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Abstract. The question of registering two images (or image volumes) acquired with
different modalities, and thus exhibiting different contrast, at different positions is
addressed based on an extension of global Digital Image (or Volume) Correlation. A
specific comparison metric is introduced allowing the signature of the different phases
to be related. A first solution consists of Gaussian mixture to describe the joint
distribution of gray levels, which not only provides a matching of both images, but
also offers a natural segmentation indicator. A second ‘self-adapting’ solution does not
include any postulated a priorimodel for the joint histogram and leads to a registration
of the images based on their initial histograms. The algorithm is implemented with a
pyramidal multiscale framework for robustness. The proposed multiscale technique is
tested on two 3D images obtained from X-ray and neutron tomography respectively.
The proposed approach brings the two images to coincidence with a sub-pixel accuracy
and allows for a “natural” segmentation of the different phases.
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1. Introduction

Different imaging modalities can be be used to gain information on material properties
and structures, but the information gained from each modality will be different due to
the different sensitivities of the measurement approach used. This leads to different
contrasts in images of the same object, but also a greater richness of information. To
benefit from multiple modal imaging, it is essential to obtain a local characterization
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from each image for the same material point. However, different modality images are
generally not acquired (or reconstructed) in the same frame. Hence, rigid body motions
have to be considered to make the two frames coincident. Additionally, the resolutions
of the images may be different, which means that the transformation to map the images
onto one another should be enriched with a possible dilation/contraction. The purpose
of the present study is to identify the transformation F (i.e., rigid body motions and
isotropic dilation, corresponding to 4 or 7 parameters in 2D or 3D, respectively) that
enables the optimal registration of two images acquired with different modalities.

As an illustration, Figure 1 shows two horizontal slices extracted from 3D volume
images of the same cylindrical specimen of a sandstone imaged by X-ray and neutron
tomography. The contrast is different between the two images, although some specific
(and matching) patterns can be identified. This 3D example will be used to illustrate
and validate the proposed image registration procedure.

(a) X-ray (b) Neutron

Figure 1. An example pair of images obtained from slices manually selected from
reconstructed a) x-ray and b) neutron tomography volumes

Dual X-ray and neutron tomographies as in Ref. [1], be they sequential or
simultaneous, are very previous to study the mechanical deformation as they reveal
different contrasts separate acquisitions and analysis where two DVC procedures are
performed in parallel to study the mechanical deformation. Image registration renders
possible the full use of these two sources of information as they can be related to a
unique frame of reference.

There exist simple ways to find a transformation between two images of the same
object acquired with different modalities. For example, a set of “landmark” points can
be chosen in each image and, from their respective coordinates, the transformation F
that registers these points and, thus, the two images can be determined [2]. To perform
such an operation, a minimum of three points is needed in three dimensions, whereas
two points are sufficient in two dimensions. Redundancy provided by using more points
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allows robustness to be improved and, more importantly, to validate the transformation.
This technique is expected to provide a matching with an accuracy of typically a few
pixels. Moreover, the selection of landmark points may be tedious, especially in three
dimensions.

Multimodal (multi-sensor) registration poses a particular difficulty due to the fact
that the image contrast differs between different modality images. It is, therefore difficult
to define a proper metric to assess the coincidence of the images. For this reason,
artificial examples are often considered, for which the exact matching solution is known
and quadratic differences (or equivalent signal to no ise ratio) between the test case and
its known reference enables a given registration strategy to be assessed before application
to real data [3]. The question of the representativeness of the artificial reference case and
its noise remain mostly unknown. As discussed previously, multimodal registration can
be achieved by selecting some features that are deemed to be more robust, such as sharp
gradients, and, more specifically, their orientation, as the gradient magnitude cannot
generally be compared. Strategies based on matching such features and attributing
“points” for each match to maximize the registering score have been proposed [4],
although they call for a necessarily subjective appreciation, as for the above mentioned
landmark points.

Traditionally, methods based on mutual information (MI) [5] represent the leading
technique in multimodal registration [6]. Put simply, the MI of two images is the
amount of information that one image contains about the other and vice versa [7].
Such a metric provides a very general (probabilistic) framework that does not call for
prior expectation or assumptions (such as linear relationships), but only requires a
predictable relationship. However, one of its biggest pitfalls is the arbitrariness of the
measure attached to “gray levels” and the lack of “distances” in the space of joint gray
levels. Similarly, the knowledge of gray levels in the spatial vicinity of a point is not
used. Another drawback is that most implementations require that the images to be
registered are defined as random variables (i.e., to determine their probability density
functions), for which either discrete or continuous approaches need to be used (such as
estimation through Parzen windows [8]).

The first approach for MI-based methods was proposed by Viola and Wells [8].
Subsequently, different approaches have been explored to obtain non-rigid multimodal
registration: e.g., by using multiple local windows connected through a Gaussian
window function ensuring continuity and smoothness of the deformation field [9]; by
using a “correlation ratio” [10] based on the MI, but with consideration of the spatial
information, which drastically improves the result; by combining MI with a term based
on the image gradient to be registered [7] (multimodal images can have drastically
different intensities, but, as the images fundamentally depict the same microstructures,
the gradients in two multimodal images can be assumed to be similar); by modeling
the deformed image as a viscous fluid that deforms under the influence of forces derived
from the gradient of the MI [11] (built upon [12]).

Image registration and, in particular, Digital Image Correlation (DIC), or
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specifically for 3D images, Digital Volume Correlation (DVC), has shown a much higher
resolution potential for image matching [13]. Resolutions of one tenth to one hundredth
of pixel can be achieved due to the exploitation of all pixels (or voxels) in a given region
of interest. Such resolution is precious for solid mechanics applications [14]; hence,
it would be appealing to benefit from a similar matching accuracy when dealing with
images issued from different sensors. However, the difficulty is that a suitable metric has
to be considered to estimate the “distance” between the two images when in coincidence.

Although not very frequent within the methodology of DIC, some prior work
has explored the question of image registration with different modalities, but with a
rather straightforward correspondence between the different contrasts. For instance,
the calibration of distortions in an SEM has been studied aimed at registering a
design of a speckle marking (a binary image) with an actual acquisition of the
surface where the marking has been applied by a Pt e-lithography technique [15].
In this case an affine transformation of the gray levels was revealed to be sufficient.
In Refs. [16, 17], the authors used the joint histogram of two simultaneous X-ray
and neutron acquisitions assuming that the images were located identically without
displacement and distortion. A more difficult example deals with an extension of
classical stereo-vision or stereocorrelation [18, 13] to hybrid stereocorrelation. In this
case, two images, one acquired with a standard optical camera and a second one with
an IR camera, taken from two different points of view were matched so as to extract a
3D shape and displacement of the surface of a specimen [19].

The outline of the article is the following. After having introduced the challenge
and notations in Section 2, it is proposed to address the registration as a minimization
based on a “potential” Φ. The algorithm, including a multiscale version, is presented in
Section 3 and follows closely approaches employed in global DVC, and for this reason,
it will be referred to as multimodal DVC. Different formulations can be proposed for
the potential as discussed in Section 4. However, within a probabilistic framework, the
minimization of the potential can be seen as the maximization of a log-likelihood, which
provides clues to formulate different descriptions. Two particular cases are proposed.
The first is based on a Gaussian Mixture model to account for the joint histogram.
This approach is shown to be very well suited to the problem at hand and has the
additional benefit of leading to a segmentation of the images into phases. The second
approach is model-free and, hence, does not rely on any specific prior modeling of the
microstructure into phases. In contrast, the aim of this method is to learn the potential
from the current joint histogram of gray levels. To illustrate the merits and limits of
the proposed algorithm, Section 5 provides a demonstration of the application of the
two approaches to a 3D test case. The results show that both approaches are successful
at registering the images and provide comparable estimates of transformations. A brief
summary of the proposed procedure and achieved results is given in Section 6 together
with some perspectives.
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2. Formulation

The two images to be matched are f(x) and g(x), where f and g denote the gray level
values provided by each modality. The registration consists in finding the transformation
F such that the material point at position x in the first image coincides with the same
material point at position x′ = F .x in the second one. To account for translation,
rotation and dilation, it is convenient to use homogeneous coordinates x = (x1, x2, x3, 1),
where the last unit coordinate allows the change in origin to be considered within the
same linear framework. The transformation is linear and, hence, can be represented by
the 4×4 matrix F with a trivial conventional row F (4, .) = (0, 0, 0, 1). The non-trivial
part is a 3 × 4 matrix, which may also be used to describe an arbitrary homogeneous
deformation. The above assumptions imply that the deviatoric part of the strain (5
components) is null, so that the remaining degrees of freedom are 12− 5 = 7 consistent
with the 3 translations, 3 rotations and 1 dilation. F can be restricted to the above 7
unknowns or left free with 12 unknowns, in which case the estimated deviatoric strain
may be a way to validate the transformation or to detect possible distortions in one
modality or the other.

In the following, the second possibility of 12 unknowns is chosen. More specifically,
F is written as

F =


 I + ε+ ω


 t


{0 0 0} 1

 , (1)

where I is the 3 × 3 identity matrix, ε and ω respectively the symmetric and anti-
symmetric parts of the F (1− 3, 1− 3) upper block, t is a translation vector. The origin
of the coordinate system is located in one corner of the images (minimum xi coordinates
are 0). The anti-symmetric tensor ω can be interpreted as a rotation, while ε is the
infinitesimal strain tensor.

If both images were acquired with the same modality, it would be expected that
for all x in the Region of Interest

f(x) = g(F · x), (2)

i.e., the brightness conservation assumption, which is the basis of digital image
correlation [14]. The above relationship can be relaxed, for instance to account for
different brightness or contrast between the two images, and rewritten as

Φ(f(x), g(F · x)) = 0, (3)

where Φ(f, g) = α1f −α2g−α3 is an affine transformation. Image correlation based on
normalized cross-correlation, for instance, is naturally immunized against such an affine
transform Φ [13]. Image correlation is also generally formalized to tolerate a gaussian
white noise in both images. This leads to a relaxation of the above formulation so
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that the transformation F is given by the minimizer of the functional T over all affine
transforms,

F = ArgminGT [G],

T [G] =
∑

x∈ROI

Φ2(f(x), g(G · x)) . (4)

When correlating images generated by different modalities, the change in gray levels is
generally much more drastic than just an affine transformation. Yet, a physically sound
assumption can be made that the material consists of few phases i = 1, ..., N that have
well defined signatures (fi, gi) in the (f, g) plane. In other words, wherever a phase is
located in space, it will give the same gray level within the same modality image. Note
however that, even if the above statement seems quite natural, for instance the artifact
called “beam hardening” in X-ray tomography [20] violates this assumption. Figure 2
shows a log-scale joint histogram of the two images shown in Figure 1 prior to any
registration. It is natural to interpret the most salient peaks as corresponding to the
different distinct phases (fi, gi), with the reservation that, prior to registration, a wrong
voxel positioning may give rise to spurious peaks, as the f and g coordinates may refer
to a different phase.

The spirit of the proposed approach is to design a “potential” Φ, which is locally
minimum for each of the different phases (fi, gi), and to determine F from the
minimization of T . Different approaches can be followed to choose this potential, the
discussion of which is deferred to a later section. The minimization algorithm is first
discussed in the following.

Figure 2. log10-scale joint histogram of gray levels from the sections shown in
Fig. 1 with no registration. f(x) is the x-ray image, and g(x) is the neutron image.
Histograms of each individual image are presented in black on a linear scale.
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3. Registration algorithm

The registration of two images resulting from different modalities is a nonlinear problem
and it is proposed to solve this with a Gauss-Newton algorithm, with the assumption
that the initial determination of F is close to the solution. Thus, the algorithm
consists in the determination of successive corrections to the current estimate of the
transformation, F (n), at iteration n.

3.1. Gauss-Newton algorithm

The following notations are introduced for the corrected image

g̃(n)(x) ≡ g(F (n) · x). (5)

The correction at each iteration, n, is denoted as G(n+1) = I + δF (n+1), such that
F (n+1) = G(n+1)F (n). The functional to be minimized takes the following expression

T [F (n+1)] =
∑

x∈ROI

Φ2(f(x), g̃(n)(G(n+1) · x)). (6)

Expanding the above integral up to second order in δF (n+1) yields

T [F (n+1)] =
∑

x∈ROI

Φ2
(
f, g̃(n) + (∇g̃(n) · δF (n+1) · x)

)
, =

∑
x∈ROI

[
[Φ2] + ([Φ2],2)(∇g̃(n) · δF (n+1) · x)

+ (1/2)([Φ2],22)(∇g̃(n) · δF (n+1) · x)2
] , (7)

where the notations [Φ2],2 and [Φ2],22 are used to refer to the partial derivatives with
respect to the second argument once or twice, respectively, and Φ2, as well as its
derivatives, are computed at point (f, g̃(n)) (omitted for conciseness).

Because the unknowns are themselves the components of a matrix, δF (n+1)
ij , it is

convenient to relabel them with a single index m such that δF (n+1)
m ≡ δF

(n+1)
i(m)j(m), thus

defining implicitly i(m) and j(m), in the spirit of Voigt notation for the strain tensor [21].
Since the above expression of the functional is quadratic in δF (n+1), its determination
is the solution to a linear system

M (n)
mp δF

(n+1)
p = A(n)

m , (8)

where

M (n)
mp =

∑
x∈ROI

([Φ2],22)(xj(m)g̃
(n)
,i(m))(xj(p)g̃

(n)
,i(p)) (9)

and

A(n)
m = −

∑
x∈ROI

([Φ2],2)(xj(m)g̃
(n)
,i(m)). (10)

In the preceding equations, xi refers to the i-th component of the vector x.
The correction to the transformation at each iteration is taken into account as

F (n+1) = (I + δF (n+1))F (n). (11)
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It may be worth noting that standard DIC and DVC (i.e., with two images derived
from the same modality) is recovered for Φ2(f, g) = (1/2)(f − g)2, where the Hessian
and second member take, respectively, the well-known [22], following expressions,

Mmp =
∑

x∈ROI

(xj(m)g̃
(n)
,i(m))(xj(p)g̃

(n)
,i(p)) (12)

and

Am =
∑

x∈ROI

(
f − g̃(n)

)
(xj(m)g̃

(n)
,i(m)). (13)

Within the classical DIC and DVC frameworks, a very useful tool is the residual
field, ρ(x), namely the image difference between reference and corrected deformed
images. This field, which is resolved at the voxel scale, indicates the success of the
registration, spatially over the image space, and, in particular, where the registration
is not successful. Based on this field, the registration may be revisited with other
assumptions or corrections. When extended and generalised to the case of intermodal
registration, it is observed that the equivalent residual field, computed at convergence,
is

ρ(x) =
∂Φ2(f(x), g(F · x))

∂g
. (14)

3.2. Multiscale approach

One of the major difficulties encountered in DIC and DVC is the initialization of the
transformation F . If the initial solution is too far from the actual solution, the proposed
algorithm may simply diverge, or converge to a secondary minimum of T . In this
context, convergence is assessed based on the ratio of the maximum displacement over
all voxels in the region of interest and the correlation length of the image, as estimated
from the pair correlation function. When this ratio exceeds unity, there is a risk of
convergence toward spurious secondary minima.

One easy (and cheap) way of enhancing the robustness of DIC and DVC is to
coarse-grain the images [23, 24]. This coarse-graining consists of a low-pass filtering
with a filter at a characteristic scale of 2 pixels, and a resampling that retains only
one pixel out of two in each spatial direction. The result is two smaller images whose
sizes have been reduced in size by a factor of 2d, where d is the space dimension. The
resulting pixels can be seen as “super-pixels”, which account for the underlying group
of 2d fine scale pixels. The simplest coarse graining step consists in replacing each
elementary group of 2d pixels, by a single super-pixel with the arithmetic average of
the gray levels of the group. This coarse-graining operation can be applied recursively,
thereby defining a pyramidal construction, where each pyramid level represents the
coarsened image of the level below. When expressed in super-pixels, the maximum
displacement decreases by a factor of 2 at each level of the pyramid. Conversely, the
correlation length cannot decrease below one pixel, and it is, therefore, easy in a few
pyramidal levels to restore a safe convergence criterion. Once convergence has been
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achieved at a given level n of the pyramid, the resultant transformation may be used
to initialize a new correlation computation at the level (n − 1), down to level 0 which
conventionally is the original image resolution. In the implementation discussed below,
a Gaussian pyramid implementation [25] has been chosen.

In the particular context of multimodal DVC, the only new question to address is
how to design the potential Φ at different levels of the pyramid. Pure phases that
are present as large, relatively homogeneous regions tend to display sharper peaks
in the joint histogram as the pyramid level increases and noise is suppressed (by the
averaging in the coarsening operation). Phases that occur only in very small regions
are progressively assimilated with their surroundings and contribute to broadening of
their distribution in the joint histogram. Therefore, there is no general rule as to how
to define the potential, Φ, that would be independent of the material microstructure.
Consequently, it is suggested to adjust the Φ at each level of the pyramid, based on
the respective joint histogram. The adopted multiscale procedure is summarized in
Algorithm 1.

Algorithm 1 Multiscale intermodal DVC algorithm
Initialize F
for PyramidLevel=n:-1:0 do

Compute pyramidal f(x)

Compute pyramidal g(x)

Compute g̃(0)(x)

Compute joint histogram (f, g̃(0))

Adjust Φ

while ‖δF ‖ > ε do
Compute Mmp

Compute Am

Solve MmpδFp = Am

Update F
Compute g̃(n)(x)

end while
end for
Display residual “distance” (Φ(f, g̃(n))2),2
Compute joint histogram
Extract segmentation

4. Design of potential Φ

4.1. What is expected from the potential?

In a simple case of multimodal registration of images containing only a few pure phases,
it is natural to tailor a specific Φ(f, g) functional relying on very few parameters. One
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practical way to design the potential, in such a case, is to consider the joint histogram
of gray levels and select the points that correspond to the centroids of the data clusters
(which are assumed to be related to the occurrence of a particular phase). Figure 2
shows joint histogram for the sections shown in Fig. 1 that has well defined data clusters,
suggesting the existence of well-defined phases. It is to be noted that when images are
not yet registered, the joint histogram will display spurious populations of voxels whose
gray values (f, g) correspond to different phases, as mentioned earlier. Those points
share the abscissa and ordinate of existing (but different) phases. It will be shown in
the following that the region around f ≈ 55 and g ≈ 95 in Fig. 2 is such a spurious
point.

Pixel (or voxel) data are not independent data with respect to their neighbours.
In reality they rather correspond to an integration over a finite area or volume. Thus,
voxels are not expected to consist only of pure phases. For those voxels lying across
the boundary between two phases i and j, it is expected that the voxel value will be
f = αfi + (1 − α)fj and g = αgi + (1 − α)gj, where α ranges continuously over the
interval [0, 1]. Hence a distribution of gray levels along the segment connecting two pure
phases is expected. The probability density along this line is related to the density of i-j
grain boundaries crossed by voxels. The probability is low for a coarse microstructure
and increases for a finer one. Consequently, a term that lowers the penalty given to a
mixture between phases may be introduced in the potential Φ.

It should be emphasized that the image resolution itself may have a very significant
impact on the joint histogram and hence on the potential to be used. Although trivial,
this observation justifies that the potential should, in principle, be adjusted at each level
of a multiscale procedure.

4.2. Likelihood interpretation

The previous discussion points to the design of specific Φ functionals, based on the
observation of joint density distribution for h = (f, g) gray levels. The latter potential
should ideally be adjusted once registration has been achieved, and this is the motivation
for computing Φ2. At best, an iterative treatment of the problem may be envisioned
where improved approximations of the potential are defined at each iteration.

The previous approach can be rewritten in terms of a probabilistic inference
approach. From a registered pair of images, one may compute the probability
distribution function of h, p(h). Thus, the likelihood that the two images f(x) and
g(F · x) coincide can be written

L[F ] ∝
∏

x∈ROI

p(f(x), g(F · x)). (15)

The log-likelihood assumes a convenient form,

log(L[F ]) =
∑

x∈ROI

log(p(f(x), g(F .x))) + constant. (16)
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Maximizing the probability or equivalently log-likelihood should, thus lead to the
registration solution. Hence, it is deduced from the comparison with the postulated form
of the DVC functional T that a natural expression of the potential, Φ2, is (disregarding
an unnecessary additional constant),

Φ2(h) = − log(p(h)). (17)

Rather than Φ2 being a subjectively designed potential, the above log-likelihood
interpretation provides a well-defined and objective foundation. The difficulty however,
is that the joint distribution and hence the cost function can only be known once
registration has been achieved, and the latter calls for the cost function.

A first strategy can be designed based on the assumption that the starting point
of the registration is already good enough to provide a reasonable estimate of Φ2.
From this initial estimate, a registration transformation F is estimated and a corrected
joint histogram is computed, from which Φ2 can be updated. Subsequently a fixed
point solution, correspond to registration, is sought by iteration. To avoid the solution
becoming trapped in local minima and to compute gradients and curvatures safely, the
joint histogram p is first filtered by convolution with a Gaussian kernel whose standard
deviation is 3 gray levels (on an 8-bit scale), which is then used to compute Φ2 as in
Eq. 17. This approach is denoted as LL (for log-likelihood) in the following.

In contrast to several of the approaches cited in the introduction, the above
procedure for determining Φ is no longer just a reasonable choice, or a particular
heuristics, such as the quadratic differences, peak SNR or mutual information. In
fact, the procedure exploits a functional that provides a maximum likelihood estimator
without any a priori assumption. The only caveat is that no guarantee for convergence
can be shown. It is however clear that close to the solution a converged solution that
coincides with the desired one can easily be obtained. The principal limitation is,
therefore, the maximum tolerable distance from the solution that still leads to the
solution. In this respect, the multiscale procedure makes the algorithm more robust to
large initial mismatches.

4.3. Gaussian mixture approach

A classical way to describe a two-parameter distribution is the Gaussian mixture
model [16, 17], which consists in representing the distribution of gray levels pairs
h = (f, g) as

p(h) =
∑
i

φiN (h;µi,σi), (18)

where N (h;µ,σ) is the normal distribution of h with mean µ and covariance σ.
Introducing

λi(h) = (1/2)(h− µi)σ
−1
i (h− µi), (19)

p reads

p(h) =
∑
i

exp(−λi(h) + log(φi)). (20)
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If the Gaussians are well separated, then

p(h) ≈ max
i

[exp(−λi(h) + log(φi))]

≈ exp
[
−min

i
(λi(h)− log(φi))

]
.

(21)

Using the previous relationship between p and Φ2, the following simple expression of
the potential results

Φ2(h) = min
i

(λi(h)− log(φi)). (22)

This second strategy (labeled GM in the following) appears comparable to the
previous one in the sense that Φ2 still represents the negative log-likelihood. However,
as compared to the previous LL approach, which is a plain depiction of the joint
histogram, a specific model for the joint distribution is proposed that naturally focusses
on the most populated peaks. Therefore spurious secondary peaks may be ignored if the
number of Gaussian components is small enough and if an approximate registration is
available initially. Thus, this GM approach is expected to help convergence from more
distant initial registration than LL. However, because the approximation involved forces
a simplifying model in GM, it is anticipated that the uncertainty of the finally obtained
registration will be larger than that of the LL approach.

A side benefit of the GM approach is that, as the potential appears as consisting of
a few paraboloids, the h plane is naturally partitioned into sub-domains each belonging
to a single paraboloid; the boundaries between subdomains being simple conic curves.
The label i where the minimum is reached in Eq. 22 can be assigned to each gray level
pair h, ψ(h) = i. Each subdomain i is characterized by a “phase” whose signature
is the gray level pair µi of the apex of the paraboloid. Moreover, a linear function
and a constant function can be introduced, respectively, for [Φ2],2 and [Φ2],22, in each
subdomain of this partition. After registration, assigning the label ψ(h) to each voxel
where the gray level pair is h allows the image to be directly segmented based on the
signatures of each phase. Such a segmentation is not directly available following the LL
approach, although one could still consider the basin of attraction of each minimum of
the Φ2 potential using a steepest descent.

5. Test case

To illustrate the performance of the two approaches proposed above, LL and GM, a 3D
case is chosen where two imaging modalities, X-ray and neutron tomography, have been
used to image the same sample with similar resolutions.

5.1. Experimental details

The studied material is a Bentheim sandstone with an average porosity of about 23 %,
a mean grain diameter of 300 µm and a composition of 95 % quartz, 3% kaolinite and
2 % orthoclase [26]. The sample shape is cylindrical with 50 mm diameter and 100 mm



Digital volume correlation for multimodality image registration 13

height. Tomographic imaging of the specimen was made independently using X-ray and
neutron tomography.

Both the x-ray and neutron measurements were carried out at the Helmholtz-
Zentrum Berlin (HZB). Neutron images were acquired at the beamline CONRAD [27]
with L/D of 500 (where D is the pinhole aperture defining the neutron beam size and L is
the distance from the pinhole to the sample). The acquisition time for each radiography
was 30 seconds, which gives a total time of about 6 hours for a complete scan of 600
images. The resulting reconstructed tomography volume images had a voxel size of
about 30 µm. X-ray tomographies were acquired using a lab source running at a voltage
of 120 kV, a current of 83 µA giving a spot size of about 10µm. The acquisition time
for each radiography is 1.3 s. 1300 different angles are acquired spread through 360◦,
with 5 radiographies averaged at each angular position, giving a total scanning time of
about 2.5 hours. The resulting reconstructed tomography volume images had a voxel
size of about 30 µm.

In the following, a Matlab implementation has been used to illustrate the
feasibility of the approach (this implementation has not yet been optimised in terms
of computational efficiency). To limit memory usage, two volumes of height ∆z =

128 voxels where first extracted from both 3D-images. These subvolumes were then 2×2-
binned in the transverse (x, y) directions, so that the cross-sections were 900×900 voxels
for both modalities, and re-sampled into 8 bits. A four-level pyramidal scheme was used
where level 1 corresponds to the 900×900×128 volume. However, to preserve sufficient
thickness at all levels of the pyramid, it was chosen not to coarse-grain the z direction.
Hence at level 4, the volume shape was approximately cubic 112 × 112 × 128, but the
microstructure in the images was highly anisotropic, as each level-4 voxel resulted from
a 8× 8× 1 group of voxels in the original image. The price to pay for this anisometric
re-scaling is that one should be careful when transferring the result of one level to be the
initialization of the next one. However, resorting to physical coordinates, rather than
voxel numberings, is a simple way to avoid ambiguities.

5.2. Results of the GM approach

The first test was performed using the Gaussian mixture (GM) approach developed
in Section 4.3. Although automatic selection algorithms are available to fit Gaussian
mixture distributions, our attempts to use them lead to rather poor fits (more often than
not the means were pushed to the limits of accessible gray levels, 0 or 255). Therefore,
a simple procedure was designed for fitting the highest peaks, which involved fitting the
highest of the residual between the measured joint histogram and the already identified
Gaussian components recursively. Albeit simple, this procedure was found to be robust
and adequate for our usage. The number of components was a priori prescribed from
the shape of the joint histogram. The latter was selected independently per pyramid
level, as it is highly dependent on the level. Here, this shape went from two components
for level 4 to four components at level 1. Choosing two Gaussian components at the



Digital volume correlation for multimodality image registration 14

coarsest level forbids the spurious third peak (see Fig. 3(a)) to be mistaken for a real
one, thereby favoring its annihilation with the transformation F .

(a) Level 4 initial (b) Level 4 converged

(c) Level 3 converged (d) Level 2 converged

(e) Level 1 converged

Figure 3. (a) log10-scale joint histogram at various stages of the GM registration
from (a) the initial step at level 4, and after registration at levels 4 to 1 respectively
in (b) to (e) of registered image

Figures 3(b-e) show the change of the joint histogram of both images after
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registration at different levels of the pyramid. It is observed that the spurious patterns
that appear as horizontal or vertical lines in Fig. 3(a) already disappeared after
convergence at level 4. The joint histogram appears to display very few signs of mismatch
already at this stage. At lower levels, only a broadening of the histograms is visible,
which simply results from the higher resolution and the higher noise magnitude.

Table 1. Evaluation of the transformation parameters at convergence for each pyramid
level, using the GM approach. The convergence criterion was chosen to be such that
the norm of the deformation gradient part of δF should be less than 5× 10−4

Pyramid level L = 4 L = 3 L = 2 L = 1

(iterations) (47) (12) (12) (10)
εxx (%) 1.78 1.72 1.69 1.66
εyy (%) 1.75 1.68 1.63 1.60
εzz (%) -2.04 -2.90 -2.72 -2.88
εyz (%) -0.36 -0.24 -0.21 -0.21
εxz (%) -0.21 -0.01 0.03 0.03
εxy (%) -0.05 0.01 0.04 0.04
ωx (deg.) -0.11 -0.07 -0.06 -0.07
ωy (deg.) 0.43 0.52 0.58 0.59
ωz (deg.) 0.59 0.68 0.70 0.71
Tx (vox.) -14.1 -15.7 -16.1 -16.0
Ty (vox.) -11.8 -10.1 -9.4 -9.1
Tz (vox.) 9.8 9.1 9.3 9.6

Table 1 gives the number of iterations at each level of the pyramid, together with
the estimated parameters of the transformation F . The convergence criterion is chosen
to be the stationarity of the deformation gradient, and relaxation is stopped when the
change between two iterations is less than 5 × 10−4 or when the number of iterations
reaches a maximum number, here chosen to be 60 (with a minimum of 10). It is observed
that the number of iterations is large at level L = 4 (where the volume is much smaller
than at later stages and hence computation is much faster). After this first step, the
number of iterations is close to the imposed minimum. Consistently, it is observed that
the transformation is already very well determined after convergence at level L = 4.
Further corrections from one level to the next are of order 10−3 in strain. Only the
εzz strain shows a larger correction from L = 4 to L = 3, where it almost reaches its
final stabilized value. It is also interesting to observe that directions x and y behave in
a similar fashion, with very close values. However, they both differ quite significantly
from direction z. Since the latter is the rotation axis, it is deduced that it is not
coupled with the perpendicular directions that, in contrast, are processed together in
the reconstruction and, hence, cannot be different. One possible explanation of this
difference may result from an imperfect alignment of specimen rotation axis or camera.
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As above discussed, a residual field, Φ2
,2, is constructed at convergence; see

Figure 4(a). The fact that neither f or g, can be recognised in the residual field is
an indication that the result can be trusted.

As discussed earlier, an additional output of the proposed registration is a natural
segmentation of the registered images and labelling of each voxel as a specific “phase”.
This segmentation is achieved by starting from any gray level pair (f, g) and following
the steepest descent in the potential, which directly provides a partition into (here) four
basins of attraction. By this approach, each (f, g) pair can be labelled by the indices
of the different basin roots. Figure 4(b) shows the result of the labelling issued from
the GM approach for the test case. It is noteworthy that no other treatment has been
performed (such as spatial filtering or any other morphological operator) to dampen the
noise.

(a) (b)

Figure 4. (a) Residual at convergence (level 1) and (b) segmented map (with four
phases) after registration using the GM approach (section along median z plane)

5.3. Results of the arbitrary likelihood (LL) approach

The advantage of the LL approach, over the GM method, lies in the fact that there is
less room for personal judgement, as the potential is based on the observed histogram.
However, as could be seen in the previous section in Fig. 3, the joint histogram
itself appears to change significantly depending on the pyramid level. In particular,
registration is rather poor at the initial state and the resulting spurious features in
the joint histogram will not be corrected in the LL approach as they were in the GM
approach (simply because very few (i.e., 2) components were chosen initially). In the
LL approach, the only processing of the joint histogram is a convolution by a Gaussian
whose width is three gray levels to remove high frequency fluctuations and hence local
minima.

Figure 5 shows the initial potential at different pyramid levels together with the
converged joint histogram (using the same log-scale). As anticipated, because some
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(a) Level 4 converged (b) Level 3 converged

(c) Level 2 converged (d) Level 1 converged

Figure 5. Observed joint histograms after convergence at four pyramidals level from
L = 4 to L = 1

spurious features are present in the initial histogram, the early convergence is quite
poor and at the end of the L = 4 relaxation, very few changes occur. In spite of this,
at level L = 3, the vertical branch at lower f values disappears almost entirely. The
following levels and athe final joint histogram are similar to the GM case.

Table 2 gives the results of the DVC registration based on the LL approach. It is
observed, first, that the number of iterations in the higher levels is much larger than
for the GM approach, as the maximum iteration number is reached. It is also observed,
consistent with the previous observations, that the estimation of the transformation F
at level 4 is totally wrong. After convergence at level L = 3, more acceptable values are
obtained showing, for the most part, a good stability until the end of the registration
at L = 1. In particular L = 2 and L = 1 results show only minor changes. Moreover,
some of these estimates of the transformation F are in very good agreement with the
previous approach. All strain components differ from the GM estimates by less than
10−4, but the εzz whose difference with the GM estimate is close to 1%. Rotations are
also almost identical. Translation differences are also in the voxel range (and 2 voxels
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along z). One possible reason for larger differences in the z-direction may come from
the fact that the sample size is also much shorter along the z axis (128) than in the
transverse directions (900).

Table 2. Evaluation of the transformation parameters at convergence for each pyramid
level, using the LL approach. The convergence criterion was chosen to be such that
the norm of the deformation gradient part of δF should be less than 5× 10−4

Pyramid level L = 4 L = 3 L = 2 L = 1

(iterations) (60) (60) (41) (10)
εxx (%) 0.24 1.58 1.63 1.60
εyy (%) 0.10 1.39 1.53 1.52
εzz (%) -2.91 -3.87 -1.82 -1.96
εyz (%) -0.64 -1.38 -0.24 -0.21
εxz (%) -0.26 0.66 0.01 0.03
εxy (%) 0.10 0.16 0.03 0.04
ωx (deg.) -0.22 -0.61 -0.03 -0.02
ωy (deg.) 0.15 0.85 0.70 0.72
ωz (deg.) 0.13 0.66 0.73 0.73
Tx (vox.) -4.2 -16.7 -16.1 -15.9
Ty (vox.) 0.7 -6.4 -7.9 -7.9
Tz (vox.) 9.5 12.1 11.6 11.6

Figure 6(a) shows the residual map at the final step of the LL registration procedure
for the case example. This residual map indicates a good convergence where no bias is
visible, as for the GM approach. Also as for the GM approach, the different Gaussian
components can be associated with a specific material phase at convergence. For the
LL case, a similar, albeit less obvious procedure, to segment the phases is designed by
identifying pure phases (i.e., labels) at maxima of the joint distribution. Any gray level
pair will flow, with a steepest ascent algorithm, toward a maximum that defines the
corresponding phase. This procedure groups gray levels into domains from the basin of
attraction of the maxima. The smoothing of the distribution using a Gaussian filter, as
earlier discussed for the LL approach, limits the number of maxima. Figure 6(b) shows
the distribution of phases, where the number of phases has been set to 6 without any
prior subjective statement.

To check whether the observed difference in the transformations determined using
the two proposed approaches is due to a poor convergence, initialization of the LL
approach with the result from the GM one or vice versa was tried. Each approach led to
the same results as those already reported (i.e., with no influence of the initialization),
so that slow convergence cannot be blamed for the difference. Thus, the observed
difference in the transformation between the two approaches presumably comes from
the joint distribution function, which is not adequately depicted in the GM approach.
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(a) Level 1 (b) Level 1

Figure 6. (a) Residual field after registration using the LL approach. (b) Segmented
map (section along median z plane)

In contrast, the LL approach, for which priors are not postulated, appears to be more
satisfactory, although it is difficult to provide a more objective appreciation of this from
the registration results.

Finally, it is worth emphasizing that tailored potentials may be designed on demand
to achieve a registration based on a specific prior judgement of the reliable region of
the joint histogram. However, a systematic procedure that would allow for a simplified
and yet faithful picture of the joint distribution is the most desirable. Two possible
methods to describe the potential have been shown as examples, the first one, GM, was
presumably oversimplified while the second, LL, did not provide enough constraint.

To check the quality of registration, Fig. 7 shows two complementary, composite
mosaic pictures assembled from checkerboards of squares extracted from one modality
or the other , after registration. These composite-mosaic images allow continuity to be
seen with ease whenever relevant, and also to observe that some patterns are hardly
visible in one modality, but very noticeable in the other one.

6. Conclusions

It has been shown that the registration of two images acquired with different modalities
can be performed through an extension of Digital Volume Correlation through the
minimization of a potential Φ2. Furthermore, it was shown that, if this potential
coincides with (the cologarithm of) the joint probability distribution, then the
registration solution is the one that maximizes the likelihood. From this observation
two variants for the potential were formulated:

• a Gaussian mixture model (GM) where the joint distribution is fitted to a set of a
few Gaussian distributions

• a log-likelihood (LL) approach where the measured joint distribution is used directly
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to design the potential for the registration, which is a less intrusive choice.

A real case study on two 3D volume images of the same test object, but derived
from two different imaging modalities, namely x-ray and neutron tomographies, allowed
the performance of the two above mentioned algorithms to be investigated. The
GM algorithm was found to be very stable with a fast convergence in the multiscale
framework. Although less stable and displaying a slower convergence, the LL algorithm
was also shown to be able to provide a good registration, for which the mean
transformation parameters were in good agreement with those obtained from the GM
algorithm.

A voxel accuracy can be reached, revealing, in the case under study, an unexpected
artifact, in the form of an apparent strain between the images corresponding a few
percent difference of the dimensions parallel to the tomographic rotation axis direction
compared to the dimensions perpendicular to this. One may speculate that this may
result from a poor detector alignment.

Because the proposed procedure has been applied on the registration of two images
of the exact same sample, a simple space regularization (with 12 degrees of freedom)
has been chosen. However, in the case where the specimen is subjected to deformations
between the two scans (as due to drying, swelling, creep, as a response to mechanical
testing, or even for living specimen that may move, or breathe, ...), the degrees of
freedom could be enriched as classically done with DVC.

An additional, “for free” result from the proposed registration method is a relatively
straightforward segmentation of material phases according to their contrasts in both
modalities. The registration of such two-modality images also opens the way to
enrich/correct a low resolution, low contrast, or noisy image from one modality with
the other one. This could be very beneficial, for example, to the exploit simultaneous,
dual X-ray and neutron tomographies (as opposed to separate acquisitions as in the
example presented herein from [1]) to profit from potentially faster X-ray tomography
acquisition to enhance the neutron tomography and to extract greater information from
the combination of the different sensitivities to the different phases of the two modalities
(cf. project “NeXT-Grenoble” [28]).
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(a) (b)

Figure 7. Complementary composite images formed by a checkerboard assembly
of squares extracted from the two modalities after registration. The absence of
discontinuity can be checked along all boundaries
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