (c) X (c ′)
F (c) F (c ′)

d .

x ·f x

X (f )

д F (f )◦д

F (f )
(5)

We see that f acts in di�erent directions, on X (c ′) and [d, F (c)],
and the equivalence relation takes this into account.

The right adjoint works dually: it is determined up to canonical

isomorphism by the end∏
F (X )(d) �

∫
c ∈C Set(D(F (c),d),X (c)),

which we abbreviate as∫

c ∈C
[[F (c),d],X (c)]. (6)
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In this case, the end admits a very simple description: the assign-

ment c 7→ [F (c),d] de�nes a presheaf on C, and the end is nothing

but the set of natural transformations from this presheaf to X , so

that we have ∏
F (X )(d) � Ĉ([F (−),d],X )

(which is in fact an instance of the universal property for ends [22]).

Still, it may be instructive to realise that such natural transfor-

mations are equally the elements α of the product∏
c ∈C[[F (c),d],X (c)]

satisfying a dual condition to (5), namely commutativity of

1

X (c) X (c ′)
F (c) F (c ′)

d

αc (д◦F (f )) αc′(д)

X (f )

д◦F (f ) д

F (f )
(7)

for all f : c → c ′ and д : F (c ′) → d , which is equivalent to natural-

ity, i.e., commutativity of the square

[F (c ′),d] X (c ′)

[F (c),d] X (c).

αc′

[F (f ),d ]

αc

X (f )

Beware: unlike in (5), where an element of the coend is a pair of

arrows (e.g., (x · f ,д)), an element of the end is here a natural family

of arrows 1→ X (c) indexed by all д : F (c) → d .

A.2 Fibrations

This section is a minimal introduction to (Grothendieck) �brations

and their relation to discrete �brations.

De�nition A.1. Consider any functor p : E → C. A morphism

u : x → y inE is cartesianwhen for allv : z → y inE andk : p(z) →
p(x) making the bottom triangle commute

z

x y

p(z)

p(x) p(z),

u

p(u)

v

p(v)

w

k

there exists a uniquew : z → x such that p(w) = k and u ◦w = v .
The functor p is a �bration when for all objects e ∈ E and mor-

phisms f : c → p(e) there exists a cartesian morphism u : e ′ → e

such that p(u) = f . Such a morphism is called a cartesian lifting of

e along f .

Clearly, the discrete �brations of De�nition 2.8 are identical to �-

brationswhose cartesian liftings are unique, or equivalentlywhose

�bres are discrete. The �bre of p at any object c ∈ C is the subcate-

gory of E spanning objects in p−1(c) and morphisms in p−1(idc ).

A.3 Exact squares

An essential tool in our proofs will be Guitart’s theory of exact

squares [14], which we now recall.

De�nition A.2. A square is a natural transformation

A B

C D.

T

S V

U

φ (8)

of small categories and functors.

Any square yields by restriction a square as in the middle be-

low, and so by adjunction (the so-called mate calculus) two further

squares as on the left and right:

Â B̂

Ĉ D̂

∆T

∑
S

∆U

∑
V

∑
φ

Â B̂

Ĉ D̂

∆T

∆S

∆U

∆V

∆φ

Â B̂

Ĉ D̂.

∏
T

∆S

∏
U

∆V

∏
φ

De�nitionA.3. A squareφ is exact if and only if
∑
φ is an isomor-

phism.

The following is well-known:

Property 1. A square φ is exact if and only if
∏

φ is an isomor-

phism.

The notion of exactness thus corresponds to commutation up to

isomorphism of the two diagrams on the sides above.

Remark 5. In an attempt to spare the reader a few headaches try-

ing to remember the directions of
∑
’s, ∆’s and

∏
’s, as well as of

the induced natural transformations, let us share our mnemonic: the

original transformation φ points to the
∑
’ed functor if we are to rea-

son about
∑
φ , and from the

∏
’ed functor if we are to reason about∏

φ . Furthermore, induced natural transformations �ow along left

adjoints and against right adjoints (hence along
∑
s for

∑
φ , and

against
∏
s for

∏
φ ).

Notation 3. In the proofs, we will manipulate diagrams of restric-

tion and its adjoints. In order to reduce notational clutter, hats will be

omitted and arrows will point in the direction of underlying functors.

This means that ∆ arrows will point in the “wrong” direction, in the

sense that if F : X → Y , we will write Y
∆F←−− X for Ŷ

∆F−−→ X̂ .

Let us conclude this sectionwith a few basic lemmas about exact

squares. First, we recall that a square (8) is a comma square when

it is the terminal lax cone to (U ,V ). More formally, it is a termi-

nal object in the category whose objects are spans C
S ′←−− A′

T ′−−→
B equipped with a natural transformation φ′ : US ′ → VT ′, and
whose morphisms (A′, S ′,T ′,φ′) → (A′′, S ′′,T ′′,φ′′) are functors
m : A′ → A′′ such that S ′′ ◦m = S ′,T ′′ ◦m = T ′, and φ′′ ◦m = φ′
(where ◦ here denotes whiskering). Cocomma squares are de�ned

exactly dually, i.e., with D,U andV varying instead of A, S , and T .

Guitart shows:

Lemma A.4. Any comma (resp. cocomma) square is exact.

Proof. See Guitart [14], Examples 1.14.2 and 1.14.3. �

Lemma A.5. For any functor f : A → B, the square below left is

exact; furthermore, the square below right is exact i� f is fully faith-

ful:
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A B

A B

f

f

idf

A A

A B
f

f
idf

Proof. See Guitart [14], Examples 1.14.1 and 1.14.4. �

LemmaA.6. Exact squares are stable under horizontal composition.

Proof. See Guitart [14], Theorem 1.8. �

Lemma A.7. Any square (8) in which φ and S are identities and V

is fully faithful is exact.

Proof. We obtain the given square as the horizontal composite

A B B

A B C ,

T

T

T

U

V

V

which is exact by Lemma A.6, because both squares are exact by

Lemma A.5. �

Guitart provides the following necessary and su�cient criterion

for exactness:

LemmaA.8 (Guitart [14], Theorem 1.2 (zig-zag criterion)). A square

as in (8) is exact if and only if, for all objects c ofC , d of D, and mor-

phisms f : Uc → Vd :

• there is an objecta ofA such that f factors asUc
Uд
−−−→ USa

φa−−→
VTa

Vh−−−→ Vd ,

• and for all two such factorisationsUc
Uд
−−−→ USa

φa−−→ VTa
Vh−−−→

Vd and Uc
Uд′
−−−→ USa′

φa′−−−→ VTa′
Vh′−−−→ Vd , there exists a

commuting diagram (which Guitart calls a lantern)

c

Sa · . . . · Sa′

Ta · . . . · Ta′

d .

д д′

St0 St1 Stn−1 Stn

h h′

T t0 T t1 T tn−1 T tn

Let us conclude this section with an apparently new (though

not surprising) result showing that pullbacks of (op)�brations are

exact squares (not in the same direction!).

Lemma A.9. Any pullback square (8) with V a �bration is exact.

Similarly, ifU is an op�bration, then (8) is exact.

Proof. We proceed by the zig-zag criterion. Consider any f : Uc →
Vb . Let us �rst establish existence of the desired factorisation, by

considering any cartesian lifting l : b0 → b of b along f . We ob-

tain Uc = Vb0, hence by universal property of pullback (By the

standard categori�cation/nerve adjunction, limits of categories are

computed as limits of underlying simplicial sets, hence pointwise.)

a unique a such that c = Sa and b0 = Ta. The original f thus

factors as

Uc
U (id)
−−−−→ USa

id−−→ VTa
V l−−→ Vb .

We now need to show that any factorisation is connected to this

one by some lantern. So consider any factorisation of f as

Uc
Uд
−−−→ USa′

id−−→ VTa′
Vh−−−→ Vb .

Because �brations are stable under pullback, S is a �bration, so we

may pick a cartesian lifting, say k : a′′ → a′, of a′ along д, so that
in particular Sa′′ = c and Sk = д. Now, we have

VTa′′ = USa′′ = Uc = USa = VTa

hence a commuting triangle as below left

VTa′′ VTa′ Vb

VTa
V l

VTk Vh Ta′′ Ta′ b

Ta
l

u

Tk h

(becauseVTk = USk = Uд soVh◦VTk = f = Vl ). So by cartesian-

ness of l , we obtain a (unique) u making the above right triangle

commute. We thus obtain the following commuting diagrams:

c

Sa Sa′′ Sa′

Ta Ta′′ Ta′

b .

д

Sk

u Tk

l h

But since Vu = id, we have that U (id) = Vu so by universal prop-

erty of pullback again there exists a unique w : a′′ → a such that

Sw = id and Tw = u . The above diagram thus yields a lantern, as

desired. �

A.4 Distributivity

As we saw, exact squares ensure commutation of restriction with

left (resp. right) extension. In some of our proofs, we will also en-

counter squares for which we will need left extension to commute

with right extension. This is an instance of what we will call dis-

tributive squares, which we now introduce.

Consider any exact square as (8). The inverse of
∑
φ yields a

natural transformation as below left

Â B̂

Ĉ D̂

∆T

∑
S

∆U

∑
V

∑−1
φ

Â Ĉ

B̂ D̂ ,

∏
T

∑
S

∏
U

∑
V

φ̃

which by adjunction induces a natural transformation as on the

right.

De�nition A.10. An exact square is distributive when φ̃ is an iso-

morphism.

Here is a useful construction of distributive squares. Recalling

Proposition 4.6, consider any functors A
S−→ B

U−−→ D with S a

discrete �bration U fully faithful. Let C = el(∏U (sing(S))) denote
the category of elements of the right extension of sing(S) along

13
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U , and let V denote its projection to D. Because extension along a

fully faithful functor is fully faithful, the counit of the adjunction

∆U ⊣
∏

U is an isomorphism. This yields a pullback square

A D/∏U (sing(S))

B D

TS,U

S

U

p∏
U (sing(S )) (9)

which is exact by Lemma A.9.

De�nitionA.11. Any square obtained in this way is called a local

pushforward square.

Lemma A.12. Local pushforward squares are distributive.

Proof. Consider any local pushforward square (8). We prove the

corresponding result for the equivalent categories of discrete �-

brations. There, because V and hence S are discrete �brations, ΣS
becomes post-composition with S , and similarly for ΣV . So the re-

sult essentially states that for any discrete �bration P : E → A,
∏

U

(SP) �
∏

U

(S) ◦
∏

T

(P) � V ◦
∏

T

(P),

where the �rst isomorphism follows from a simple diagram chase

showing that
∏

U (S) ◦
∏

T (P) enjoys the universal property of∏
U (SP). �

B Main proofs

B.1 Adequacy

Proof of Proposition 2.10. First, because
∏

! is right adjoint to ∆!,

it preserves the terminal object (which is the unique object of ∅̂),
hence maps 1 to the terminal presheaf on PA, de�ned to map any

play in PA to 1. So we reduce to showing that idA �
∑
ι0(1).

Discrete �bredness of ι0 entails that left extension may be ex-

pressed as a mere coproduct: we have, for any presheaf X on PA
and p ∈ PA,A,

(
∑

ι0

X )(p) �
∑

{q∈PA |ι0(q)=p }
X (q).

So in particular when X = 1 we get

∑

ι0

(1)(p) �
∑

{q∈PA |ι0(q)=p }
1 �

{
1 if p ∈ Im(ι0)
∅ otherwise,

as desired. �

Proof of Proposition 2.13. Starting from the end, consider
∑
δ1 . Thanks

to discrete �bredness of δ1, we have for any presheafX
′′ on PA,B,C

and p ∈ PA,C :∑

δ1

(X ′′)(p) �
∑

{u ∈PA,B,C |δ1(u)=p }
X ′′(u).

The next step is to unfold the right extension
∏
[id, id]. In this

case, [id, id] is easily seen to be a discrete op�bration,which entails
that right extension may be expressed as the product

∏

[id, id]
(X ′)(u) �

∏

{v ∈(PA,B,C+PA,B,C ) |[id, id](v)=u }
X ′(v),

i.e., unfolding X ′ as the copairing [X ′0,X
′
1], v as the pair (i,u ′) and

using the constraint [id, id](v) = [id, id](i,u ′) = u ′ = u:
∏

[id, id]
[X ′0,X

′
1](u) �

∏

i ∈{0,1}
(X ′i (u)) � X ′0(u) × X

′
1(u).

Finally, because ∆δ2+δ0 [X0,X1] = [∆δ2 (X0),∆δ0 (X1)], we ob-

tain that the candidate composition of De�nition 2.12 maps any

[X0,X1] to

∑
δ1 (

∏
[id, id](∆δ2+δ0 [X0,X1]))(p)

=

∑
{u ∈PA,B,C |δ1(u)=p }

∏
[id, id][∆δ2 (X0),∆δ0 (X1)](u)

=

∑
{u ∈PA,B,C |δ1(u)=p } ∆δ2 (X0)(u) × ∆δ0 (X1)(u)

=

∑
{u ∈PA,B,C |δ1(u)=p } X0(δ2(u)) × X1(δ0(u)),

which clearly coincides with Tsukada and Ong’s de�nition. �

B.2 Associativity

In this section, we prove Theorem 2.15. Let us start with an alter-

native description of composition, which relies on the following

intermediate category:

De�nition B.1. For any triple of arenas A, B, C , let P(A,B), (B,C )
denote the lax colimit [22] of

PA,B PA,B,C PB,C ,

i.e., the initial category equipped with natural transformations

PA,B PA,B,C PB,C

P(A,B), (B,C ).

λ ρ

The obtained category has as objects the disjoint union of ob-

jects from PA,B , PB,C , and PA,B,C . It inherits the corresponding

morphisms, and has additional morphismsλu : δ2u → u and ρu : δ0u →
u for all u satisfying the obvious naturality requirements:

λu′ ◦ δ2 f = f ◦ λu and ρu′ ◦ δ0 f = f ◦ ρu ,
for all f : u → u ′ in PA,B,C . We have:

PropositionB.2. Composition is isomorphic to the polynomial func-

tor

PA,B + PB,C P(A,B), (B,C ) PA,B,C PA,C .
∏

∆

∑

Proof. Thiswill follow fromLemmaA.4 by observing that the square

PA,B,C + PA,B,C PA,B,C

PA,B + PB,C P(A,B), (B,C )

∇

δ2+δ0

is a cocomma square, where ∇ denotes the copairing [id, id]. In-
deed, both categories have the same universal property, expressed

di�erently. �

Proving associativity thus reduces to showing that the perime-

ter of the top diagram of Figure 1 commutes up to isomorphism.

In order to do this, we introduce the category P(A,B), (B,C ), (C,D),
similar to P(A,B), (B,C ) but with four arenas, which is constructed

as the lax colimit of

PB,C

PA,B PA,B,C PB,C,D PC,D

PA,B,C,D .

14
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PA,B + PB,C + PC,D P(A,B), (B,C ) + PC,D PA,B,C + PC,D PA,C + PC,D

PA,B + P(B,C ), (C,D) P(A,B), (B,C ), (C,D) P(A,C ), (C,D)

PA,B + PB,C,D PA,B,C,D PA,C,D

PA,B + PB,D P(A,B), (B,D) PA,B,D PA,D

∏

∏ ∏
∆

∑

∏

∏
∆

∑

∆
∑

∑

∆

∑

∏
∆

∑

PA,B + P(B,C ), (C,D) PA,B + PB,C,D PA,B + PB,D

P(A,B), (B,C ), (C,D) P(A,B), (B,C,D) P(A,B), (B,D)

P(A,B), (B,C ), (C,D) PA,B,C,D PA,B,D

∏

∆

∑

∏ ∏ ∏

∆

∑

∆

∆
∆

∑
∆

Figure 1. Diagram for associativity and zoom into the bottom left heptagon

In the top diagram of Figure 1, both little squares commute up to

isomorphism because the underlying squares do. It thus su�ces

to show that both heptagons commute up to isomorphism. Both

cases are symmetric, so we only treat the bottom left one. We then

need to introduce yet another category, P(A,B), (B,C,D), which is

like P(A,B), (B,C ), (C,D), except that PB,C,D is not decomposed into

PB,C and PC,D : it is the lax colimit of

PA,B PA,B,C,D PB,C,D .

These categories are related by full embeddings

P(A,B), (B,C ) ֒→ P(A,B), (B,C ), (C,D)←֓ P(A,B), (B,C,D).
The crucial reason why the heptagon commutes is:

Lemma B.3. The square

PA,B + PB,C,D P(A,B), (B,C,D)

PA,B + PB,D P(A,B), (B,D)

PA,B+δ1

[λ,ρ ]

P(A,B),δ1

is a local pushforward square, i.e., it is a pullback, PA,B + δ1 is a

discrete �bration, [λ, ρ] is fully faithful, and

P(A,B),δ1 �
∏

[λ,ρ ]
(PA,B + δ1).

Proof sketch. Everything is direct, except the last isomorphism,which

says that P(A,B), (B,C,D) is a sheaf for the topology induced by the

full embedding PA,B + PB,D ֒→ P(A,B), (B,D). This reduces to the

fact that any u ∈ PA,B,C,D is entirely determined by giving its pro-

jections u1 = δ2(δ2(u)) ∈ PA,B and u2 = δ0(δ2(u)) ∈ PB,D , plus
some p ∈ PB,C,D such that δ1(p) = u2, which holds by zipping.

In more detail, the considered topology has canonical sieves: for

objects in the image of the embedding, the canonical sieve is just

the total sieve; for u ∈ PA,B,D , the canonical sieve is generated by

the cospan

δ2(u) → u ← δ0(u).
Thus, the sheaf condition for P(A,B), (B,C,D) reduces to saying that,
implicitly coercing discrete �brationsp : E→ P(A,B), (B,C ) into the
corresponding presheaf sing(()E,p), the restriction map

P(A,B), (B,C,D)(u) → PA,B(δ2(u)) × PB,C,D(δ0(u))

is an isomorphism. But PA,B(δ2(u)) � 1, so this further reduces to

the restriction map

P(A,B), (B,C,D)(u) → PB,C,D(δ0(u))

being an isomorphism. This is only non-trivial when u ∈ PA,B,D
and in that case it is equivalent to

∀u ∈ PA,B,D,v ∈ PB,C,D, (δ0(u) = δ1(v))
⇒ ∃!w ∈ PA,B,C,D,δ2(w) = u ∧ δ0(w) = v ,

i.e., the left square of (3) being a pullback on objects. �

This leads us to �ll the heptagon as at the bottom of Figure 1.

The top right square commutes by Lemmas A.12 and B.3. The top

triangle commutes up to isomorphism by Lemma A.7, the bottom

one because the underlying diagram commutes, and the bottom-

right square by Lemma A.9.

Associativity �nally follows from:

Lemma B.4. The left square commutes up to isomorphism.

Proof. By the classical limit formula for right extensions, given any

presheaf X on PA,B + P(B,C ), (C,D),

• following the left and bottom arrows we obtain a presheaf

X ′ mapping any u ∈ PA,B,C,D to the limit of

((PA,B + P(B,C ), (C,D))/u)op

(PA,B + P(B,C ), (C,D))op

Set;
X

• following the top and right arrows, we obtain a presheaf X ′

mapping any u to a similar limit with PA,B + P(B,C ), (C,D)
replaced by PA,B + PB,C,D .

Now, the inclusion functor

(PA,B + PB,C,D)/u ֒→ (PA,B + P(B,C ), (C,D))/u

is readily checked to be �nal [25, IX.3], so its opposite is initial and

both limits are isomorphic. �

B.3 Unitality

Left and right unitality are entirely symmetric, so we only treat

one. First, we observe that, because ι0 : PA → PA,A is a discrete
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�bration, so is ι0 + PA,B : PA + PA,B → PA,A + PA,B . Consider the
diagram:

∅ + PA,B PA + PA,B PA,A + PA,B

C P(A,A), (A,B)

PA,B PA,A,B PA,B

∏

∏

∑
ι0+PA,B

∏

∆

∑

∏
[λ,ρ ]∑

∆

∑

where the functor C→ P(A,A), (A,B) is de�ned as

el(
∏

[λ,ρ ]
(sing(ι0 + PA,B))).

We thus obtain a local pushforward square which commutes up to

isomorphism by Lemma A.12.

Let us now show that the bottom square is a pullback. By con-

struction, an object c ofC over anyu ∈ PA,A,B consists of an object
c1 ∈ PA over δ2(u) and an object c2 ∈ PA,B over δ0(u). The latter
has to be δ0(u), and the former has to be δ0(δ2(u)) or equivalently
δ1(δ0(u), but it exists only when u � ι0(δ0(u)), i.e., when u is in

the image of PA,B → PA,A,B. Thus, the bottom square is exact by

Lemma A.9.

Finally, the bottom row is isomorphic the identity on PA,B , so

it only remains to prove that the composite PA,B � ∅ + PA,B
∏
−−→

C
∆←− PA,B is also isomorphic to the identity, which follows from

the standard end formula for
∏

and the explicit description of lax

colimits.

B.4 The boolean case

In this section, we show that our results in the presheaf case trans-

fer to the boolean case. This will follow from showing that all the

polynomial functors that we used commute with booleanisation.

This is easy for left extensions and restrictions:

Proposition B.5. For all functors F : C→ D, the following squares
commute up to isomorphism.

[Cop, Set] [Dop, Set]

[Cop, 2] [Dop, 2]

∑
F

l!

∑̄
F

l!

[Cop, Set] [Dop, Set]

[Cop, 2] [Dop, 2]

∆F

l!

∆̄F

l!

Proof. Commutation with restriction is obvious. For left extension,

the re�ection l, being a left adjoint, preserves colimits, which is

precisely what
∑
F computes. �

Things do not work out so well with right extensions in gen-

eral. In order to show that our polynomial functors commute with

booleanisation, it is thus useful to delineate a su�ciently large

class of limits that are preserved by l:

Lemma B.6. The left adjoint l preserves products and the terminal

object.

Proof. That l preserves 1 is obvious. Now, a product
∏

i Xi is non-

empty just when each Xi is, hence just when l(Xi ) = 1 for all i ,

i.e., when
∏

i l(Xi ) = 1. Thus l(∏i Xi ) = 1 i�
∏

i l(Xi ) = 1, hence

l(∏i Xi ) =
∏

i l(Xi ). �

PropositionB.7. Booleanisation commuteswith
∏

F , for any F : C→
D such that for all d ∈ ob(D) the comma category F/d is a coproduct

of categories with a terminal object.

Proof. Indeed, consider any such F . For any X ∈ Ĉ and d ∈ D,
letting F/d � ∑

i D
d
i with φdi : F (c

d
i ) → d denoting the terminal

object in Ddi , we have

l((∏F (X ))(d)) � l(lim((F/d)op → Cop X−−→ Set))
� l(∏i X (cdi ))
�

∏
i l(X (cdi )) (by Lemma B.6)

� (lim((F/d)op → Cop X−−→ Set
l−→ 2))

�
∏

F (l ◦X )(d),
as desired. �

Proposition B.8. The class of functors F such that
∏

F commutes

with booleanisation contains all functors∇C : C+C→ C and ! : ∅ →
C, and it is stable under composition and coproduct (i.e., F +G : C+

C
′ → D + D′ is in it if F andG are).

Proof. Easy consequences of the previous proposition. �

Proof of Proposition 2.18. Both results state that two polynomial func-

tors, say P1 and P2 between categories of the form [Cop, 2] are nat-
urally isomorphic. But knowing that their set-versions, say P1 and

P2, are isomorphic, we may form

[Cop, Set] [Dop, Set]

[Cop, 2] [Dop, 2].

P1

P2
l!

P1

P2

l!

In both cases, this diagram commutes serially by Propositions B.5

and B.8, and we have proved that the top parallel functors are iso-

morphic. But [Cop, l] is epi, which entails that the bottom parallel

functors are also isomorphic, as desired. �

B.5 Constraining strategies

The goal of this section is to prove Proposition 3.18. Before attack-

ing this, let us reformulate the locality condition on c, using the

category P(A,B), (B,C ) of De�nition B.1.

Lemma B.9. An embedding c : Pc ֒→ P as in Proposition 3.18, i.e.,

between game settings sharing the same set of arenas and whose com-

ponents are discrete �brations, is a local constraint i� sing(c(A,B), (B,C )),
the presheaf induced by the embeddingPc(A,B), (B,C ) ֒→ P(A,B), (B,C ),
is a sheaf for the Grothendieck topology induced by the embedding

PA,B + PB,C ֒→ P(A,B), (B,C ).

Proof. A direct check. �

Proof of Proposition 3.18. By Proposition B.2, the result reduces to

the commutation of

P
c
A,B
+ P

c
B,C

P
c
(A,B), (B,C ) P

c
A,B,C

P
c
A,C

PA,B + PB,C P(A,B), (B,C ) PA,B,C PA,C

∏

∑
c ×

∑
c

∏

∑
c

∆

∆

∑
c

∑

∑

∑
c
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up to isomorphism. The right-hand square commutes up to isomor-

phism because the underlying square does; the middle one com-

mutes by Lemma A.9; and the left-hand one by hypothesis and

Lemma A.12. �

B.6 Concurrent innocence

In this section, we prove Theorem 4.13, in two lemmas. The �rst

states stability of innocence under composition; the second says

that copycat strategies are innocent.

Lemma B.10. In any innocent game setting, the composite of two

innocent strategies is again innocent.

Proof. Because a strategy X , say on (A,B), is innocent i� it is iso-

morphic to
∏

iA,B (∆iA,B (X )), it su�ces to show that starting from

any pair of behaviours [B1,B2] ∈ �VA,B + VB,C , if we extend them
to innocent strategies, compose, and eventually apply innocentisa-

tion (i.e.,
∏

iA,C ◦∆iA,C ), then the last step is redundant. In other

words, we need to show that the perimeter of

PA,B + PB,C P(A,B), (B,C ) PA,B,C PA,C

V(A,B), (B,C ) VA,B,C VA,C

PA,B + PB,C P(A,B), (B,C ) PA,B,C PA,C

VA,B + VB,C

∏
∆

∑

∏

∏

∏ ∆

∏

∆

∆

∑

∏

∆

∏

∏
∆

∑

(10)

commutes up to isomorphism. We proceed by showing that inno-

centisation is redundant at every intermediate step, but this re-

quires us to de�ne intermediate categories of views adequately:

VABC is de�ned as the pullback PA,B,C ×PA,C VA,C , i.e., the full
subcategory of PA,B,C spanning plays whose δ1-projection is a

view; for V(A,B), (B,C ), consider �rst the lax colimit C of PA,B ←
VA,B,C → PB,C ; V(A,B), (B,C ) is its full subcategory spanning ob-

jects from VA,B,C , VA,B and VB,C .

Returning to our claim, the top-left square commutes by

Lemma A.7, the top square because the underlying diagram com-

mutes, the top-right square by Lemma A.9, the bottom-left square

because the underlying diagram commutes, the bottom-right one

by locality. Finally, the bottom square commutes because it is exact

by the zig-zag criterion using view-analyticity and observing that

it is a pullback of fully faithful functors. �

We �nally prove innocence of identities:

Lemma B.11. Copycat strategies are innocent.

Proof. We proceed as for preservation of innocence by composi-

tion: by showing that copycat is the same as copycat followed by

innocentisation. This yields the diagram

PA PA,A

∅ VA VA,A

PA PA,A.

∏
∏

∏

∑

∆∆ ∑

∏

∑

∏

The bottom left triangle commutes because underlying functors

do; the top left triangle commutes by LemmaA.7; the bottomsquare

commutes by locality; the top one by Lemma A.9. �

B.7 Pre�x-based innocence

This section is devoted to the proof of Proposition 4.16.We proceed

as in the previous section: we �rst need to show that the following

diagram commutes up to isomorphism

PA,B + PB,C P(A,B), (B,C ) PA,B,C PA,C

P
+

A,B
+ P
+

B,C
P
+

(A,B), (B,C ) P
+

A,B,C
P
+

A,C

P
+

A,B
+ P
+

B,C
P
+

(A,B), (B,C ) P
+

A,B,C
P
+

A,C

PA,B + PB,C P(A,B), (B,C ) PA,B,C PA,C .

VA,B + VB,C VA,C

∏
∆

∑

∏

∏

∆

∏

∏
∆

∑

∆

∏

∆ ∆

∆

∑

∆

∆

∏

∆ ∆

∆
∑

∆

∆

(Theorem 4.13)

(I) (II)

(11)

By Theorem 4.13, this reduces to exactness of (I) and (II). The latter

follows by hypothesis (discreteness of P+
A,B,C

→ P+
A,C

and (II) be-

ing a pullback). The former follows by construction of P+(A,B), (B,C ),
using the zig-zag criterion.

Innocence of copycat presheaves follows similarly, as does coin-

cidence of copycats with the essential image of restriction. Coinci-

dence of innocence with essential image of restriction is obvious.
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