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Abstract—Solving a linear system of equations is an impor-
tant underlying part of numerous scientific applications. In this
article, we address the issue of non-deterministic and, therefore,
non-reproducible solution of linear systems and propose an
approach to ensure its reproducibility. Our approach is based
on the hierarchical and modular structure of linear algebra
algorithms. Consequently, we divide computations into smaller
logical blocks – such as a blocked LU factorization, triangular
system solve, and matrix-matrix multiplication – and ensure
their reproducible results. In this manner, we also split the
blocked LU factorization into the unblocked LU and the BLAS-
3 routines; the former is built on top of scaling a vector and
outer product of two vectors routines from BLAS-1 and -2,
accordingly. In this work, our focus is on constructing these
building blocks that eventually lead, as we will prove, to the
reproducible solution of linear systems.

Keywords-Linear system, reproducibility, long accumulator,
error-free transformation.

I. INTRODUCTION

In many fields of science and engineering, the process
of finding the solution for a specific problem requires to
solve a system of linear equations. The common approach
is to develop solvers for those tasks alone and then spend
a considerable amount of time on tuning them. However,
the best practice suggests to use already optimized solution-
routines contained in linear algebra libraries. Those routines
naturally form a hierarchical (layered) and modular struc-
ture. A good example of such structure is the Basic Linear
Algebra Subprograms (BLAS) library, which is divided
into three distinguishable levels depending on the operands
involved: BLAS-1 handles vector-scalar operations; BLAS-
2 is in change of matrix-vector computations; BLAS-3 –
matrix-matrix computations.

Finding a solution of a linear system with a single
right-hand side can be expressed in this hierarchical and
modular manner, involving the LU factorization, as de-
picted in Fig. 1, where TRSV corresponds to the trian-
gular solver; L is a unit lower triangular, while U is a
non-unit upper triangular matrices. Both matrices are usu-
ally computed by employing the high-performance blocked
LU factorization. The latter also follows the hierarchical
pattern, engaging routines from all three BLAS levels:

Ax = b

Ly = b
(TRSV)

Ux = y
(TRSV)

A = LU
(BLKLU) UNBLU

GER

SCAL

TRSM
GEMM

Figure 1: An example of a
kernel-wise representation for the
linear system solver.

TRSM to solve a unit
lower triangular system
with multiple right-hand
sides; GEMM to com-
pute matrix-matrix prod-
uct; UNBLU for the un-
blocked algorithmic vari-
ant of the LU factoriza-
tion with partial pivoting
for stability. UNBLU can
be formulated in terms of
the Level-1/2 BLAS ker-
nels, namely the vector
scaling (SCAL) and the
rank-1 update of a ma-
trix (GER). Additionally,

to find a pivot, we search for a maximum element in the
column (MAX) and, if applicable, swap rows (SWAP).

Solving a linear system requires 2n3/3 flops for the
blocked LU factorization and 2n2 for two triangular solve.
Each of these operations is performed inexactly, meaning
rounded to a certain value with the cascade of the follow-
up errors; in this work we assume rounding-to-nearest.
Although there are implementations of BLAS routines and
both blocked and unblocked LU factorization that deliver
high-performance on a wide range of architectures, including
GPUs, their reproducibility and accuracy cannot be simply
assured. That is mainly due to the non-associativity of
floating-point operations as well as dynamic thread and warp
scheduling on CPUs and GPUs, accordingly.

We have been working on addressing the issues of non-
reproducibility for many of the above-mentioned building
blocks. We started with the parallel reduction [1] and ex-
tended this work to the triangular solve and matrix-matrix
multiplication. This was followed by preparing building
blocks for the blocked LU factorization as well as its under-
lying unblocked variant. as well as its underlying unblocked
variant. In this work, we aim to aggregate and augment all
the above-mentioned building blocks to obtain the repro-
ducible solver for systems of linear equations. Furthermore,
we plan to provide proofs regarding reproducibility of the
computed results.
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Figure 2: Performance results.

II. APPROACH

Numerical reproducibility can be addressed by targeting
either the order of operations or the error resulting from
the finite computer arithmetic. One solution consists in
providing the deterministic control over rounding errors
by, for example, enforcing the execution order for each
operation. However, these approach is not portable and/or
does not scale well with the number of processing cores. The
other solution aims at avoiding cancellation and rounding
errors by using, for instance, a long accumulator (aka
superaccumulator) such as the one proposed by Kulisch [2].
This solution increases the accuracy at the price of more
operations and memory transfers per output data.

In order to tackle both drawbacks, we propose to couple
the superaccumulator with a lightweight approach – such
that floating-point expansions (FPEs) with error-free trans-
formations like TwoSum [3] and TwoProd [4] – which
utilizes a vector of several floating-point numbers in order
to store the result of computation. Such FPEs are owned
by each thread in a warp or a group of thread, so that
a warp, half of a warp, or a group of threads share one
superaccumulator, which is invoked rarely as FPEs are large
enough to host the results for moderate ill-conditioned prob-
lems during the computations. This strategy led us to fruitful
results with up to 8 % performance overhead for memory-
bound problems such as parallel reduction and dot product.
For the compute-bound operations – such as triangular solve
and matrix-matrix multiplication – the approach always
delivers reproducible results. However, there is still space for
improvements in terms of performance although we already
employ techniques like blocking and loop unrolling.

III. EXPERIMENTAL RESULTS

In this section, we focus on the performance results of the
unblocked LU factorization, TRSV, and GEMM. We conduct
experiements on1: an NVIDIA P100 GPU with 2560 CUDA
cores @ 1,822 MHz in the boost mode; an NVIDIA K80
GPU with 4,992 CUDA cores with a dual-GPU design @

1These resources were kindly provided by the Czestochowa University
of Technology during the PPAM conference (ppam.pl) and by the Swedish
National Infrastructure for Computing at PDC Center for HPC, KTH.

875 MHz in the boost mode. We verify the accuracy of
the obtained solutions by comparing against the multiple
precision sequential library MPFR.

Fig. 2a shows the results for the unblocked LU factor-
ization. In the figures, results with the prefix “Ex” cor-
respond to our “exact” algorithms. For the unblocked LU
factorization, we carefully conduct arithmetic operations in
order to avoid intermediate rounding errors for SCAL by
proposing EXINVSCAL, where division is performed directly.
Due to that, we even observe a small gain in performance.
Fig. 2b demonstrates the timings for the non-deterministic
and reproducible implementations of GEMM. The overhead
of EXGEMM is roughly 6x slower than GEMM, but it is also
about 3x faster than “Superacc”; “Superacc” stands for the
implementation that is solely based on long accumulators.
Fig. 2c presents the performance results achieved by the
triangular solve algorithm for a non-unit upper triangular
matrix. The performance results for a lower unit triangular
matrix show a similar pattern. Despite some performance
overheads, the computed results are always reproducible.

IV. CONCLUSIONS

We have presented our approach to ensure a reproducible
solution of linear systems by employing and extending
the ExBLAS library (exblas.lip6.fr) as well as exploiting
the hierarchical and modular structure of linear algebra
operations. We are working on finalizing all the components
as in Fig. 1 and deriving theoretical proofs.
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