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Abstract. An online calibration procedure for X-ray lab-CT is developed using
projection-based digital volume correlation. An initial reconstruction of the sample
is positioned in the 3D space for every angle so that its projection matches the initial
one. This procedure allows a space-time displacement field to be estimated for the
scanned sample, which is regularized with i) rigid body motions in space and ii)
modal time shape functions computed using model reduction techniques (i.e., proper
generalized decomposition). The result is an accurate identification of the position
of the sample adapted for each angle, which may deviate from the desired perfect
rotation required for standard reconstructions. An application of this procedure to a
4D in situ mechanical test is shown. The proposed correction leads to a much improved
tomographic reconstruction quality.
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1. Introduction

Micro-Computed Tomography (µ-CT) is widely used for non-destructive imaging [1, 2].
It consists in reconstructing full 3D volumes of a sample from sets of radiographs and a
reconstruction algorithm [3]. From the first developments with parallel X-ray beams
in synchrotron facilities, it is now an accessible equipment in laboratories. Recent
developments allow for imaging at high spatial and temporal resolutions [4, 5].

To deal with the reconstruction procedure (i.e., an inverse Radon transform),
different algorithms exist such as filtered back projection (FBP), its (Feldkamp-Davis-
Kress) extension [6] for cone beam geometries or algebraic methods [3]. All these
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reconstruction methods require the geometric parameters of the tomograph (e.g.,
position and orientation of the source, rotation axis and detector, pixel sizes) to be
known. If the geometric parameters are not well calibrated or if they change in time,
the reconstruction suffers from artifacts that may create blur or magnification effects.
They may forbid the quantitative use of the acquired volumes (e.g., space-time full-field
measurements [7]).

Various types of methods exist to estimate the 9 geometric parameters for cone-
beam X-ray CT [8]. These methods can be separated into two categories, namely, offline
and online calibration.

Offline procedures are calibrations using a perfectly known pattern with radiopaque
markers. Virtual projections of this geometry have to match the acquired projections.
In Refs. [9, 10, 11], the known patterns are composed of few steel balls whose orbits are
measured during the rotation of the turntable. In Refs. [12, 13, 14, 15], the authors used
an iterative procedure to identify geometric parameters from a known complex phantom
and a single projection. These offline methods, which are based on a known pattern
or phantom, often have to be performed before or after the real test. The parameters
are generally identified only once, even for a multi-acquisition test (e.g., a 4D in situ
mechanical test) in order not to move the sample during repeated scans. The parameters
are therefore assumed to be stable in time. However, in some cases, this assumption may
be violated and lead to blurred reconstructions. A variety of causes can be listed, such
as motions of the sample or the entire set-up due to unsteady thermal expansion [16],
creep (i.e., delayed mechanical response [17]) of the sample under load, motion of a
mechanical testing machine due to its compliance, accidental hitting, uncompensated
backlash).

Online calibration is the measurement of the geometric parameters directly using
the projections by exploiting knowledge of the object being imaged. In the spirit of
offline procedures, Andò [18] used a known frame attached to the sample to find the
geometric parameters of the scan during acquisition. Pannetta et al [19] proposed
a calibration method based on the minimization of the quadratic difference between
projections at a certain angle and the mirror projection at the opposed angle (for parallel
beam). Kyriakou et al [20] developed an optimization of geometric parameters based
on the minimization of the information entropy of the reconstructed volume. With
3D-2D image registration [21, 22], Ouadah et al [23] used a pre-scanned 3D image as
the reference volume (hence a known very complex pattern). In Ref. [24], a motion
tracking system allows for measuring and then compensating the in situ motion of
the acquired image. A recent publication of Sun et al [25] proposed an optimization
procedure based on the initial reconstruction of the volume with a first set of geometric
parameters. Then the minimization of the “projection residual” fields (i.e., the difference
between the projected reconstructed volume and the initial sinogram) with respect to
rigid body motions of the volume, provides an estimate of the motion of the scanned
sample. This motion is finally used for the correction of projections. For the application
aimed by the authors, i.e., patient motion compensation for medical imaging, the
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measured displacement field is large (5-20 voxels as an order of magnitude), and cannot
be smaller due to several assumptions or approximations (on the sensitivities, on the
axial displacement supposed to be null, on filtering).

A robust and accurate method that measures sub-pixel or sub-voxel displacements
of patterns between different images is provided via Digital Image Correlation (DIC) in
2D [26] and Digital Volume Correlation in 3D [27, 28]. A recently developed projection-
based Digital Volume Correlation (P-DVC) procedure, in the same spirit as 3D-2D image
registration, lies in between 2D DIC and 3D DVC as it deals with 3D displacement
fields of the reconstructed reference sample with respect to deformed radiographs with
the minimization of a set of 2D error maps. This method was initially developed for
the measurement of uniform displacement fields during different steps of a mechanical
test [29], with possible cracks [30, 31] and finally for identification purposes in a lab-
tomograph [32]. This procedure leads to huge savings in acquisition time. However, as
such, P-DVC uses a reconstructed 3D image to evaluate its motion, and is not designed
to identify geometrical reconstruction parameters.

In this paper, an online two-step iterative procedure is proposed. First, the
rotation axis is identified in the same spirit as Ref. [25], from a pattern that is the
loaded sample itself, reconstructed from its projections hence without a perfectly known
geometry. Thanks to P-DVC, the sample is repositioned in the laboratory frame so that
its projection matches the corresponding acquired projections for every angle. The
result is an identification of the sample position at each instant (i.e., projection angle)
with a sub-voxel uncertainty and thus projections can be corrected to coincide with
nominal geometrical parameters, and allow for reconstructing a new volume and iterate
if needed. A major advantage of this procedure is that an imperfect kinematics for the
acquisition, such as a precessing rotation axis, can be accounted for, thereby enhancing
the reconstruction quality without any additional demand on the acquisition protocol.

The displacement field is decomposed over a basis of separated functions, namely,
spatial modes (here chosen to be rigid body motions) and time (or projection angle)
modes. Even when restricted over few spatial modes, a large temporal flexibility leads
to a poorly conditioned system. Two routes for dealing with such issues are explored.
Either few temporal modes are introduced (with the difficulty of choosing a suited
temporal basis), or a model reduction technique is used. The spirit of the latter, which
is inspired from the Proper Generalized Decomposition (PGD) technique, consists in a
progressive enrichment of the space-time modes for displacement corrections. Based on
the minimization of the projection residual, a greedy approach extracts one mode per
iteration. This model reduction technique reveals very instrumental to determine the
displacement modes.

The method based on 4D P-DVC is introduced in Section 2. In Section 3, the
application to an in situ mechanical test with a cone-beam geometry is performed. The
rotation axis is determined with a single iteration of the procedure and the correction
of the axis shows significant improvement of the reconstructed volumes.
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2. Method

2.1. General principle

In the following, raw radiographs acquired by the CT-scanner are first normalized by
their flat fields (i.e., radiographs acquired with the same conditions as the actual scan
but without the specimen) and their logarithm computed (i.e., Beer Lambert law)
to produce “projections” that constitute the sinogram. It is from such preprocessed
data, which will be referred to as “projections,” that reconstructions are performed
using the Filtered Back Projection (FBP) algorithm (or suited extensions for cone-beam
geometries).

Starting with an initial reconstructed 3D image, hereafter also called “volume”, it
is positioned in the 3D space for every projection angle and its projection is computed
so that it matches at best the corresponding projection. This difference between initial
projection and projected volume is called projection residual field. Let us note that
these residuals can be interpreted as the sum of four contributions due to:

(i) acquisition noise and artifacts (e.g., beam hardening, phase contrast, approxima-
tions during reconstruction and projection);

(ii) approximate (or erroneous) geometric parameters of the tomograph in the
reconstruction and projection procedure;

(iii) rigid body motions of the scanned sample during acquisition (i.e., deformation of
the testing machine or turntable, uncompensated backlash);

(iv) deformations of the sample itself (e.g., thermal effects, relaxation). This latter
effect is assumed to be null (or extremely small) in the examined case.

2.2. Projection-based digital volume correlation

The proposed method for the identification of the displacement field based on
radiographs is Projection-based Digital Volume Correlation (P-DVC) [29]. The first step
of the procedure is the acquisition and reconstruction of a reference volume, f(x), from
a complete set of Nθ projections s(r, θ) and an initial choice of geometric parameters.
In the present notations, x is a 3D vector in the sample frame, r is a 2D vector denoting
positions in the detector frame, and θ the rotation angle. The idea is to estimate the 4D
displacement field u(x, θ) so that each projection of the displaced volume f(x−u(x, θk))

matches the initial projection, s(r, θk). After updating the reconstruction, from the
corrected displacement, the procedure is iterated until corrections of the geometrical
parameters are less than a predetermined threshold.

In the same spirit as global DVC [33], the displacement field is obtained from
the minimization of the quadratic difference, χ2

u, between the (re-)projected 3D image
corrected by the displacement field Πk[f(x−u(x, θk))] and the initial sinogram for every
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angle s(r, θk), with Πk being the conical projection operator along the θk direction

χ2
u =

1

Nθ|Ξ|γ2s

∑
k,r

(Πk[f(x− u(x, θk))]− s(r, θk))2 (1)

where the double sum over (k, r) stands for the discrete integration over all pixels r ∈ Ξ

of the detector (or its utilized part, which will be referred to as region of interest or
ROI) and all Nθ projection angles θk. γ2s denotes the variance of the sinogram noise,
and |Ξ| the area (number of pixels) of Ξ. The normalizing parameters of Equation 1
are chosen in such a way that when the residuals ρ = Πk[f(x−u(x, θk))]− s(r, θk) are
only associated with acquisition noise, χu = 1. Any deviation from 1 (i.e., χu > 1 is an
indication of model error (i.e., the chosen kinematic basis is not fully consistent with
the studied experiment).

When small displacement levels are assumed compared to the correlation length of
the imaged microstructure, a small perturbation expansion is written about the current
estimate ũ of the displacement field, with ∇f(x) the gradient of the 3D image

χ2
u ≈

1

Nθ|Ξ|γ2s

∑
k,r

(Πk[f(x)−∇f(x− ũ(x, θk)) · δu(x, θk)]− s(r, θk))2(2)

so that the minimization operates on a quadratic function of the unknowns, thereby
leading to easily accessible search directions. It is noteworthy that after each evaluation
of the displacement corrections δu, a correction of the volume is performed so that
Equation 1 is used without approximation.

2.3. 4D Regularization

Different regularization procedures of the displacement field have been introduced in the
literature for global DIC methods where the kinematics is expressed on a finite element
mesh. Spatially, a local mechanical elastic constraint, in 2D [34, 35] or 3D [36, 37], strong
regularizations or integrated methods with a reduced basis composed of elementary fields
from mechanical computation [38, 7]. These regularizations lead to a drastic reduction
in the number of unknowns and enable for seamless experimental/numerical procedures.

The displacement field is expressed as a combination of Nm spatial modes Φi(x)

that are weighted for each angle by αi(θk). Such a separated expression is standard
practice and as such bears no consequence, but it will reveal convenient for the following
model reduction technique

u(x, θk) =
Nm∑
i=1

αi(θk)Φ
i(x). (3)

The spatial modes are expressed as a reduced basis composed of the 6 Rigid Body
Motions (RBMs) ψj(x)

u(x, θk) =
Nm∑
i=1

6∑
j=1

αij(θk)ψj(x). (4)
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The time changes αij(θ) can similarly be constrained by additional temporal
regularizations [39, 40]. This constraint may come from previous knowledge or
anticipation of the motions. The Nn temporal modes are expressed as elementary
functions σn (e.g., Dirac distribution if no regularization (free) is considered,
polynomials, sinusoidal functions)

αij(θk) =
Nn∑
n=1

aijnσn(θk) (5)

where aijn are the amplitudes of elementary basis functions being the product of the Nn

temporal and Nm spatial modes. In the treated application, the time basis does not
change with mode identification thus does not depend on i, but such cases could be
designed. The displacement field is finally written as

u(x, θk) =
Nn∑
n=1

6∑
j=1

ajnσn(θk)ψj(x). (6)

Two methods are proposed to solve the minimization problem, depending on the
complexity and number of degrees of freedom:

• A full determination of the displacement field, in Section 2.3.1. This method is the
most complete but requires an appropriate prior knowledge of time and space basis
functions, which may involve many degrees of freedom, and hence possibly poor
conditioning. It is referred to as “full identification” in the following.
• A PGD approach, where additional modes are successively determined as long as

the residual level is considered too high to be explained by noise (i.e., χu > 1).
This method is presented in Section 2.3.2.

2.3.1. Full measurement Because the x referential frame is linked to the rotating
sample, a choice of time functions can, for example, be low order Fourier modes,
plus possibly linear motions to account for a slow and steady drift that would break
periodicity. The full determination of all space and time amplitudes, ain, (the Nn time
modes times the Nm = 6 spatial modes) may be accessible; the risk being here that the
system become poorly conditioned. The following subsection will describe a method to
reduce the number of modes to only those that are needed.

The problem is rewritten as

u(x, θk) =
∑
n,j

ajnσn(θk)ψj(x) (7)

so that its minimization is achieved with Newton’s descent method. A single uncoupled
system is obtained in terms of the corrections δain

δain = T
−1
injmtjm (8)

with

T injm =
∑
k,r

σn(θk)Πk[ψi(x
′) ·∇f(x′)]σm(θk)Πk[ψj(x

′) ·∇f(x′)] (9)
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and

tjm =
∑
k,r

(s(r, θk)− Πk[f(x′)])σm(θk)Πk[ψj(x
′) ·∇f(x′)] (10)

2.3.2. Free modal measurement An integrated approach is proposed along the line
of Proper Generalized Decomposition (PGD) techniques [41, 42, 43], which consists
in successive enrichments of the displacement field u(x, θk) summing an additional
contribution at each iteration, each term of the sum being sought a priori in a separate
representation. PGD-DIC and PGD-DVC [44, 45] with one-dimensional space functions
is here extended to 3D space-time (angles) analyses.

In the following progressive PGD procedure, the spatial modes, which are defined
as Φi(x) = pijψj(x), will be identified successively, one per iteration, with a greedy
approach [46].

ul(x, θk) = ul−1(x, θk) +

(
Nn∑
n=1

alnσn(θk)

)(
6∑
j=1

pljψj(x)

)
. (11)

Let us note that only the product alnp
l
j matters so that an additional convention (but

just 1) such as ‖al‖ = 1 or ‖pl‖ = 1, could be freely chosen without consequence.
A fixed point algorithm is used to get the solution. Alternate minimizations of the

two unknown vectors al and pl are proposed. The minimization of the functional leads
to the determination of the unknowns with two coupled equations

pl = Argminpl(χu(α,p)2) (12)

al = Argminal(χu(α,p)2) (13)

i.e., minimization of χ2
u with respect to the additional mode is considered.

A general overview of the 4D PGD P-DVC procedure is shown in the algorithm 1.
Even though a maximum value of iterations or convergence criteria εp, and εα can be
enforced to stop the fixed-point algorithm, this revealed unnecessary as the maximum
number of iterations to reach stagnation is usually quite low (i.e., 3-5).

Algorithm 1 General 4D-P-DVC fixed-point procedure
while High residual norm do

Initialize al and pl

Correction f(x)← f(x− ul−1)
while ‖∆Φi‖ < εp and ‖∆αl‖ < εα do

Compute spatial mode pl, Equation 14
Compute temporal amplitude al, Equation 17

end while
Update displacement field ul, Equation 11 l = l + 1

end while



Self-calibration for lab-µCT 8

The two parts of the fixed point algorithm are obtained from the above linearized
functional using Newton’s scheme. The derivative with respect to p leads to

pl = N−1n (14)

with N the spatial Hessian matrix of χ2
u with respect to p (i.e., Nij = ∂pi∂pjχ

2
u) and n

the second member vector based on the residual field

Nij =
∑
k,r

αl(θk)
2Πk[ψi(x

′) ·∇f(x′)]Πk[ψj(x
′) ·∇f(x′)] (15)

and

ni =
∑
k,r

αl(θk)(s(r, θk)− Πk[f(x′)])Πk[ψi(x
′) ·∇f(x′)] (16)

where x′ is the advected position of the volume with the previously identified modes
such that x′ = x− ul−1.

Similarly, the derivative with respect to al leads to

al = M−1m (17)

where, as previously, M is the temporal Hessian matrix (i.e., Mij = ∂ai∂ajχ
2
u) and m

the second member vector based on the residual field

Mij =
∑
k,r

σi(θk)Πk[Φ
l(x′) ·∇f(x′)]σj(θk)Πk[Φ

l(x′) ·∇f(x′)] (18)

and

mj =
∑
k,r

(s(r, θk)− Πk[f(x′)])σj(θk)Πk[Φ
l(x′)∇f(x′)] (19)

The residual field at convergence, ρ(r, θk) ≡ (s(r, θk) − Πk[f(x)]) for the Nθ 2D
projections, gives a very precious information on the quality of the solution in the
projected domain, which is parameterized by r. Its norm is the minimized quantity and
defines the convergence criterion. Ideally, it consists of acquisition noise and artifacts.
It is thus a natural place to judge whether some spurious displacement is to be corrected
for.

2.4. Comparison metric

In order to show the improvement provided by the method, comparisons at 2 steps
are performed. The first one is the measurement of the norm of the residual between
the projections of the final reconstructed volume and the acquired radiographs. This
norm is the minimized quantity of interest hence this is the true metric of the present
procedure. The Signal to Noise Ratio (SNR) can also be defined to evaluate the residual
quantitatively. The higher the SNR, the better the solution. It is defined as 20 times
the decimal logarithm of the ratio of the standard deviation of the projections σ(s) over
that of the residual fields σ(ρ)

SNR(t) = 20 log10

(
σ(s)

σ(ρ)

)
(20)
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One may also be interested in the quality of the reconstructed volume itself. A
visual estimation of the sharpness of the image can be supported by the value of the
Shannon information entropy that has to be minimized,

S = −
∑
f

p(f) log10[p(f)] (21)

where p(f) is the gray level distribution (i.e., probability of observing a gray level equal
to f).

3. Application

3.1. Test case

The application case where the set of radiographs has been extracted is an in situ tensile
test on a cast iron sample. The sample (Figure 1(a)), which was mounted in an in situ
testing machine similar to that used by Buffière et al [47], was scanned at LMT lab-
tomograph (X-View X50-CT, North Star Imaging, 129 kV, 95 µA, W target). The
voxel size at full resolution was set to 2.8 µm. The complete scan of the reference state
consists of 1,000 radiographs captured at equally spaced angles ranging over a full 360◦

revolution. Two flat-fields are acquired after conditioning and before the experiment in
order to perform flat-field corrections. One dark-field has also been acquired before the
experiment. Each radiograph is averaged over 30 frames in order to reduce acquisition
noise. The acquired radiographs have a definition of 1944×1536 pixels2 but the following
procedure deals with two lower scales. Coarse graining into superpixels of size 2×2 (and
4×4) is carried out with the convolution of the images by a Gaussian kernel with a
characteristic width of 2 (and 4) pixels. The resulting image is downsampled over a
coarse 2×2 (resp. 4×4) regular square grid to create smaller images (called image at
scale 2 and scale 4). The projections are obtained after flat field normalization and
standard beam hardening correction [48] due to the high absorption of the cast iron
with a third order polynomial.

Reconstructions and projections are performed with ASTRA toolbox [49]. It is
obtained with Feldkamp-Davis-Kress (FDK) procedure suited for cone beams [6]. The
geometric parameters for the initialization are given by the offline (i.e., standard)
calibration of the tomograph that uses a pattern composed of vertical calibrated steel
balls. This offline procedure is very fast (i.e., approximately one minute) and has
been performed once at the beginning of the experiment. It can be noted that this
initialization is not needed and could be replaced by the use of the proposed approach
only.

The entire test of 16 loading steps has been performed over few days because each
acquisition requires about 2 h. The acquired projections and the reconstructed volume
are shown in Figure 1(a,b). Because of cone beam artifacts at the top and bottom of
reconstructions, the projected ROI definition is 90 < z < 897 pixels for scale 2, and
45 < z < 449 pixels for scale 4.
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Figure 1. (a) Acquired projections for θ = 0◦. (b) Corresponding reconstruction

Overnight, the grip displacements are held at a fixed value and nothing is supposed
to move. In spite of this assumption, a DVC analysis of the test shows large motion and
residuals between two scans separated by one night, which will be called steps 1 and
2. Because of the presence of the testing machine, the standard calibration procedure
based on the rotation of a known target (made of steel balls) is impossible during the
in situ process. A reconstruction of these two steps with ASTRA shows a very large
change on the reconstruction parameters. The reconstruction at step 1 gives a very
good (i.e., sharp) result. With the very same parameters, scan 2, which was acquired
the day after, is poorly reconstructed. Slices of the reconstructions of step 1 and 2 in
Figures 2 and 3 show the effect of overnight parameter variations. The Shannon entropy
of the two volumes is 5.93 and 6.12, respectively for steps 1 and 2. This marked increase
corresponds to drift of geometrical parameters.

The proposed application procedure deals with the two scans in order to find the
correct geometric parameters. The two previous identification methods are used. The
first test case, in Section 3.2, is step 2 at scale 4. For this calibration the correction is
large hence it may require many displacement modes. However because the total number
of degrees of freedom is small (i.e., 6 RBMs × 4 time functions), a full measurement
is performed. The second application, in Section 3.3, is the correction of step 1 at
scale 2. Because the displacement level is not very high, the kinematics is captured
with the modal decomposition constrained by time functions. It is shown that three
modes are sufficient to capture almost all the kinematics. Instead of working with the
1,000 radiographs, for computation cost and because no high frequency displacement is
expected, a subset of 100 regularly spaced radiographs is used.
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Figure 2. Slices of the reconstruction of step 1 for (left) y = 500 voxels and (right)
z = 150 voxels. The top and bottom parts are slightly blurred due to motion or tilted
rotation axis

Figure 3. Slices of the reconstruction of step 2 for (left) y=500 voxels and (right)
z=150 voxels. The top and bottom parts are severely blurred due to motion or tilted
rotation axis

As previously discussed, the amplitude vector a can be scaled by an arbitrary factor
if p is scaled by its inverse. To make the results comparable and easily understandable,
this scale factor was chosen so that α(θk) varies within the interval [−1, 1]. The
associated space mode amplitude thus corresponds to the maximum displacement
amplitude.

3.2. Full identification

The first test case is step 2. Overnight, the geometric parameters changed. Because large
motions are anticipated, the analysis is performed at scale 4 and a full identification (i.e.,
determination of all space and time degrees of freedom, as earlier defined) is performed.
The space regularization used in the modal measurement approach is composed of the
six RBMs, and the temporal shape functions consist of sine and cosine functions with
a period of 2π, a constant offset and a linear change. The sine and cosine functions
are suited to model for example a steady rotation axis in the lab frame. The linear
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component captures the kinematics of non-periodic motions such as sample motions.
Thus, the kinematic basis is composed of 24 degrees of freedom (i.e., 6 RBMs × 4 time
functions).

The initial and final residuals are shown in Figure 4. The mean SNR increases
from 20.3 to 28.5. This huge enhancement means that a very large part of the actual
kinematics is captured. The residuals on the edges of the sample are not totally corrected
but may come from the blurred volume itself.

(a) (b)

(c) (d)

Figure 4. Initial and final residual fields after the correction of the three modes when
(a) θk = 90◦and (b) θk = 330◦

The angular SNR before and after displacement field correction is shown in Figure 5.
It is measured on a smaller scale thus its level is not really comparable with the previous
values.

The axis of rotation is extracted from the displacement field. It is plotted in Figure 6
with the previously identified axis at step 1. It can be seen that the displacement is
composed of a large translation (i.e., radius of 3.9 voxels) and a rotation that is similar
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Figure 5. Initial and final angular SNRs for step 2 with the full measurement
approach. The two arrows show the position of the extracted residuals of Figure 4

to the previous identification. The displacement consists of an important motion along
the X direction because the procedure is not very sensitive to motions in the direction
of the X-ray beam (i.e., the X direction of the laboratory frame is that of the central
axis of the cone beam).

The corrected volume shows huge improvements in terms of visual quality (Figure 7)
with sharp nodules and edges. The Shannon entropy (initially at 6.12) decreases to 5.79.

3.3. Modal measurement

3.3.1. Initial residual fields and regularization The second test case is step 1. Because
small motions are expected, the analysis is performed with a modal measurement at scale
2. The initial residual fields are shown in Figure 8. In these fields, the top and bottom
parts are composed of high values due to cone beam reconstruction and projection
artifacts. These areas are not taken into account in the identification procedure and
are masked. The residual field is made of positive and negative patterns, which is a
signature of displacements, and more precisely, a rotation on the top and bottom parts.
The mean SNR level is 24.5.

3.3.2. Displacement mode identification The identification is composed of three space-
time modes. The mean SNR after the correction of each mode is shown in Table 1.
Three modes are sufficient to capture the kinematics because the SNR does not increase
much after mode 3.

Table 1. Mean SNR as a function of the number of correction modes. A fast
convergence with three modes is noted

Mode l 0 1 2 3 4
<SNR>l 24.5 25.8 26.7 26.8 26.8
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Figure 6. Mean displacements of the top, center and bottom parts of the sample in
the laboratory frame and their projections in the detector frame. The projected blue
line is the next identified rotation axis for the first step in the next section

(a) (b)

Figure 7. Zoom on the reconstruction of step 2 at slice z = 100 voxels (a) for the
initial state and (b) after correction of the rotation axis

The angular SNR is shown in Figure 9. Low SNRs at every π/2 increment (i.e.,
alignment of the sample edges with the beam direction) are interpreted as phase contrast.
It is worth noting that the first two modes are complementary and affect different angular
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(a) (b)

Figure 8. Initial residual fields when (a) θk = 90◦and (b) θk = 330◦with the same
color bar. A high positive and negative residual is the signature of motion

sectors.

Figure 9. SNR(θ) for all treated angles after successive additions of modes. The two
arrows show the position of the extracted residuals of Figure 10

The final residual fields after corrections with the measured displacement field are
shown in Figure 10. The residual is much smoother and a part of the rotation motion
has been corrected.

The space and time functions of the three modes are shown in Figures 11, 12
and 13. The spatial mode is shown on a mesh of the sample and expressed in voxels.
The scanned part of this mesh is the curved zone in the center. The top and bottom
parts are outside of the projections and correspond to the entire tested specimen.

In order to validate the choice of the time basis, the result of the mode identification
with Dirac time functions (i.e., with no temporal regularization) is shown in the same



Self-calibration for lab-µCT 16

(a) (b)

Figure 10. Final residual fields after the correction with three modes for (a) θk =

90◦and (b) θk = 330◦

(a) (b)

Figure 11. First mode. (a) Temporal mode with (black circles) and without (blue
points) time constraints. (b) Spatial mode in the x, y, z directions, expressed in voxels
on the mesh (1 voxel ≡ 5.6 µm)

plot. This temporal measurement is performed with the same spatial modes (it can
be noted that in the case of a purely free identification, the results would have been
different because of different spatial modes). It is observed that, for the first two modes,
the free and constrained temporal histories are close to each other. Hence the chosen
time functions provide an appropriate basis. For mode 3, the vertical component of
the displacement field is close to zero, so that the sensitivity is low for some projection
angles. The difference of time history between the free and constrained functions is on
these non-sensitive projection angles (i.e., π/2 and 3π/2). For those angles, the time
regularization is important to correctly capture the kinematics. Because these angles
lack sensitivity, they bear very little weights in the procedure (see Figure 13) and the
regularized time function is not a mere least squares fit of the free form but is weighted
by sensitivities. These results also show the benefit of reducing the number of temporal
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(a) (b)

Figure 12. Second mode. (a) Temporal mode with (black circles) and without (blue
points) time constraints. (b) Spatial mode in the x, y, z directions, expressed in voxels
on the mesh (1 voxel ≡ 5.6 µm)

(a) (b)

Figure 13. Third mode. (a) Temporal mode with (black circles) and without (blue
points) time constraints. (b) Spatial mode in the x, y, z directions, expressed in voxels
on the mesh (1 voxel ≡ 5.6 µm). The difference between the free and constrained time
history is due to a lack of sensitivity on the displacement field at angles π/2 and 3π/2

modes so that the conditioning of the system is enhanced and physically realistic modes
are extracted.

3.3.3. Correction and reconstruction The 3D displacement of the volume gives access
to the position of the real rotation axis. Because it is defined in a basis linked to the
rotating sample, the motion has to be projected to the laboratory frame. The mean
projected displacements of the top, center and bottom parts of the sample are shown in
Figure 14. The red line is the mean position of the sample axis during rotation.

The volume can now be corrected with the projection motions. Hence a new set of
projections is obtained and the reconstructed volume is updated accordingly. Figure 15
shows the corrected reconstruction. The information entropy for this corrected volume
is 5.74 (to be compared to the initial value of 5.93), meaning that the edges and
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Figure 14. Mean displacement of the top, center and bottom parts of the sample in
the laboratory frame and its projection on the detector frame. The axis of the X-ray
cone beam is X

microstructural details are sharper. After this step, a new correction iteration can
be performed. However, because the displacement magnitude is small, most of the
kinematics was captured in this first step.

(a) (b)

Figure 15. Zoom on the reconstruction of step 1 for slice z = 100 voxels (a) for the
initial state, (b) after correction of the rotation axis
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4. Conclusion

An online calibration procedure for cone beam X-ray tomography based on projection-
based Digital Volume Correlation has been proposed. This technique, which does
not require any change from the standard acquisition protocol, repositions an initially
reconstructed volume in a given 3D frame so that each of its projection matches, for each
angle, the initial sinogram. The position is given by a displacement field decomposed
over space (i.e., rigid body motions) and time (i.e., angular) basis functions. The
identified position of the volume over time reveals the instantaneous rotation axis while
scanning the sample and the drift of the set-up.

In order to preserve a good conditioning of the system, a model reduction technique
based on Proper Generalized Decomposition is introduced so that key modes are
progressively added to reduce the projection residuals.

The two application tests, which are extracted from a 4D mechanical test, with two
different calibration procedures show very significant improvements in the reconstruction
quality and much lower residual fields, thereby proving that the corrections account for
most of the initial inconsistencies. With much less reconstruction artifacts, the updated
volumes can be further used for quantitative kinematic measurements. In addition
to the norm of the residual fields, Shannon entropy is used to assess the calibration
improvement on the updated volume.

The method works with small displacements compared to the microstructure length
and yields sub-pixel uncertainties. In cases of larger displacements, the 3D volume can
first be updated with a coarse initialization (e.g., obtained from previous computations,
multi-scale procedures or cross-correlations). An update of the procedure with the
corrected reconstruction could reveal necessary if the displacement is not well captured
at the first iteration.

An additional improvement of the present procedure would be to use algebraic
reconstruction methods for which the metric is already an L2-norm between the re-
projected reconstructed volume and the available projections.

In the presented test cases, a simple spatial regularization composed of rigid body
motions is used (and is sufficient) to reposition the volume. However, the method
is not limited to such cases. For instance when analyzing mechanical tests with
continuous loading [5], the spatial regularization could be complemented with other
elementary modes including deformations (e.g., tension or compression). This could
also be performed to account for viscoelasticity or viscoplasticity during the scan.

Coupled with fast acquisition devices and applied to the measurement of
displacement fields during continuously loaded mechanical tests, this method could give
access to ultra-fast mechanical identification that could not be performed with classical
means such as 3D or 4D DVC.
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