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] that this inequality admits extremal functions, when the perturbation parameter α is small. By contrast, we prove here that the Adimurthi-Druet inequality does not admit any extremal, when the perturbation parameter α approaches λ 1 . Our result is based on sharp expansions of the Dirichlet energy for blowing sequences of solutions of the corresponding Euler-Lagrange equation, which take into account the fact that the problem becomes singular as α → λ 1 .

Introduction

Let Ω be a smooth bounded domain of R 2 . We let H 1 0 be the usual Sobolev and Hilbert space of functions in Ω, endowed with the scalar product u, v H 1 0 = Ω ∇u.∇v dy , and with the associated norm denoted by • H 1 0 . For all α ≥ 0, we let C α (Ω) be given by C α (Ω) = sup {u∈H 1 0 s.t. ∇u 2 =1} Ω exp 4πu(y) 2 1 + α u 2 2 dy .

(1.1)

Then, the Adimurthi-Druet [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF] inequality claims that

C α (Ω) < +∞ ⇔ α < λ 1 ,
where λ 1 > 0 is the first eigenvalue of ∆ = -∂ xx -∂ yy in Ω with zero Dirichlet boundary condition on ∂Ω.

While the existence of an extremal function for α = 0, i.e. for the standard Moser-Trudinger inequality, was obtained by Carleson-Chang [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF], Struwe [START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF] and Flucher [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF], Yang and Lu [START_REF] Lu | Sharp constant and extremal function for the improved Moser-Trudinger inequality involving L p norm in two dimension[END_REF] were able to prove that there exists an extremal function for (1.1) for all α ≥ 0 sufficiently close to 0. More recently, still concerning the original Adimurthi-Druet inequality (1.1), it was explained in Yang [START_REF] Yang | Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two[END_REF] that the existence of extremals for more general α's closer to λ 1 is left open. We prove here that, surprisingly, there is no extremal function for (1.1) for all α < λ 1 sufficiently close to λ 1 . Then, our main result is stated as follows.

Theorem 1.1 (Non existence of extremals). Let Ω be a smooth, bounded and connected domain of R 2 . Let λ 1 > 0 be the first eigenvalue of ∆ with zero Dirichlet boundary condition. Then there exists α 0 ∈ (0, λ 1 ) such that, for all α ∈ [α 0 , λ 1 ), there is no extremal function for (1.1).

The proof of Theorem 1.1 relies on the recent progresses concerning the blow-up analysis of Moser-Trudinger equations (see [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF][START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF]). The difficulty in this problem is a cancellation of the first terms in the Dirichlet energy expansions of Section 2, which enforces to carry out in Section 3 a very precise blow-up analysis. For instance, the estimates obtained in [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF] and [START_REF] Lu | Sharp constant and extremal function for the improved Moser-Trudinger inequality involving L p norm in two dimension[END_REF] are far from being sufficient to conclude here. Note that a similar cancellation was already observed by Martinazzi-Mancini [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] in the radial case, namely when Ω is the unit disk D 2 of R 2 . Even in this more particular case, the authors had to carry out a very careful blow-up analysis of the next lower order terms in order to conclude. To be able to deal with the general (non necessarily radial) situation, we use here the techniques developed in Druet-Thizy [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF]. But, a new additional serious difficulty here is that the problem becomes singular when α gets close to λ 1 . By singular, we mean here that the kernel of the operator obtained by linearizing the limiting equation at 0 does not only contain the zero function. Here (see (2.4), (2.6) and (2.9)), this operator is ∆ -λ 1 with zero Dirichlet boundary condition and we have to compute carefully (see Step 3.4) what happens in its kernel.

As already observed by Del Pino-Musso-Ruf [START_REF] Manuel Del Pino | New solutions for Trudinger-Moser critical equations in R 2[END_REF] in the non-singular case, the critical exponential non-linearity exp(u 2 ) in dimension 2 is more difficult to handle than the Sobolev critical non-linearity u n+2 n-2 in higher dimensions n > 2, and getting sharp energy expansions of positive blow-up solutions reveals to be delicate in this case. Besides, even for Sobolev critical problems in higher dimensions, understanding the behavior of positive blow-up solutions turned out to be very challenging in the singular case. This difficulty was overcome while solving Lin-Ni's conjecture (see Druet-Robert-Wei [START_REF] Druet | The Lin-Ni's problem for mean convex domains[END_REF], Rey-Wei [START_REF] Rey | Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity[END_REF] and Wei-Xu-Yang [START_REF] Wei | On Lin-Ni's conjecture in dimensions four and six[END_REF] and the references therein), where the limiting linearized operator is ∆ with zero Neumann boundary condition, whose kernel is the set of the constant functions.

As far as we know, Theorem 1.1 is the first result proving the non-existence of extremals for an explicit Moser-Trudinger type inequality with critical exponent on bounded domains. Indeed, similar results had so far been proven only for implicit perturbations of the Moser-Trudinger inequality [START_REF] Pruss | Nonexistence of maxima for perturbations of some inequalities with critical growth[END_REF], or for sub-critical inequalities on R 2 [START_REF] Ishiwata | Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in R N[END_REF], where blow-up of maximizing sequences cannot occur.

The paper is organized as follows. Theorem 1.1 is proved in Section 2. This proof relies on the key energy estimates of Proposition 3.1, whose proof is given in Section 3.

Proof of Theorem 1.1

Assume by contradiction that there exists a sequence (α i ) i such that α i → λ - 1 and such that there exists an extremal function u αi ≥ 0 for C αi (Ω). For simplicity, we drop the indexes i's. Then the u α 's satisfy

           ∆u α = A α u α + 2β α λ α u α exp(β α u 2 α ) in Ω , u α = 0 in ∂Ω , ∇u α 2 2 = 1 , β α = 4π 1 + α u α 2 2 , A α = α 1+2α uα 2 2 < λ 1 , (2.1)
for some positive λ α 's, and in particular, the u α 's are smooth. Indeed, the Moser-Trundinger inequality gives that 

u ∈ H 1 0 =⇒ exp(u 2 ) ∈ L p ,
u α ⇀ 0 in H 1 0 , u α → 0 in L p for all p < +∞ , u α L ∞ → +∞ (2.3) 
and thus that

β α → 4π and A α → λ - 1 , (2.4 
) as α → λ - 1 . Now we rephrase everything in terms of v α := β α u α .

(2.5)

We have that

       ∆v α = v α A α + Λ α exp(v 2 α ) in Ω , v α = 0 in ∂Ω , β α = 4π 1 + α βα v α 2 2 , A α = α 1+2 α βα vα 2 2 (< α < λ 1 ) , (2.6) 
where

Λ α = 2β α λ α > 0. Moreover, ∇u α 2 2 = 1 implies ∇v α 2 2 = β α .
(2.7)

We also get that v α 2 → 0 as α → λ - 1 and the second line of (2.6) implies

β α = 2π   1 + 1 + α Ω v 2 α dy π   = 4π 1 + α Ω v 2 α dy 4π - α 2 Ω v 2 α dy 2 16π 2 + O Ω v 2 α dy 3 .
(2.8)

Now, we have that

Ω exp(v 2 α )dy = Ω exp β α u 2 α dy = C α (Ω) → +∞ ,
and, independently, that

Λ α Ω v 2 α exp(v 2 α )dy = Ω |∇v α | 2 dy -A α Ω v 2 α dy = 4π + o(1) ,
so that there must be the case that

Λ α → 0 (2.9)
as α → λ - 1 , since e t ≤ 1 + te t for t ≥ 0. We are now in position to use Proposition 3.1 below: we have that

∇v α 2 2 = 4π 1 + A α 4π Ω v 2 α dy + o Ω v 2 α dy 2 (2.10) as α → λ - 1 .
Then, expanding the third line of (2.6), we get

A α = α - α 2 Ω v 2 α dy 2π + O Ω v 2 α dy 2 .
(2.11)

Now, (2.10) and (2.11) give

β α = 4π 1 + α 4π Ω v 2 α dy - α 2 8π 2 Ω v 2 α dy 2 + o Ω v 2 α dy 2 .
(2.12) But (2.8) and (2.12) have to match, then we get

- λ 2 1 16π 2 Ω v 2 α dy 2 = o Ω v 2 α dy 2 , (2.13) 
which is the contradiction we look for.

3. Blow-up analysis on (2.6) Proposition 3.1. Let (v α ) α be a sequence of smooth solutions of

∆v α = v α A α + Λ α exp(v 2 α ) , v α > 0 in Ω , v α = 0 in ∂Ω , (3.1) 
for A α ∈ [0, λ 1 ) and Λ α > 0, for all α slightly smaller than λ 1 . We let β α > 0 be given by (2.7) and we assume that (2.4) and (2.9) hold true. We also assume that the v α 's blow-up, namely that

γ α := max Ω v α = v α (x α ) → +∞ , (3.2) 
as α → λ - 1 , for x α ∈ Ω. Then, we have that

γ 2 α Ω v 2 α dy → +∞ , (3.3) 
that

Λ α = o 1 γ 2 α (3.4)
and that (2.10) hold true as α → λ - 1 . Note that (3.3) and (3.4) (proved in Step 3.4) are specific to our singular case A α → λ - 1 : they would not hold true if the limit of the A α 's were in [0, λ 1 ). Now we turn to the proof of this result. In order to prove Proposition 3.1, we study the asymptotic behavior of the v α 's as α → λ - 1 . We make the assumptions of Proposition 3.1. First, by these assumptions on (Λ α ) α and (A α ) α , the family (f α ) α of functions, given by

f α (t) = t(A α + Λ α exp(t 2 )) ,
is of uniform critical growth in the sense of [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF]Definition 1]. Also, as in [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] (see also the original argument in [START_REF] Adimurthi | Global compactness properties of semilinear elliptic equations with critical exponential growth[END_REF]), if µ α is given by

µ -2 α := Λ α 4 γ 2 α exp(γ 2 α ) → +∞ , (3.5) 
then there exists a sequence of positive numbers

(R α ) α such that R α → +∞, R α µ α ≪ d(x α , ∂Ω), and 
γ α (γ α -v α (x α + µ α •)) -T 0 C 2 (B0(Rα)) → 0 (3.6) as α → λ - 1 , where T 0 := log 1 + | • | 2 .
We recall that T 0 solves the Liouville equation

∆T 0 = 4 exp(-2T 0 ) (3.7) in R 2 . Note that (3.1), (3.2) and v α H 1 0 = O(1) imply that Λ α exp(γ 2 α ) → +∞ , (3.8) 
as α → λ - 1 . Moreover, the PDE in (3.1) is autonomous and the f α 's are increasing in [0, +∞). Therefore, as pointed out in [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF], the arguments in de Figueiredo-Lions-Nussbaum [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] and Han [START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF] give that the x α 's do not go to the boundary of Ω.

Then, up to a subsequence,

x α → x (3.9) as α → λ - 1 , for some x ∈ Ω. Let B α be the radially symmetric solution around x α of ∆B α = B α A α + Λ α exp B 2 α , B α (x α ) = γ α . (3.10) 
Let vα be given by

vα (z) = 1 2π|x α -z| ∂Bx α (|xα-z|) v α (y) dσ(y) (3.11)
for all z ∈ Ω\{x α } and vα (x α ) = v α (x α ). Also we let t α be given by

t α (y) = log 1 + |y -x α | 2 µ 2 α = T 0 y -x α µ α . (3.12) 
By abuse of notations, we will write sometimes B α (r), t α (r) or vα (r) instead of B α (z), t α (z) or vα (z) respectively, for |z -x α | = r. For any δ ∈ (0, 1), we let r α,δ > 0 be given by

t α (r α,δ ) = δγ 2 α . (3.13) Observe that (3.13) implies r 2 α,δ = µ 2 α exp δγ 2 α + o(1) ≫ µ 2 α , (3.14) 
as α → λ - 1 . At last, by [6, Proposition 2], there exists D 0 > 0 such that | • -x α ||∇v α |v α ≤ D 0 in Ω (3.15) for all 0 < λ 1 -α ≪ 1.
The first rather elementary step is as follows.

Step 3.1.

As α → λ - 1 , we have that |log Λ α | = o(γ 2 α ). (3.16)
Moreover, for all δ ∈ (0, 1) and all sequences (z α ) α of points

z α ∈ B xα (r α,δ ), we have that v α (z α ) ≥ γ α (1 -δ + o(1)), (3.17) 
and in particular r α,δ < d(x α , ∂Ω).

Proof of Step 3.1. Let R 0 > 0 be such that Ω ⊂ B x(R 0 ). Let also Ω α be given by Ω α = B xα (R 0 )\B xα (µ α ).
We extend v α by 0 outside Ω. Let V α be the unique harmonic function in Ω α such that V α = v α in ∂Ω α . Then, by construction of V α , we know that

Ωα |∇V α | 2 dy ≤ Ωα |∇v α | 2 dy , (3.18) 
for all α. Let now Ǎα > 0 be such that Ψ α := Ǎα log R0 |•-xα| and γ α -tα γα coincide on ∂B xα (µ α ). Then, we easily get from (3.5) that

Ǎα = γ 2 α -log 2 γ α log R0 µα = γ α (1 + o(1)) log 1 µα . (3.19)
By (3.6) and elliptic estimates, we get that

|∇V α -∇Ψ α | ≤ o 1 γ α | • -x α | in Ω α (3.20)
for all 0 < λ 1 -α ≪ 1. Then, we get from (3.19) and (3.20) that 

Ωα |∇V α | 2 dy = π Ǎ2 α log 1 µ 2 α (1 + o(1)) = 4πγ 2 α (1 + o(1)) log 1
log 1 µ 2 α ≥ (1 + o(1))γ 2 α ,
which concludes the proof of (3.16) using also (2.9) and (3.5). Now we prove (3.17 

Ãα = 2 + o(1) γ α . (3.22) But since 0 = ∆ Ψα ≤ ∆v α in Ωα := B xα ( δ)\B xα (µ α ) and since Ψα ≤ v α + o(γ -1 α ) in ∂ Ωα , we get from (3.

6) and the maximum principle that

Ψα ≤ v α + o(γ -1 α ) in Ωα . ( 3 
Ψα (z α ) ≥ 1 + o(1) γ α log 1 r 2 α,δ = γ α (1 -δ + o(1)).
This concludes the proof of (3.17), in view of (3.6) and (3.23). Now, we fix δ ∈ (0, 1) and we expand B α up to a distance r α,δ of x α , as α → λ - 1 . As a consequence of Step 3.1, we expand B α up to a distance r α,δ of x α , as α → λ - 1 . Let S 0 be the radial solution around 0 ∈ R 2 of

∆S 0 -8 exp(-2T 0 )S 0 = 4 exp(-2T 0 ) T 2 0 -T 0 , (3.24) 
such that S 0 (0) = 0. By [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF], the explicit formula for S 0 is

S 0 (r) = -T 0 (r) + 2r 2 1 + r 2 - 1 2 T 0 (r) 2 + 1 -r 2 1 + r 2 1+r 2 1 log t 1 -t dt ,
and in particular,

S 0 (r) = A 0 4π log 1 r 2 + B 0 + O log(r) 2 r -2
where

A 0 = 4π, B 0 = π 2 6 + 2 , (3.25) 
as r → +∞. Note that A 0 = R 2 (∆S 0 )dy. For 0 < λ 1 -α ≪ 1, we let S α be given by

S α (z) = S 0 z -x α µ α . (3.26)
Step 3.2. For all sequence (z α ) α such that z α ∈ B xα (r α,δ ), we have that

B α (z α ) = γ α - t α (z α ) γ α + S α (z α ) γ 3 α + O 1 + t α (z α ) γ 5 α , (3.27 
)

for all 0 < λ 1 -α ≪ 1.
As a by-product of Step 3.2, B α is radially decreasing in B xα (r α,δ ).

Proof of Step 3.2. Let w 1,α be given by

B α = γ α - t α γ α + w 1,α γ 3 α , (3.28) 
and let ρ 1,α > 0 be defined as

ρ 1,α = sup {r ∈ (0, r α,δ ] s.t. |S α -w 1,α | ≤ 1 + t α in [0, r]} . (3.29)
First, we give precise asymptotic expansions of ∆w 1,α in B xα (ρ 1,α ), as α → λ - 1 . We start by proving that the term A α B α is well controlled in B xα (ρ 1,α ), using Step 3.1. Indeed, (3.5), (3.13) and (3.16) give 

exp(t α (-2 + (t α /γ 2 α ))) µ 2 α = exp log Λ α + o(γ 2 α ) exp γ α - t α γ α 2 ≥ exp (1 -δ) 2 γ 2 α + o(γ 2 α ) (3.30) in B xα (r α,δ ). Since B α > 0 in B xα (ρ 1,α ), we get from (3.10) that B α ≤ γ α in this ball. Then (3.30) implies A α B α ≤ λ 1 γ α = o exp(t α (-2 + (t α /γ 2 α ))) γ 5 α µ 2 α in B xα (ρ 1,α ) . ( 3 
+ t α ) in B xα (ρ 1,α ).
In particular, from (3.28) we get

B α = γ α - t α γ α + O 1 + t α γ 3 α , (3.32) 
and

B 2 α = γ 2 α -2t α + t 2 α + 2w 1,α γ 2 α + O 1 + t 2 α γ 4 α (3.33) in B xα (ρ 1,α ). Since t α = O(γ 2 α ) in B xα (r α,δ ), applying the useful inequality exp(x) - k-1 j=0 x j j! ≤ |x| k k! exp(|x|) ,
for all x ∈ R and all integer k ≥ 1, we obtain that

exp t 2 α + 2w 1,α γ 2 α + O 1 + t 2 α γ 4 α = 1 + t 2 α + 2w 1,α γ 2 α + O (1 + t 4 α ) exp(t 2 α /γ 2 α ) γ 4 α (3.34) in B xα (ρ 1,α
). Then, using (3.5), (3.32), (3.33), (3.34), we get that 

Λ α B α exp(B 2 α ) = 4 exp(-2t α ) µ 2 α γ α 1 + 2w 1,α + t 2 α -t α γ 2 α + O (1 + t 4 α ) exp(t 2 α /γ 2 α ) γ 4 α (3.35) in B xα (ρ 1,α ). Now,
∆w 1,α = 4 exp(-2t α ) µ 2 α 2w 1,α + t 2 α -t α + O (1 + t 4 α ) exp(t 2 α /γ 2 α ) γ 2 α (3.36) in B xα (ρ 1,α ).
Next, we estimate the growth of the function w 

(∆(w 1,α -S α )) dy = -2πr(w 1,α -S α ) ′ (r) , (3.38) 
and, from (3.24) and (3.36), that

∆ (w 1,α -S α ) = 8 exp(-2t α ) µ 2 α (w 1,α -S α ) + O (1 + t 4 α ) exp(t 2 α /γ 2 α ) γ 2 α , (3.39)
for all 0 ≤ r ≤ ρ 1,α . By (3.37), we get that

Bx α (r) 8 exp(-2t α + t 2 α /γ 2 α )(1 + t 4 α ) µ 2 α dy ≤ 8π κ -1 1 -(1 + (r/µ α ) 2 ) 1-κ , (3.40) and, since |(w 1,α -S α )(r)| ≤ (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) r, that Bx α (r) 8 exp(-2t α ) µ 2 α |w 1,α -S α | dy ≤ µ α h(r/µ α ) (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) , (3.41) 
where

h(s) = 8π arctan s - s 1 + s 2 , s ≥ 0 .
Then, by (3.38), (3.39), (3.40), and (3.41), there exists a constant C ′ > 1 such that

r|(w 1,α -S α ) ′ (r)| C ′ ≤ (r/µ α ) 2 γ 2 α (1 + (r/µ α ) 2 ) + µ α (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) (r/µ α ) 3 1 + (r/µ α ) 3 (3.42)
for all 0 ≤ r ≤ ρ 1,α and all 0 < λ 1 -α ≪ 1. Now we prove that

µ α (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) = O 1 γ 2 α . (3.43)
Otherwise, we assume by contradiction that

γ 2 α µ α (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) = γ 2 α µ α |(w 1,α -S α ) ′ |(s α ) → +∞ (3.44) as α → λ - 1 , for s α ∈ (0, ρ 1,α ].
Up to a subsequence, we may assume that

ρ 1,α µ α → δ 0 (3.45)
as α → λ - 1 , for some δ 0 ∈ (0, +∞]. Note that (3.42) with (3.44) gives s α = O(µ α ), µ α = O(s α ) and then δ 0 > 0. Let wα be given by

wα (s) = (w 1,α -S α )(µ α s) µ α (w 1,α -S α ) ′ L ∞ ([0,ρ1,α])
, so that, by (3.42) and (3.44), there exists a constant C ′′ > 0 such that

| w′ α (s)| ≤ C ′′ 1 + s in [0, ρ 1,α /µ α ] , (3.46) 
for all 0 < λ 1 -α ≪ 1. Then, by (3.39), (3.46) and elliptic theory, we get that there exists w such that 

wα → w in C 1 loc (B 0 (δ 0 )) as α → λ - 1 , (3.47 
Bx α (ρ1,α) exp(-2t α ) µ 2 α |w 1,α -S α |dy = o(µ α (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) ) . ( 3 
r|(w 1,α -S α ) ′ (r)| = o µ α (w 1,α -S α ) ′ L ∞ ([0,ρ1,α]) (3.51)
for all 0 ≤ r ≤ ρ 1,α and as α → λ - 1 . But (3.51) is clearly not possible at s α . This concludes the proof of (3.43). Now, plugging (3.43) in (3.42), using that w 1,α (0) = S α (0) = 0 and the fundamental theorem of calculus, we get that

w 1,α -S α L ∞ ([0,ρ1,α]) = O 1 + t α γ 2 α as α → λ - 1 ,
which, in view of (3.29), gives ρ 1,α = r α,δ and concludes the proof of Step 3.2. Now, we compare the behavior of v α and B α in B xα (r α,δ ). Let κ be any fixed number in (0, 1). Let r α be given by

r α = sup r ∈ (0, r α,δ ] s.t. |v α -B α | ≤ κ γ α in B xα (r) . (3.52)
We get from (3.15) and (3.17) that

| • -x α ||∇v α | ≤ D 0 (1 -δ + o(1))γ α in B xα (r α,δ ) . (3.53)
Then letting w α be given by v α = B α + w α , (3.54) we get from (3.52) and (3.53) that

|w α | ≤ κ + D 0 π (1 -δ + o(1)) 1 γ α in B xα (r α ) . (3.55)
Then, we obtain from (3.1), (3.10) and (3.55) that there exists a constant Step 3.3. Let δ ∈ (0, 1) be given. Then we have that r α = r α,δ and, in other words,

D 1 > 0 such that |∆w α | ≤ λ 1 + D 1 1 + 2B 2 α exp(B 2 α ) |w α | , ≤ D 1 1 + 2B 2 α exp(B 2 α )(1 + o( 1 
vα -B α L ∞ (Bx α (r α,δ )) = o 1 γ α , as α → λ - 1 .
Moreover, we have that

∇(v α -B α ) L ∞ (Bx α (r α,δ )) = O 1 γ α r α,δ
and then, there exists a constant C > 0 such that

|v α -B α | ≤ C | • -x α | γ α r α,δ in B xα (r α,δ ) . (3.57)
As a direct consequence of Steps 3.2 and 3.3 we get the asymptotic expansion

f α (v α ) = O(γ α ) + Λ α B α + O | • -x α | r α,δ γ α exp B 2 α + O | • -x α | r α,δ = O(γ α ) + Λ α B α exp(B 2 α ) 1 + O | • -x α | r α,δ . 
Then, expanding as in (3.31) and (3.35), we find that

f α (v α ) = 4 exp(-2t α ) µ 2 α γ α 1 + 2S α + t 2 α -t α γ 2 α + O (1 + t 4 α ) γ 4 α exp t 2 α γ 2 α + 1 + t 2 α γ 2 α | • -x α | r α,δ (3.58) 
in B xα (r α,δ ). Since δ < 1, we can argue as in (3.37) to estimate the exponential in the error term. Specifically, we can find κ > 1 such that

f α (v α ) = 4 exp(-2t α ) µ 2 α γ α 1 + 2S α + t 2 α -t α γ 2 α + O 1 + t 2 α γ 2 α | • -x α | r α,δ + O exp (-κt α ) µ 2 α γ 4 α . (3.59) 
Similarly, we obtain

v α f α (v α ) = 4 exp(-2t α ) µ 2 α 1 + 2S α + t 2 α -2t α γ 2 α + O 1 + t 2 α γ 2 α | • -x α | r α,δ + O exp (-κt α ) µ 2 α γ 4 α . (3.60) 
in B xα (r α,δ ). Now we focus on the behavior of the v α 's in Ω\B xα (r α,δ ). Assume that 0 < δ ′ < δ < 1. We let ṽα be given by

ṽα = v α in Ω\B xα (r α,δ ) , min (v α , (1 -δ ′ )γ α ) in B xα (r α,δ ) . (3.61) Note that v α < (1 -δ ′ )γ α in ∂B xα (r α,δ ) (3.62) by (3 
.27) and (3.57). Then we have that ṽα ∈ H 1 0 and that v α = ṽα + ṽ1,α , where ṽ1,α := 1 Bx α (r α,δ ) (v α -(1 -δ ′ )γ α ) + and t + = max(t, 0). Now, by (3.62) and continuity, we have that ṽ1,α is zero in a neighborhood of ∂B xα (r α,δ ). Then, for any given R > 0, we can compute

Bx α (r α,δ ) |∇ṽ 1,α | 2 dy = Bx α (r α,δ ) ∇ṽ 1,α (y).∇v α dy = Bx α (r α,δ ) (∆v α )ṽ 1,α dy ≥ Bx α (Rµα) f α (v α )ṽ 1,α dy ≥ δ ′ (1 + o(1)) B0(R) 4 (1 + |z| 2 ) 2 dz
for 0 < λ 1 -α ≪ 1, since r α,δ /µ α → +∞ and using (3.5) and (3.6). Since R > 0 is arbitrary, we obtain ṽ1,α

H 1 0 ≥ 4πδ ′ (1 + o(1)).
Since (2.4) implies ṽα + ṽ1,α

2 H 1 0 = 4π + o(1)
, and since ṽ1,α and ṽα are H 1 0orthogonal, we get that

ṽα 2 H 1 0 ≤ 4π(1 -δ ′ + o(1)) . (3.63) 
Moreover, since δ and δ ′ may be arbitrarily close to 1 in the above argument, we can check that, up to a subsequence, v α ⇀ 0 weakly in H 1 0 and then that

v α → 0 strongly in L p , (3.64) 
for any p ≥ 1, as α → λ - 1 . Furthermore, by (3.63) and Moser's inequality, there exists p ′ > 1 such that (exp(ṽ 2 α )) α is bounded in L p ′ (Ω). Using (3.27) and (3.57), we can also check that ṽα = v α in Ω\B xα (r α,δ /2). Then, we get that

(exp(v 2 α )) α is bounded in L p ′ (Ω\B xα (r α,δ /2)) . (3.65) 
From now on, we fix p ≥ 2 and r > 1 such that

1 p ′ + 1 p + 1 r = 1 . (3.66) 
In the sequel, v is the unique function characterized by

     ∆v = λ 1 v , v > 0 in Ω , v = 0 in ∂Ω , v p = 1 . (3.67) 
Step 3.4. For all sequence (z α ) α of points such that z α ∈ Ω\B xα (r α,δ ), we have that . First, integrating (3.59) and using the dominated convergence theorem, we get that 

v α (z α ) = v α p v(z α ) + o ( v α p ) + 1 γ α log 1 |x α -z α | 2 + O 1 γ α , ( 3 
Bx α ( r α,δ 2 ) f α (v α )dy = Bx α ( r α,δ 2 ) 4 exp (-2t α ) µ 2 α γ α dy + O 1 γ 3 α + O µ α r α,δ γ α . ( 3 
f α (v α )dy = 4π γ α + O 1 γ 3 α , (3.73) 
for all 0 < λ 1 -α ≪ 1. Independently, by (3.69), we get that there exists C > 0 such that 

|G zα (y) -G zα (x α )| ≤ C|y -x α | r α,δ (3 
G zα (y)f α (v α (y))dy = 4π γ α + O 1 γ 3 α G zα (x α ) + Bx α ( r α,δ 2 )
f α (v α (y))|y -x α |dy . 

f α (v α (y))|y -x α |dy = O Bx α ( r α,δ 2 ) exp (-κt α ) |y -x α | γ α µ 2 α r α,δ dy = o 1 γ α . ( 3 
) c G zα (y)f α (v α (y))dy ≤ C G zα L r v α L p λ 1 + Λ α exp(v 2 α ) L p ′ (Bx α ( r α,δ 2 ) c ) = O ( v α L p ) (3 
v α (z α ) ≤ (1 + o(1)) log C |xα-zα| 2 γ α + C v α L p , ( 3 
(λ 1 -A α ) Ω vv α dy = Λ α Ω vv α exp(v 2 α )dy ≥ 4πv(x)(1 + o(1)) γ α (3.81)
as α → λ - 1 , where x is as in (3.9), using (3.6). Since A α → λ - 1 by (2.4), we get (3.3) and (3.80) from (3.81) and the Cauchy-Schwarz inequality. Now we prove that

v α v α p → v in C 1 loc ( Ω\{x}) , (3.82) 
as α → λ - 1 . By (2.9), (3.1), (3.64), (3.79), (3.80) and elliptic theory, we get that (v α / v α p ) α converges in C 1 loc ( Ω\{x}) to some ṽ solving ∆ṽ = λ 1 ṽ ,

in Ω\{x}. But, by (3.79) and (3.80) again, we get that 0 ≤ ṽ ≤ C in Ω\{x} for C as in (3.79), that ṽ solves (3.83) in Ω and that ṽ p = 1. Then ṽ = v and (3.82) is proved. Since r α,δ → 0 and by (3.82), we can find a sequence (δ α ) α of positive real numbers converging to 0 such that δ α ≥ r α,δ /2 and such that 

v α v α p -v C 0 (Ω\Bx α (δα)) = o(1) (3 
G zα (y)f α (v α (y))dy = 1 γ α log 1 |x α -z α | 2 + O 1 γ α . ( 3 
α (δα) c G zα (y)f α (v α (y))dy= v α p λ 1 Ω G zα (y)v(y)dy + o( v α p ) = v α p v(z α ) + o( v α p ) , (3.90) as α → λ - 1 . Now we denote Ω α = B xα (δ α )\B xα r α,δ 2 
. On the one hand, using (3.69), (3.79), (3.80) and δ α → 0 as α → λ - 1 , we get that In order to conclude the proof of Proposition 3.1, it remains to prove (2.10).

Ωα G zα (y)A α v α dy = O δ 2 α log 1 δ α v α p + O 1 γ α = o( v α p ). ( 3 
Proof of Proposition 3.1 (ended). By (3.1), in order to get (2.10), it is sufficient to prove that 

Λ α Ω v 2 α exp(v 2 

1 0≤

 1 18), (3.21), and since v α 2 H 4π + o(1), we get that

  ). Observe that (3.5),(3.14) and (3.16) imply r α,δ → 0, as α → λ - 1 . Let δ be given in (0, d(x, ∂Ω)), for x as in (3.9). Let now Ãα > 0 be such that Ψα := Ãα log δ |•-xα| and γ α -tα γα coincide on ∂B xα (µ α ). Using (3.5) and (3.16), we easily get that

  .23) But by (3.5), (3.13), (3.14) and (3.22), for z α ∈ B xα (r α,δ ), we have that

  .31) Next we observe that (3.25) and (3.29) imply w 1,α = O(1

  by (3.7), (3.10), (3.31), and (3.35), we get that

  8 exp(-2T 0 ) w in B 0 (δ 0 ) , w(0) = 0 , w radially symmetric around 0 ∈ R 2 ; (3.48) but (3.48) implies w ≡ 0 in B 0 (δ 0 ) . (3.49) By (3.46), (3.47), (3.49) and the dominated convergence theorem we get

  ))|w α | (3.56) in B xα (r α ), using also (3.13), (3.16), (3.25) and (3.27) to get exp(B 2 α ) ≫ λ 1 . Summarizing, the v α 's satisfy (3.1) and (3.53), and the B α 's satisfy (3.27) in B xα (r α,δ ), while (3.25) holds true. Moreover, the w α 's satisfy (3.56) in B xα (r α ). Then, arguing exactly as in [8, Section 3] dealing with the case A α = 0, we get the following result.

  .68) for all 0 < λ 1 -α ≪ 1, where p is as in (3.66) and v is as in (3.67). Moreover, (3.3) and (3.4) hold true. Proof of Step 3.4. Let (z α ) α be a sequence of points such that z α ∈ Ω\B xα (r α,δ ) for all α. Let G be the Green's function of ∆ in Ω with zero Dirichlet boundary conditions. Then (see for instance [8, Appendix B]), there exists a constant C > 0 such that0 < G x (y) ≤ 1 2π log C |x -y| |∇G x (y)| ≤ C |x -y| (3.69)for all x = y in Ω. By the Green's representation formula and (3.1), we get thatv α (z α ) = Ω G zα (y)f α (v α (y))dy . (3.70) Now, we split the integral in (3.70) according to Ω = B xα r

  .78) for all α. Putting together (3.69), (3.70), (3.77) and (3.78), we have obtained that there exists C, C > 0 such that

  .91) On the other hand, using (2.9), (3.70) (3.79), and the dominated convergence theorem we have thatΩα G zα (y)Λ α v α exp(v 2 α α -y| 2 + o(1) 2 dy = o ( v α p ) .

  α -•| 2 ≤ 1 -δ + o(1) < 1 (3.93) in B xα (r α,δ /2)c , for all 0 < λ 1 -α ≪ 1. Combining (3.89), (3.90), (3.91) and (3.92), we get (3.68). At last we prove(3.4). By (3.5), (3.27), (3.57), we have thatv α (z α ) = B α (z α ) + O α, where (z α ) α is given such that zα ∈ ∂B xα (r α,δ ). But picking z α = zα in (3.68), we get from (3.80), (3.86) and (3.94) that log 1 γ 2 α Λ α =γ α v α p v(x)(1 + o(1)) → +∞ , (3.95) as α → λ - 1 , which concludes the proof of (3.4) and that of Step 3.4.

4 2 α dz + O 1 γ 4 α 2 ∆S 0 dz = R 2 4

 42422 (3.60) and the dominated convergence theorem, we get thatΛ α Bx α (r α,δ ) Bx α ( r α,δ µα ) exp(-2T 0 ) 1 + (2S 0 + T 2 0 -2T 0 ) γ + µ α r α,δ.(3.97)Note that the term of order γ -2 α in (3.97) vanishes since, by (3.24) and (3.25), we getA 0 = R exp(-2T 0 )T 0 dz .Then (3.14) and (3.97) imply Λ α Bx α (r α,δ ) in (3.92), using (3.64), (3.68), (3.93) and the dominated convergence theorem. At last, we easily get from (3.68) and (3.80) that Ω conclude from (3.98)-(3.100) with (3.4) and (3.80) that (3.96) holds true, which concludes the proof of Proposition 3.1.

  for all 1 ≤ p < +∞, and then standard elliptic theory applies. Since C λ1 (Ω) = +∞,

	we get that	
	C α (Ω) → +∞	(2.2)
	as α → λ -1 , by the monotone convergence theorem. Then, by Lions [12, Theorem
	I.6], we have that, up to a subsequence,	

  1,α -S α . In the sequel, restricting to B xα (r α,δ ) gives that 2 -tα

	error term (1 + t 4	γ 2 α	≥ 2 -δ > 1 and then, a sufficiently good decay of the

α ) exp(t α (-2 + (t α /γ 2 α ))). Namely, we can find κ > 1 and C > 0 such that

(1 + t 4 α ) exp(t α (-2 + (t α /γ 2 α ))) ≤ C exp(-κt α ) (3.37) in B xα (r α,δ

). Now, we observe that Bx α (r)

  .89) Now, since ∆v = λ 1 v and A α → λ - 1 , we get by (2.9), (3.64), (3.69) and (3.84) that

	Bx
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