
HAL Id: hal-01633718
https://hal.science/hal-01633718v1

Submitted on 8 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

De Novo NGS Data Compression
Gaëtan Benoit, Claire Lemaitre, Guillaume Rizk, Erwan Drezen, Dominique

Lavenier

To cite this version:
Gaëtan Benoit, Claire Lemaitre, Guillaume Rizk, Erwan Drezen, Dominique Lavenier. De Novo NGS
Data Compression. Mourad Elloumi. Algorithms for Next-Generation Sequencing Data, Springer,
pp.91-115, 2017, 978-3-319-59826-0. �10.1007/978-3-319-59826-0_4�. �hal-01633718�

https://hal.science/hal-01633718v1
https://hal.archives-ouvertes.fr


De Novo NGS Data Compression

Gaetan Benoit, Claire Lemaitre, Guillaume Rizk, Erwan Drezen and Dominique
Lavenier

Abstract High throughput sequencing machines decipher billions of nucleotides
from DNA molecules at unprecedented speed. This mass of data is stored into large
text files structured as a list of small DNA fragments. They represent random over-
lap regions over one or several genomes. The overlap fragment generate a lot of
redundancy that can be advantageously exploited to compress next generation se-
quencing (NGS) data. This is the main motivation for developing dedicated com-
pressing techniques for this type data over generic text compressors that are not
able to capture this kind of redundancy. This chapter focuses on de novo NGS data
compression, which remains a very challenging issue. Here, no reference genome is
considered. Compression and decompression is performed as a standalone process
independently of external knowledge. The chapter explains the main NGS compres-
sion techniques, including lossless and lossy compression. Additionally, the chapter
presents an evaluation of the main state-of-the-art compressors on several real NGS
datasets.

Gaetan Benoit
INRIA/IRISA, Rennes e-mail: gaetan.benoit@inria.fr

Claire Lemaitre
INRIA/IRISA, Rennes e-mail: claire.lemaitre@inria.fr

Guillaume Rizk
INRIA/IRISA, Rennes e-mail: guillaume.rizk@inria.fr

Erwan Drezen
INRIA/IRISA, Rennes e-mail: erwan.drezen@inria.fr

Dominique Lavenier
INRIA/IRISA, Rennes e-mail: dominique.lavenier@irisa.fr

1



2 Authors Suppressed Due to Excessive Length

1 Introduction

During the last decade, the fast evolution of the sequencing technologies has led
to an explosion of DNA data. Every field of life science is now concerned. All of
them offer really new insights to approach many biological questions. The low se-
quencing cost is also an important factor that contributes to their successes. Hence,
today, getting molecular information from living organisms is no longer a bottle-
neck. Sequencing machines can generate billions of nucleotides. On the other hand,
managing this mass of data to extract relevant knowledge is becoming a real chal-
lenge.

The first step is simply to deal with the information files output by the sequencers.
The size of these files can be huge and often ranges from ten to hundreds of Giga
bytes. Files have to be stored on the disk storage computing environment (1) to
perform the genomic analysis and (2) to be archived. In both cases, the required
space storage is high and asks for important hardware resources. Compressing NGS
data is thus a natural way to significantly reduce the cost of the storage/archive
infrastructure.

Another important point is the exchange of data. The first level is the Internet
communication. Practically, transferring files of Tera bytes through Internet takes
time and is fastidious (larger the files, longer the transfer time, and higher the prob-
ability to be interrupted). A 100 Mbit/s connection will require several hours to
transfer a file of 100 Giga bytes. A second level is the internal computer network.
Data are generally moved on specific storage bays. When required for processing,
they are transferred to the computing nodes. If many jobs involving many differ-
ent genomic datasets are run in parallel, the I/O computer network can be saturated
leading to a drastic degradation of the overall computer performance. One way to
limit the potential I/O traffic jam is to directly work with compressed data. It can be
faster to spend time in decompressing data than waiting for uncompressed ones.

Compressing NGS data can also be an indirect way for speeding up data pro-
cessing. Actually, the sequencing coverage provides a significant redundancy that is
exploited by DNA data compressors. In other words, similar sequences are more or
less grouped together to optimize their description. In many treatments such as se-
quence comparison, genome assembly or SNP calling (through mapping operation),
the aim is to find similarity between sequences. Thus, even if the final objective is
different, the way data are manipulated is conceptually very similar. In that sense,
a NGS data compressor can be viewed as a pre-processing step before further anal-
ysis. But to be efficient, the compressor should be able to directly transmit this
pre-processing information to other NGS tools.

Hence, based on the above argumentation, the challenge of the NGS data com-
pression is manifold: (1) provide a compact format to limit computer storage in-
frastructure; (2) provide a fast decoding scheme to lighten I/O computer network
traffic; (3) provide a format to directly populate a data structure suitable for further
NGS data processing. Of course, these different criteria are more or less antagonist
and compression methods have to make compromises or deliberately privilege one
aspect.



De Novo NGS Data Compression 3

Generic compression methods, such as GZIP, do not fit the above requirements.
Compression is performed locally (i.e without vision of the complete dataset) and,
thus, cannot exploit the coverage redundancy brought by NGS data. However, due
to the text format (ASCII) of the NGS files, and the reduced alphabet of the DNA
sequences, a compression rate ranging from 3 to 4 is generally obtained. This is
far from negligible when such volume of data is involved. Furthermore, the great
advantage of GZIP is that it is well recognized, stable, and many NGS tools already
take it as input.

Also, independently of not exploiting the global redundancy, gzip-like methods
cannot perform lossy compression. Indeed, NGS data include different types of in-
formation that can be more or less useful according to downstream processing. Each
DNA fragment comes with additional information related to the technological pro-
cess and the quality control. In some cases, it can be acceptable to suppress or de-
grade this information to improve the compression ratio. Hence, some compressors
propose lossy options that essentially operate on these metadata.

Another way to increase the compression ratio is to rely on external knowledge.
If a reference genome is known, NGS data from the same or from a close organism
can advantageously benefit from that information. In that case, the compression
consists in finding the best mapping for all DNA fragments. Fragments that map are
replaced by the coordinates where the best match has been found on the reference
together with the differences. This chapter will not discuss anymore of this type
of compression as it is dedicated to de-novo compression, i.e. compression without
reference. But this approach must not be forgotten. Actually, it could be of great
interest in the future as the number of sequenced genomes is growing every day.

The rest of the chapter is structured as follows: section 2 gives an overview of
standard string compression methods. Actually, as it will be seen in section 3, NGS
files include metadata that can be processed with generic compression methods. It
is thus interesting to have a brief overview of these techniques. Section 3 is devoted
to methods that have been specifically developed to compressed NGS data. Lossless
and Lossy compression are presented. Section 4 provides an evaluation of the dif-
ferent NGS compressors and proposes a few benchmarks. Section 5 concludes this
chapter.

2 Generic text Compression

All the methods compressing NGS data files use somehow techniques from generic
text compression. These techniques can be adapted or tuned for compressing each
component of the NGS files. Therefor, it is essential to know the bases of generic
text compression techniques and how the popular methods work.

Text compression consists in transforming a source text in a compressed text
whose bit sequence is smaller. This smaller bit sequences is obtained by providing
fewer bits to the most frequent data and vice versa. The compression can be lossless
or lossy. Lossless techniques rebuild the original text from the compressed text,



4 Authors Suppressed Due to Excessive Length

Fig. 1: Standard workflow of a text compressor. Firstly, the original text can be transformed to help
further compression. The model then makes a probability distribution of the text and the coder
encodes the symbols based on their probability of occurrences.

whereas lossy techniques only retrieve an approximation of the source. In some
cases, the loss of information can be desirable, but this section focuses only on
lossless methods.

As shown in Figure 1, a text compressor is composed of an optional transforma-
tion algorithm, a model and a coder. Transformation algorithms usually produces a
shorter representation of the source or a reordering of the source. They can help the
compressor in different ways: increasing the compression rate, improving its speed
or reducing its memory usage. The model chooses which data is more frequent in
the source and estimates a probability distribution of the symbols of this source. The
coder outputs a code for each symbol based on the probabilities of the model: the
highest probable symbols is encoded by the fewest bit codes.

There are three main kinds of lossless text compression techniques: statistical-
based, dictionary-based and those based on the Burrows-Wheeler transform (BWT).
The first uses a complex modeling phase to accurately predict the symbols that
often appear in the source. The more accurate are the predictions, the better will
be the compression rate. The second and the third are transformation algorithms.
Dictionary-based methods builds a dictionary containing sequences of the source,
each occurrence of these sequences are then replaced by their addresses in the dictio-
nary. Finally, BWT-based methods rearranges the symbols of the source to improve
the compression.

2.1 Coding

Coders outputs a code for each symbol depending on the probability distribution
computed by the model. The codes must be chosen to provide an unambiguous
decompression. Shannon information theory [24] tells us that the optimal code of a
symbol s of probability p has a bit length of −log2(p).



De Novo NGS Data Compression 5

The two most used coders are Huffman coding [11] and arithmetic coding [29].
Huffman coding starts by sorting the symbols based on their probabilities. A binary
tree is then constructed, assigning a symbol to each of its leaves. The code of the
symbols is obtained by traversing the tree from the root to the leaves. The tree is
unbalanced because the codes produced by the encoder must be unambiguously
decoded by the decompressor. Frequent symbols will be stored closed to the root,
ensuring that frequent data will have the shortest codes, and vice versa. In the rare
case where the probability of a given symbol is a power of 1/2, Huffman coding
produces optimal code length. In the other cases, this method do not strictly respect
the Shannon entropy because the code length are integers.

Arithmetic coding does not bear this limitation and produces codes near of the
optimal, even when the entropy is a fractional number. Instead of splitting the source
in symbols and assign them a code, this method can assign a code to a sequence of
symbols. The idea is to assign to each symbol an interval. The algorithm starts with
a current interval [0, 1). The current interval is split in N subintervals where N is the
size of the alphabet of the source. The size of the subintervals are proportional to
the probability of each symbol. The subinterval of the current symbol to encode is
then selected. The boundary of the current interval are narrowed to the range of the
selected subinterval. Splitting and selecting intervals continue until the last symbol
of the source is processed. The final subinterval specifies the source sequence. The
larger is this final interval, the less bits will be required to specify it and vice versa.

Even if Huffman coding can be faster than arithmetic coding, arithmetic coders
are most often preferred. The gain in compression rate is really worth compared to
the speed penalty.

2.2 Modeling

The model gathers statistics on the source and estimates a probability distribution
of the symbols. A model can be static or dynamic. In the static case, a first pass
over the source determines the probability distribution, which is used to compress
the text in a second pass. The distribution must be stored in the compressed file to
allow the decompressor to retrieve the original text. In the dynamic case, the distri-
bution is updated each time a symbol is encoded. The compression is then executed
in a single pass over the data. The distribution does not need to be transmitted to
the decompressor because the information can be retrieved each time a symbol is
decoded. This is a great advantage compared to static models because the distribu-
tion can sometimes be heavy. Arithmetic coders perform well on dynamic models
whereas Huffman coders are better suited to static models.



6 Authors Suppressed Due to Excessive Length

2.2.1 Basic modeling

The most used model is a variation of Markov chains : the finite context models.
In an order-N context model, the probability of the current symbol is given using
the preceding N symbols. This kind of model rely on the fact that the same symbol
will often appear after a specific context. A simple example can demonstrate the
effectiveness of this model. In an English text, an order−0 model (no context) may
assign a probability of 2.7% to the letter ”u”. Whereas an order−1 model (context
of size 1) can assign a probability of 97% to ”u” within the context ”q”, meaning
that ”q” is almost always followed by ”u”. A symbol with such a high probability of
occurrence can be encoded on one bit or less by the coders which are presented in
the following section.

2.2.2 Statistical-based approach

These methods perform a complex modeling phase in order to maximize the ef-
ficiency of the coder, usually an arithmetic coder. We have seen in the previous
section that order-N context models predict better the probability of the symbols.
Increasing N increases the specificity of a context and thus the probabilities of the
symbols following it. However, up to a point, the compression rate will decrease
because each context has been seen only once in the source and no prediction can
be made.

The prediction by partial matching (PPM) [18] aims at solving this problem by
using a variable order model. The probability of the current symbol is determined
by finding the longest context such that it has already been seen. If the context of
size N does not exist in the distribution, the model is updated and the N-1 context is
tried out. The compressor reports the change of context by creating an escape sym-
bol. These operations are repeated until the context of size 0 is reached. In this case
the same probability is assigned to the 256 possible symbols. The context mixing
approach [17] goes further by combining the predictions of several statistical mod-
els. A lot of mixing strategies exist, the simplest one is to average the probabilities
of each model. The resulting prediction is often better than the prediction of a single
model.

The PAQ series [16] is a set of compressor which have implemented a lot of
complex models. These tools achieve the best compression rates but they are not so
popular, mainly because of their lower speed.

2.3 Transforming

Transformation algorithms produce a shorter representation of the source or a re-
ordering of the symbols to help further compression. After the transformation, a
modeling and a coding phase are always required, but simpler models can be used.



De Novo NGS Data Compression 7

2.3.1 Dictionary-based approaches

Dictionary-based methods choose sequences of symbols of the source and replace
them by short codewords. The idea is to store the sequences once in a data structure,
called the dictionary, their code being simply their index in the dictionary.

Lempel and Ziv implemented LZ77 [32] the first algorithm based on dictionary
coding. There are numerous variations of this algorithm, the key point being how
they choose the sequences and how they store them in the dictionary. LZW [28]
uses a dictionary of 4096 entries, each sequence is thus encoded on 12 bits. During
compression, the longest sequence matching with the dictionary is searched. When
such a match is found, the algorithm outputs the index of the sequence and a new
entry is inserted in the dictionary, which is the concatenation of the sequence and
the character following this sequence. The dictionary is initially filled with the 256
possible values of a byte in the 256 first entries. It allows the decompressor to rebuilt
the dictionary from the compressed data without having to store anything about it in
the compressed file.

LZ variants are implemented in popular compression tools, such as gzip [8]
which uses a combination of LZ77 and Huffman coding. Their compression speed
tends to be slow because of the construction of the dictionary, but their decompres-
sion speed, on the contrary, is very fast. This makes them very useful algorithms for
text archiving.

2.3.2 BWT-based approaches

The Burrows-Wheeler transform (BWT) [3] is not directly a compression technique
but a reordering of the symbols of the source. The transformation tends to group
the identical symbols together when the source contains redundant sequences. A
simple compression technique, such as run-length encoding (RLE), can then be used
to reduce the sequences of repeated symbols. RLE replaces these sequences by a
couple representing the number of occurrence and the repeated symbol, for example
the string BBBBBBBCDDD, will become 7B1C3D.

The BWT is obtained by sorting all the rotations of a sequence by alphabetical
order. The last symbol of each rotation are concatenated to form the BWT. One of
the main advantage of this technique is the reversibility property of the BWT. A
compressor can then forget the original text and work only on the BWT.

The popular compressor bzip2 [23] is based on the BWT. Its compression rate is
better than the dictionary-based methods but the execution time is slower for both
compression and decompression.



8 Authors Suppressed Due to Excessive Length

3 NGS data Compression

3.1 Introduction

The sequencing machines are highly parallel devices that process billions of small
DNA biomolecules. A sequencing run is a complex biochemical protocol that simul-
taneously reads all these biomolecules. This reading is performed by very sensitive
captors that amplify and transform the biochemical reactions into electronic signals.
These signals are analyzed to finally generate text files that contain string sequences
over the A, C, G, T alphabet, each of them representing one nucleotide. In addi-
tion, depending of the quality of the signal, a quality score is associated to each
nucleotides.

The standard file format output by the sequencing machines is the fastq format.
This is a list of short DNA strings enhanced with quality information. Each sequence
has also a specific identifier where different information related to the sequencing
process is given. An example of fastq file with only 2 DNA sequences is:

@FCC39DWACXX:4:1101:12666:1999#CTAAGTCG/1
NGCCGAAACTTAGCGACCCCGGAAGCTATTCAATTACATGTGCTATCGGTAACATAGTTA
+
BPacceeeggggfhifhiiihihfhiifhhigiiiiiiiffgZegh‘gh‘geggbeeeee
@FCC39DWACXX:4:1101:16915:1996#CTAAGTCG/1
NTGACTTCGGTTAAAATGTTAAGTTATGGACGAGTTTGAGTTTGTGATTTTAATCTTTCA
+
BPacceeegggggiiiiihhhhihhiiihiiihicggihichhihiiihihiiiiiiiih

The line starting with the character @ is the sequence header. It gives the meta-
data associated to the DNA sequence and to the sequencing process. The following
line is the DNA sequence itself and is represented as a list of nucleotides. The N
character can also appear for nucleotides that have not been successfully sequenced.
The line + acts as a separator. The last line represents the quality. The number of
symbols is equal to the length of the DNA sequence. A quality value ranging from
0 to 40, is associated to each symbol, each value being encoded by a single ascii
symbol.

Hence, we may consider that NGS files contain three different types of informa-
tion. Each of them has its own properties that can be exploited to globally optimize
the compression. Headers are very similar between each others, with a common
structure and fixed fields. They can therefore be efficiently compressed with generic
text compression methods, described in the previous section. The DNA sequence
stream contains redundant information provided by the sequencing coverage, but
this information is spread over the whole file. Therefore, sequences must first be
grouped together to benefit from this redundancy. Finally, quality compression is
probably the most challenging part since there are no immediate features to exploit.

Actually, the quality information may highly limit the compression rate. So it is
legitimate to wonder whether this information is essential to preserve or, at least,
if some loss in quality would be acceptable. A first argument is that quality in-
formation is often skipped by a majority of NGS tools. A second one is that the



De Novo NGS Data Compression 9

computation of the quality scores with such precision (from 0 to 40) does not reflect
the real precision of sequencers. The range could be reduced to lower the number
of possible values with very minor impact to the incoming processing stages, but
with a great added value on compression. Recent studies have even shown that re-
ducing the quality scoring can provide better results on SNP calling [31]. Removing
the quality, re-encoding the quality score on a smaller scale, or modifying locally
the score to smooth the quality information are also interesting ways to increase the
compression rate.

The two next subsections describe in detail quality and NGS sequence compres-
sion methods. The header part compression is no longer considered since generic
text compression techniques, as described section 2, perform well.

3.2 Quality compression

For each nucleotide, the fastq format includes a quality score. It gives the ”base-
calling” confidence of the sequencer, i.e. the probability that a given nucleotide has
been correctly sequenced. In its current format, quality scores Q are expressed in an
integer scale ranging from 0 to 40, derived from the probability p of error with Q =
−10log10 p. These scores are usually named Phred scores, after the name of the first
software that employed it. In the uncompressed Fastq file, these scores are encoded
with ascii characters. Each DNA sequence is accompanied by a quality sequence of
same length, therefore quality strings takes the same space as DNA in the original
file. Its compression is more challenging than DNA compression in several aspects.
First, its alphabet is much larger (≈ 40 symbols instead of 4), secondly it does not
feature significant redundancy across reads that could be exploited, and lastly, it
often looks like a very noisy signal.

We distinguish between two different compression schemes: lossless and lossy.
lossless mode ensures the decompressed data exactly match the original data. On
the contrary, lossy compressors store only an approximate representation of the in-
put data but achieves much higher compression rates. lossy compression is tradi-
tionally used when the input data is a continuous signal already incorporating some
kind of approximation (such as sound data). At first NGS compression software
were mostly using lossless compression, then several authors explored various lossy
compression schemes. lossy compression schemes can themselves roughly be di-
vided in two categories: schemes that work only from the information contained in
the quality string, and schemes that also exploit the information contained in the
DNA sequence to make assumptions about which quality score can safely be modi-
fied.



10 Authors Suppressed Due to Excessive Length

3.2.1 Lossless compression

Context model and arithmetic coding

It has been observed that in most sequencing technologies there is a correlation be-
tween quality values and their position, and also a strong correlation with the nearby
preceding qualities. The use of an appropriate context-model can therefore help pre-
dict a given quality value. QUIP uses a third-order context model followed by arith-
metic coding to exploit the correlation of neighboring quality scores, DSRC2 uses
an arithmetic coder with context length up to 6, and FQZCOMP also uses a mix of
different context-models to capture the different kind of correlations [13, 20, 2].

Some contexts used by FASTQZ to predict a quality Qi are for example Qi−1
(immediate preceding quality score), max(Qi−2,Qi−3), whether Qi−2 equals Qi−3
or not, and min(7, i/8), i.e. reflecting score is dependent on position. These con-
texts are heuristics and may perform differently on datasets generated by varying
sequencing technologies. The context-model is then generally followed by an arith-
metic coder, coding highly probable qualities with fewer bits.

Transformations

Wan et al. explored different lossless transformations that can help further compres-
sion: min shifting and gap translating [27]. With min shifting, quality values are
converted to q− qmin, with qmin the minimum quality score within a block. With
gap translating qualities are converted to q− qprec. The objective of such transfor-
mations is to convert quality to lower values, possibly coded with fewer bits. This
can act as a pre-processing step for other methods.

3.2.2 Lossy compression

One major difficulty of quality compression comes from the wide range of different
qualities. The first simple idea to achieve a better compression ratio is to reduce this
range to fewer different values.

Wan et al. explored the effects of three lossy transformations: unibinning, log-
binning, and truncating [27]. In the first transformation, the distribution of error
probabilities are equally split into N bins. That is, with N = 5, the first bin spans
quality scores with probability of error from 0% to 20%. All quality values in that
bin will be represented by the same score. In the second transformation, the loga-
rithm of error probabilities are equally divided into N bins. This respects the spirit
of the original Phred score, if original Phred scores are represented with values
from 0 to 63, a logbinning with N = 32 amounts to convert each uneven score to its
lower nearest even value. Several software use similar discretization scheme, such
as FASTQZ and FQZCOMP in their lossy mode) [2].



De Novo NGS Data Compression 11

Other approaches exploit information in the read sequences to modify quality
values. Janin et al. assume that if a given nucleotide can be completely predicted
by the context of the read, then its corresponding quality value can be aggressively
compressed, or even completely discarded. They first transform the set of reads to
their Burrows-Wheeler transform to make such predictions from the longest com-
mon prefix array (LCP) [12].

Yu et al. also exploits the same idea, but without computing the time-consuming
BWT of reads [31]. Instead, they compute a dictionary of commonly occurring k-
mers throughout a read set. Then, they identify in each read kmers within small
Hamming distance of commonly occurring k-mers. Position corresponding to dif-
ferences from common k-mers are assumed to be SNP or sequencing errors, and
their quality values are preserved. Other quality scores are discarded, i.e. replaced
by a high quality score. However, their method scale to very large dataset only if
the dictionary of common k-mers is computed on a sample of the whole dataset.
LEON also exploits a similar idea. It counts the frequency of all kmers in the read
set, and automatically computes the probable solidity threshold above which k-mers
are considered to be error-free. Then, if any given position in a read is covered by a
sufficient number of solid kmer, its quality value is discarded. If the initial quality
score is low, then a higher number of solid k-mers is required in order to replace the
quality score by a high value. The underlying idea is that replacing a low quality
score by a high score may be dangerous for downstream NGS analysis, and there-
fore should be conducted carefully. These approaches are obviously lossy since they
change the original qualities. However, modifying the quality values based on the
information extracted from the reads means that some quality scores are actually
corrected. This can be viewed as an amelioration instead of a loss, and explains the
improvements of downstream NGS analysis discussed in [31].

3.3 DNA sequence compression

The most simple compression method for DNA sequences consists in packing mul-
tiple nucleotides in a single byte. The DNA alphabet is a four letter alphabet A, C, G
and T, and each base can thus be 2 bit encoded. The N symbol (that actually rarely
appears) does not necessarily need to be encoded because its quality score is always
0. During decompression, the symbol is simply inserted when a null quality score
is seen. Packing four nucleotides per byte represents however a good compression
rate, decreasing the size of the DNA sequences by a factor 4.

To get better compression ratio, two main families of compression techniques
have been developed: reference-based methods and reference-free methods, also
called de novo methods. The idea of the reference-based methods is to store only
the differences between already known sequences. On the contrary, The de novo
methods do not use external knowledge. They extract compression rate by exploit-
ing the redundancy provided by the sequencing coverage. The compression rate of
the reference-based methods can be really better, but they can be only used if sim-



12 Authors Suppressed Due to Excessive Length

ilar sequences are already stored in databases. This is generally not the case when
sequencing new species.

This chapter only focuses on de novo compression methods that, from an algo-
rithmic point of view, are more challenging. They have first to fastly extract re-
dundancy form the dataset, and have also to deal with sequencing errors that actu-
ally disrupt this redundancy. De novo DNA sequence compression methods fall in
three categories : (i) approaches using a context-model to predict bases according
to their context, (ii) methods that re-order the reads to boost generic compression
approaches and (iii) approaches inspired from the reference genome methods.

Historically, the first DNA compressors were only improvements of generic text
compression algorithms and belonged to the context-model and re-ordering cate-
gories. It is only recently that new methods appeared that fully exploit algorithms
and data structures tailored for the analysis of NGS data, such as the de Bruijn
Graph, mapping schemes or the Burrows Wheeler Transform.

3.3.1 Statistical-based methods

These methods start with a modeling phase in order to learn the full genome struc-
ture, i.e. its word composition. With high order context models and a sufficient se-
quencing coverage, the models are able to accurately predict the next base to encode.

G-SQZ Tembe et al. [26] is the first tool to focus on the de novo compression
of NGS data. It achieves a low compression rate by simply using an order 0 model
followed by an Huffman coder. QUIP [13] and FQZCOMP [2] obtained, by far, a
better compression rate by using a higher order context model of length up to 16 and
an arithmetic coder. FASTQZ [2] grants more time to the modeling phase by using a
mix of multiple context models. DSRC2 [7] can be seen as an improvement of gzip
adapted for NGS data. Its best compression rate is obtained by using a context model
of order 9 followed by an Huffman coder. But the proposed fully multi-threaded
implementation makes it the fastest of all NGS compression tools.

The efficiency of these methods is strongly correlated with the complexity and
the size of the target genome. On large genomes, such as the Human one, an order
16 context model will not be sparsely populated and will see more than one of
the four possible nucleotides after a lot of context of length 16, resulting in a poor
compression rate. A solution will be to use higher order models but a context model
is limited by its memory usage of 4N for the simplest models. These methods also
cannot deal with sequencing errors. These errors provoke a lot of unique contexts
which will just degrade the compression rate.

3.3.2 Read reordering methods

The purpose of reordering reads is to group together similar reads in order to boost
the compression rate obtained by generic compression tool, such as GZIP. In fact,
dictionary and BWT based compressors only work on small blocks of data before



De Novo NGS Data Compression 13

clearing their indexing structure. This is a solution to prevent a too high memory
usage. In the case of DNA sequence compression, such tools miss the whole re-
dundancy of the source because similar reads can be anywhere in the dataset. If the
reordering is accurate, some dedicated transformation algorithms can also be used
to encode a read using one of its previous reads as reference.

RECOIL [30] constructs a similarity graph where the nodes store the sequences.
A weighted edge between two nodes represents their number of shared kmers. Sub-
sets of similar reads are retrieved by finding maximal paths in the graph. Finally,
the largest matching region between similar reads are determined by extending their
shared kmers. FQC [21] also identifies similar reads by their shared kmers. But this
time, the reads are clustered together. And for each cluster, a consensus sequence is
built by aligning all of its reads. The compression algorithm ]uses the consensus as
reference to encode the reads. Both methods are time or memory consuming. They
have been applied only on small datasets and are hardly scalable to today’s volumes
of data.

BEETL [6] proposes an optimization of the BWT which is able to scale on bil-
lions of sequences. Classical BWT algorithms cannot handle as many sequences
because of their memory limitations. Here, much of the memory is saved during the
process by making use of sequential reading and writing files on disk. Cox et al. [6]
also showed that the compression ratio is influenced by the sequence order. In fact,
each sequence in the collection is terminated by a distinct end-marker. Depending
on the assignment of these end-markers to each sequence, hence depending on the
order of the sequences in the collection, the BWT can result in longer runs of the
same character. The most compressible BWT is obtained by reversing the sequences
and sorting them by lexicographic order. To avoid a time and memory consuming
pre-processing step of sorting all sequences, the algorithm makes use of a bit-array
(called SAP) indicating whether a given suffix is the same as the previous one (ex-
cept from the end-marker). This enables to sort only small subsets of sequences after
the construction of an initial BWT, in order to locally update the BWT.

SCALCE [10] and ORCOM [9] first partition all reads in several bins stored
on disk. Each bin is identified by a core string with the idea that reads sharing
a large overlap must have the same core string. In SCALCE the core substrings
are derived from a combinatorial pattern matching technique that aims to identify
”building blocks” of a string, namely the Locally Consistent Parsing (LCP) method
[22]. In ORCOM the chosen core string is called a minimizer, which is the lexi-
cographically smallest substring of size m of a read. When the disk bins are built,
they are sorted by lexicographically order, with respect to the core string position,
to move the overlapping reads close to each other. SCALCE uses generic compres-
sion tools, such as gzip, to compress each bin independently whereas ORCOM uses
a dedicated compression technique: each read is encoded using one of its previous
reads as reference, the best candidate being the one which has the less differences
with the current read and is determined by alignment anchored on the minimizer.
The differences are encoded using an order-4 PPM model followed by an arithmetic
coder.



14 Authors Suppressed Due to Excessive Length

Reordering methods are well suited to exploit the redundancy of high throughput
sequencing data. Some of them can avoid memory problems on large datasets by
reordering the reads on disk. For a long time, the main drawback of these methods
has been their compression and decompression speed but this problem has been
solved recently by ORCOM which is faster and obtains a better compression rate
than the other methods. However, it is important to notice that reordering methods
is a form of lossy compression. In fact, most of these tools do not restore the original
read order, and this can be an issue for datasets containing paired reads (which are
the most common datasets). All NGS tools relying on paired reads information (read
mapping, de novo assembly, structural variation analysis...) can therefore not work
on data compressed/decompressed with these tools.

3.3.3 Assembly-based methods

Contrary to the two above categories, methods falling in this third category do not
try to find similarities between the reads themselves but between each read and a
go-between, called a reference. These approaches are largely inspired from the ones
relying on a reference genome.

Reference-based methods require external data to compress and decompress the
read file, that is a known reference sequence assumed to be very similar from the
one from which reads have been produced. The idea is to map each read to the refer-
ence genome and the compressed file only stores for each read its mapping position
and the potential differences in the alignment instead of the whole read sequence.
However, as already mentioned, relying on external knowledge is extremely con-
straining and this knowledge is not available for numerous datasets (e.g. de novo
sequencing or metagenomics). To circumvent these limitations, the scheme of some
de novo methods is to infer the reference from the read data by itself and then apply
the reference-based approaches.

Conceptually, there are no differences between assembly-based methods and
reference-based methods. In the first case, however, an assembly step is needed
to build a reference sequence. Once this reference is obtained, identical mapping
strategies can then be used. An important thing to note is that the reference se-
quence may not necessarily reflects a biological reality. It is hidden from the user
point of view and is only exploited for its compression features.

Two methods follow this strategy : QUIP [13] and LEON [1]. The main difference
lies in the data structure holding the reference: in QUIP the reference is a set of
sequences, whereas in LEON it is a graph of sequences, namely a de Bruijn Graph.

In QUIP, the reference set of sequences is obtained by de novo assembly of the
reads. Since de novo assembly is time and memory consuming, only a subset of
the reads (the first 2.5 million by default) are used for this first step. The reads are
then mapped on the assembled sequences, called contigs, using a seed-and-extend
approach. A perfect match of size 12 between the contigs and the current read is
first searched. The remaining of the alignment is then performed, the chosen contig



De Novo NGS Data Compression 15

is the one which minimizes the hamming distance. The read is then represented as
a position in the chosen contig and the eventual differences.

In LEON, a de Bruijn Graph is built from the whole set of reads. The de Bruijn
Graph is a common data structure used for de novo assembly. It stores all words
of size k (kmers) contained in a given set of sequences as nodes and put a directed
edge between two nodes when there is a k− 1 overlap between the kmers. When
kmers generated by sequencing errors are filtered out and the value of k is well
chosen (usually around 30), the de Bruijn Graph is a representation of the reference
genome, where each chromosome sequence can be obtained by following a path
in the graph. In LEON each read is encoded by a path in such a graph, that is an
anchoring kmer and a list of bifurcations to follow when the path encounters nodes
with out-degree larger than 1.

The main difference between these two methods is that QUIP executes a com-
plete assembly of the reads whereas LEON stops at an intermediate representation
of the assembly which is the de Bruijn Graph. In order to decompress the data, the
reference must be stored in the compressed file. A priori, storing contigs may seem
lighter than storing the whole graph. In fact, a naive representation storing each base
on 2 bits cost 60 bits per 30-mer which is not acceptable in a compression purpose.
The LEON’s strategy is possible thanks to a light representation of the de Bruijn
Graph [19, 5] which stores each kmer on only a ten of bits. The mapping results
should be better for LEON than QUIP, since a part of the reads cannot be aligned on
contigs: those being at contigs extremities and those which are not assembled.

3.4 Summary

The table 1 shows a summary of the compressors presented in this section. Tools are
classified in three main categories : statistical-based methods, reordering methods
and assembly-based methods. A brief overview of the compression techniques used
is also given. In the Random access column, one can identify the tools that propose
the additional feature of quickly retrieving a given read without decompressing the
whole file, such as toolG-SQZ and DSRC. BEETL is more than a compressor be-
cause its BWT representation can be used for popular indexation structures such as
the FM-index. Consequently, BEETL can quickly deliver a list of sequences contain-
ing a given kmer.

Some compressors such as G-SQZ and RECOIL are already out-dated. They are
not multi-threaded and do not scale on the current datasets. FQZCOMP and FASTQZ
can use a maximum of three cores to compress the three streams in parallel. This
solution was not qualified as multi-threaded in Table 1, since it is limited and it
provides unbalance core activity, the header stream being actually much faster to
compress than the two others streams. To take full advantage of multi-core architec-
tures, a solution is to process the data by blocks and compress them independently,
as this is the case in DSRC or LEON. Depending on the method, implementing such



16 Authors Suppressed Due to Excessive Length

Software Year Methods Quality Random
access

Multi-
threaded

Remarks

Statistical-based methods
G-SQZ [25] 2010 Huf yes no
DSRC [7] [20] 2014 Markov, Huf lossless / lossy yes yes
FASTQZ [2] 2013 CM, AC lossless / lossy no no
FQZCOMP [2] 2013 Markov, CM, AC lossless / lossy no no

Reordering methods
RECOIL [30] 2011 Generic no no Fasta only
FQC [21] 2014 PPM, AC lossless - - No impl
BEETL [6] 2012 BWT, PPM yes no Fasta only
SCALCE [10] 2012 Generic lossless / lossy no yes
ORCOM [9] 2014 Markov, PPM, AC no yes Seq only

Assembly-based methods
QUIP [13] 2012 Markov, AC lossless no no
LEON [1] 2014 Markov, AC lossless / lossy no yes

Quality only methods
RQS [31] 2014 k-mer dictionary lossy no no
BEETL [12] 2013 BWT, LCP lossy no no
LIBCSAM [4] 2014 block smoothing lossy no no

Table 1: Summary of compression methods and software, classified according to their method for
the DNA stream. Random access is the ability for the compressor to retrieve a sequence without the
need to decompress the whole file. Abbreviations: Huf - Huffman coding, Markov - Context model,
CM - Context mixing, AC - Arithmetic coding, Generic - Generic compression tools such as GZIP
and BZIP2, PPM - Prediction by partial matching, Seq - Sequence, LCP - Longest common prefix
array, Fasta - Fastq format without the quality stream, No impl - No implementation available.

a solution may not be straightforward if one wants to preserve good compression
factors.

Compression tools are not generally focusing on one specific king of NGS data.
One exception is PATHENC which seems to be specialized for RNA-seq data , al-
though it can still be used on any data [13]. A comparative study of compression per-
formance on different kind of NGS data (whole genome, exome, RNA-seq, metage-
nomic, ChIP-Seq) is conducted in the LEON and QUIP papers [13, 1]. It shows
without surprise that best compression is obtained on data with highest redundancy.

Some tools cannot compress the fastq format. RECOIL and BEETL only accept
the fasta format which is a fastq format without quality information. ORCOM only
processes DNA sequences and discards header and quality streams. FQC cannot be
tested because there is no implementation of the method available.

4 Evaluation of NGS Compressors

This section aims to illustrate the compression methods presented in the previous
section by evaluating current NGS compressors. The capacity to compress or de-
compress files is only tested, even if some tools have advanced functionalities such



De Novo NGS Data Compression 17

as the possibility to randomly access sequences from the compress data structure.
For each tool, the evaluation process followed this protocol:

1. clear the I/O cache system
2. compress the original file A
3. clear the I/O cache system
4. decompress the compressed file(s) into file B
5. generate metrics

NGS compressors deal with large files, making them I/O data intensive. The
way the operating systems handle the read and write file operations may have a
significant impact on the compression and decompression time measurements. More
precisely, if many compressors are sequentially tested on the same NGS file, the first
one will have to read data from the disk, whereas the next ones will benefit of the I/O
cache system. Thus, to fairly compare each software, and to have similar evaluation
environment, we systematically clear the I/O cache before running compression and
decompression. All tools were run on a machine equipped with a 2.50 GHz Intel
E5-2640 CPU with 12 cores, 192 GB of memory. All tools were set to use up to 8
threads.

4.1 Metrics

Remember that the fastq format is made of:

• (d) a genomic data stream;
• (q) a quality data stream as phred scores associated to the genomic data;
• (h) an header data stream as a textual string associated to each read.

We now define several metrics allowing compressor software to be fairly evalu-
ated.

Compression factor (CF) This is the principal metric. We define a compression
factor (CF) as:

CF(s) :=
size o f stream s in the original f ile

size o f stream s in the compressed f ile

More generally, we define a global compression factor for the whole file:

CF :=
size o f the original f ile

size o f all streams in the compressed f ile(s)

Stream correctness (SC) Depending of the nature of the stream, the correctness is
computed differently. For the DNA data stream, we checks that the DNA sequences



18 Authors Suppressed Due to Excessive Length

after the compression/decompression steps are identical. The idea is to perform a
global checksum on the DNA sequences only. The DNA data stream correctness is
calculated as follows:

SC(d) :=
{

ok i f Checksum(A,d) == Checksum(B,d)
ko i f Checksum(A,d) ! = Checksum(B,d)

Note that A is the original file and B is the decompressed file.

For the header and the quality streams, the correctness depends on the lossy or
lossless options. It also depends on the way software handle header compression.
We therefore define the stream correctness metric as the following percentage (0
means correct stream):

SC(s) :=
∑i nb o f mismatches o f (rai,rbi) in stream s

size o f stream s
∗100

where 
s := one o f the streams (q), or (h)
rai := ith read o f A
rbi := ith read o f B

Execution time This is the execution time for compression or decompression ex-
pressed in second.

Memory peak This is the maximum memory used (in MBytes) to compress or de-
compress a file.

4.2 Benchmarks

High coverage benchmarks

NGS compressors are tested with the three following high coverage datasets ex-
tracted from the SRA database:

• whole genome sequencing of the bacteria E. Coli (genome size ∼ 5 Mbp):
1.3 GB, 116X coverage (SRR959239)

• whole genome sequencing of the worm C. Elegans (genome size ∼ 100
Mbp): 17.4 GB, 70X coverage (SRR065390)

• whole genome sequencing of a human individual (genome size ∼ 3 Gbp):
732 GB, 102X coverage (SRR345593/4)

They are real datasets from high throughput sequencing machines (here Illumina,
with around 100 bp reads) and are representative of NGS files that are daily gener-



De Novo NGS Data Compression 19

Prog Factor Correctness Compress. Decompress.
main hdr seq qlt sum hdr seq qlt time (s) mem. (MB) time (s) mem. (MB)

WGS E. Coli - 1392 MB - 116x
gzip 3.9 — — — ok 0 0 0 188 1 25 1
bzip2 4.9 — — — ok 0 0 0 164 9 83 6
dsrc 6.0 — — — ok 0 0 0 21 1995 35 2046
dsrc* 7.6 — — — ok 0 0 81 12 1942 30 1996
fqzcomp 9.9 35.2 12.0 5.7 ok 0 0 0 64 4424 66 4414
fqzcomp* 17.9 35.2 12.0 19.6 ok 0 0 95 64 4165 69 4159
fastqz 10.3 39.9 13.8 5.6 ko 0 75 0 290 1347 320 1347
fastqz* 13.4 39.9 13.8 8.6 ko 0 75 40 248 1347 286 1347
leon 8.4 45.1 17.5 3.9 ok 0 0 0 106 404 45 277
leon* 30.9 45.1 17.5 59.3 ok 0 0 96 49 390 44 239
quip 8.4 29.8 8.5 5.3 ok 0 0 0 206 990 205 807
scalce 8.9 21.0 12.9 5.0 ok 35 75 57 85 1993 47 1110
orcom — — 33.51 — ok 100 75 100 10 2212 15 181
fastqz REF 10.9 40.8 23.5 5.7 ko 0 75 0 306 1316 301 1318

WGS C. Elegans - 67 GB - 70x
gzip 3.8 — — — ok 0 0 0 2218 1 301 1
bzip2 4.6 — — — ok 0 0 0 1808 9 1216 6
dsrc 5.8 — — — ok 0 0 0 200 5355 342 5626
dsrc* 7.9 — — — ok 0 0 86 109 5156 271 4993
fqzcomp 8.1 54.2 7.6 5.2 ok 0 0 0 931 4424 927 4414
fqzcomp* 12.8 54.2 7.6 15.0 ok 0 0 86 921 4169 996 4155
fastqz 7.9 61.9 7.3 5.1 ok 0 0 0 4044 1533 3934 1533
fastqz* 10.3 61.9 7.3 8.7 ok 0 0 76 3703 1533 3312 1533
leon 7.3 48.6 12.0 3.7 ok 0 0 0 1168 1885 446 434
leon* 21.3 48.6 12.0 32.9 ok 0 0 86 704 1886 442 417
quip 6.5 54.3 4.8 5.2 ok 0 0 0 823 782 764 773
scalce 7.7 16.5 10.0 4.7 ok 38 73 58 1316 5285 526 1112
orcom — — 24.2 — ok 94 73 100 283 9488 324 1826
fastqz REF 10.4 63.4 19.2 5.2 ok 0 0 0 3831 1500 3441 1500

WGS Human - 732 GB - 102x
gzip 3.26 — — — ok 104457 1 9124 1
bzip2 4.01 — — — ok 69757 7 34712 4
dsrc 4.64 — — — ok 1952 408 2406 522
dsrc* 6.83 — — — ok 1787 415 2109 506
fqzcomp 5.35 23.2 4.53 4.2 ok 18695 79 29532 67
fqzcomp* 8.34 23.2 4.53 14.9 ok 20348 80 24867 67
leon 5.65 27.54 9.17 3.03 ok 61563 9607 23814
leon* 15.63 27.54 9.17 27.1 ok 38860 10598 21687 5870
quip 5.25 16.95 4.47 4.2 ok 52855 798 46595 791
orcom — — 19.2 — ok 29364 27505 10889 62009

Table 2: High coverage benchmarks for E. Coli, durability and Human fastq files. Programs with a
* are run in lossy compression mode. The overall compression factor is given (main) followed by
the compression factor of each stream. The correctness (expressed as a % of differences) is also

given for each stream.

ated. Table 2 summarizes the evaluation. Columns have the following meaning:



20 Authors Suppressed Due to Excessive Length

• Prog : name of the NGS compressor. Tools allowing lossy compression on
the quality stream are labeled with a * suffix.

• Factor : total compression factor, followed by the compression factor for
each stream (header, DNA sequence and quality). Note that some tools like
GZIP do not have specific stream factors; in such a case, we display only the
total factor. The tool ORCOM is specific because it compresses only the DNA
sequence stream.

• Correctness : results on header, genomic data and quality streams are re-
ported (0 means correct stream)

• Compression : system metrics for the compression : execution time (in sec-
onds) and the memory peak (in MBytes)

• Decompression : same metrics as above.

The first comment on these results is that, in general, the specific NGS com-
pressors perform better than the generic ones (GZIP and BZIP2), in terms of both
compression rate and execution time. The main reason is that these tools exploit the
features of NGS data, and especially the redundancy provided by the sequencing
coverage. This redundancy is spread over all the file and cannot be locally captured
by generic text compressors.

We can also observe that the header streams are always well compressed. As
already mentioned, no specific methods have been developed for this data stream,
which is mainly composed of repetitive motifs. The generic methods provide near
optimal compression and this stream does not constitute the critical part of the NGS
data compression challenge.

Concerning the DNA stream, the compression factor depends on the read dataset.
It is expected to depend on the read coverage, but the table highlights that it depends
also on the size and complexity of the sequenced genome from which the reads
are generated: compression factors are worst for the human dataset, even when
compared to the C. elegans dataset which has a lower coverage (thus less redun-
dancy). This can be explained by the higher complexity of this genome, ie. mainly
its amount of repeated sequences. Most compressors try to learn a model represen-
tative of the genome, that is its composition in words of size k, that would enable to
predict a given word knowing its preceding one: the more the genome contains large
repeated sequences (larger than k), the more difficult it is to predict its sequence.

Interestingly, FASTQZ used with a reference genome does not always have the
best compression ratio. On the C. Elegans dataset, ORCOM outperforms FASTQZ on
the DNA sequence stream. However, strictly speaking, the comparison is not per-
fectly fair since ORCOM reorders the reads. The decompressed set of reads remains
the same, but are stored in a different order. For technologies that provide pair-end
or mate-pair reads in two different files, this strategy cannot be used.

When the lossy option is activated, the compression ratio can be significantly
improved. Techniques that do not consider independently compression for the DNA
sequence and the quality streams, but try to exhibit correlations between the two
streams, are particularly powerful as demonstrated by the LEON compressor.



De Novo NGS Data Compression 21

Metagenomic benchmark

This test aims to demonstrate that NGS compressors are not well suited for any
kind of NGS datasets. In particular, they can perform poorly on NGS metagenomic
data. The main reason is that these datasets generally contain low redundancy. Table
3 confirms that the compression rate of DNA sequences is low and is similar to
generic compressors. The lossy mode, however, allows fastq files to be significantly
compressed.

Prog Factor Check Compress. Decompress.
main hdr seq qlt sum hdr seq qlt time (s) mem. (MB) time (s) mem. (MB)

gzip 3.4 — — — ok 0 0 0 2206 1 153 1
bzip2 4.4 — — — ok 0 0 0 1578 8 701 4
dsrc 5.0 — — — ok 0 0 0 33 345 25 307
dsrc* 6.8 — — — ok 0 0 78 29 330 39 285
fqzcomp 5.8 32.6 4.5 4.2 ok 0 0 0 360 78 582 67
fqzcomp* 8.9 32.6 4.5 14.8 ok 0 0 90 343 80 456 67
fastqz 6.1 30.0 4.9 4.3 ko 3318 1527
fastqz* 7.3 30.0 4.9 6.6 ko 2776 1527
leon 4.8 36.8 4.3 3.1 ok 0 0 0 955 1870 438 1544
leon* 9.0 36.8 4.3 19.8 ok 0 0 91 606 1876 460 1511
quip 5.7 25.6 4.7 4.1 ok 0 0 0 966 774 908 773
orcom — — 6.9 — ok 94 74 89 230 9442 178 1698

Table 3: Metagenomic benchmark. 15 GB (SRR1519083)

SNP calling evaluation

This last part evaluates the loss in quality – or the gain in quality – of downstream
processing after a lossy compression. The chosen bioinformatics task is the SNP
calling. The evaluation protocol is the following:

• compress file A in lossy mode
• decompress file A into file B
• process file B for SNP calling
• compute Recall/Precision metrics

In this experiment, SNPs are called with BWA aligner followed by samtools
mpileup [14, 15]. Precision/Recall are computed from a validated set of SNPs from
Human chromosome 20, coming from the ”1000 genomes project”, on individual
HG00096, read set SRR062634.

Five lossy compression tools, representative of all categories of lossy compres-
sion methods are compared. A lossless method was also included in the test, as well
as the results obtained when discarding all quality scores, in this case all quality



22 Authors Suppressed Due to Excessive Length

HG00096 chrom 20
Prog Precision Recall CF
no quality 57.73 68.66 —
lossless 85.02 67.02 *2.95
FASTQZ 85.46 66.63 5.4
LIBCSAM 84.85 67.09 8.4
FQZCOMP 85.09 66.61 8.9
LEON 85.63 67.17 11.4
RQS 85.59 67.15 12.4

Table 4: Recall and precision of SNP calling after quality values were modified by several lossy
compressors. CF is the compression factor. No quality means that qualities were discarded by
compression, all replaced by ’H’. For the lossless line, the best compression factor obtained by
lossless compression tools is given (obtained here with FQZCOMP).

values were replaced by a high value, ’H’, for the SNP calling procedure. Results
are shown in Table 4.

First, it can be seen that qualities are indeed useful for SNP calling, the no qual-
ity test has a significant drop in precision, from 85.02 in lossless to 57.7 %. Then,
the tools FASTQZ, LIBCSAM and FQZCOMP achieves better compression factor than
lossless, with only a slight degradation in precision/recall. Lastly, tools using in-
formation coming from the reads, such as LEON and RQS, achieve both a high
compression factor and an improvement in precision and recall compared to the
original dataset. This can be explained by the fact that, during compression, some
qualities are in fact corrected using read information.

5 Conclusion

Due to the recent emergence of NGS data, de novo NGS compression is still an open
and active research field. A large number of methods have already been proposed
and have shown that NGS data redundancy can bring a high compression rate. In
addition, if lossy compression of the quality information is permitted, much better
compression can be reached with, in some cases, an improvement in the the post-
processing quality.

Generally, performances of the NGS compressors are first evaluated by their
compression rate. In lossless mode, compression rate ranges from 5 to 10. The dif-
ferences come both from the compression methods and the data themselves. For
NGS files with a high sequencing coverage the maximum compression rate on DNA
fragments is achieved, but the global compression rate is limited by the quality in-
formation that doesn’t present the same redundancy property. On the other hand, if
lossy mode is allowed, the compression rate can be drastically improved as demon-
strated, for example, by the LEON compressor.



De Novo NGS Data Compression 23

Compression and decompression time are another parameter to take into consid-
eration. NGS compressors behave very differently on that point. DSRC, for example,
is very fast to compress NGS files, but has a moderate compression rate compared to
other concurrent software. Its great advantage is that it is 10 times faster than generic
compressors with a better compression rate. As usual, there is a trade-off between
speed and quality: longer the compression time, better the compression rate.

The nature of the NGS data may also dictate the choice of the compressors.
Metagenomic data, for instance, are not very redundant. As shown in the previous
section, compressors perform poorly on these data. In that case, a fast compressor is
probably a much better choice since methods optimized to extract redundancy will
systematically fail.

However, even if specific compression methods devoted to NGS data have
demonstrated their superiority over generic tools (such as GZIP for example), no tool
has still emerged as a recognized and routinely used software. The main reasons are:

• Durability: tools are often research lab prototypes with a first objective of
demonstrating a new compression strategy. The maintainability of these tools
over the time is not guaranteed, nor their ascendant compatibility. In that case,
decompression of a NGS file can be impossible with higher versions of the
compression/decompression software.

• Robustness: our tests have shown that, in some cases, NGS compression
tools were not able to process large files, or that files, after decompression,
were differing from original ones. This is probably due to the youth of these
tools that are not yet fully debbuged.

• Flexibility: the literature shows there exist no universal NGS compression
tool. Each tool has its own special features that do not cover all needs. For ex-
ample, some compressors only compress DNA sequences, others takes only
as input reads of fixed length, and other ones do not propose the lossy/lossless
quality option, etc.

Finally, the huge size of the NGS files leads to important compression/decompression
time. The compression of a 700 GB file (see previous section) takes several hours.
Decompression is often a little bit faster but remains a time-consuming task. A way
to avoid these compression/decompression steps is to have bioinformatics tools that
directly exploit the compressed format. This is the case for the GZIP format: many
tools are able to internally perform this decompression step thanks to the availability
of a gzip library that can be easily included in the source codes. However, even if
this task becomes transparent for the users, it is still performed. The next step would
be to directly exploit the data structure of the compressed files, i.e. without explicitly
reconstructing the original list of DNA fragments. As a mater of fact, the majority
of the treatments performs on NGS files are detection of small variants (such as
SNP calling), mapping on a reference genome, assembly, etc. All these treatments
would greatly benefit from the data processing done during the compression step,
especially the management of the redundancy. The next generation of compressors
should act on this direction and propose formats to favor such usage.



24 Authors Suppressed Due to Excessive Length

References

[1] G. Benoit, C. Lemaitre, D. Lavenier, and G. Rizk. Compression of high
throughput sequencing data with probabilistic de bruijn graph. arXiv.org, Dec.
2014. URL http://arxiv.org/abs/1412.5932.

[2] J. K. Bonfield and M. V. Mahoney. Compression of fastq and sam format
sequencing data. PLoS One, 8(3):e59190, 2013.

[3] M. Burrows and D. Wheeler. A block sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation, 1994.

[4] R. Cánovas, A. Moffat, and A. Turpin. Lossy compression of quality scores in
genomic data. Bioinformatics, 30(15):2130–2136, 2014.

[5] R. Chikhi and G. Rizk. Space-efficient and exact de bruijn graph representation
based on a bloom filter. Algorithms Mol Biol, 8(1):22, 2013.

[6] A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone. Large-scale compression of
genomic sequence databases with the burrows-wheeler transform. Bioinfor-
matics, 28(11):1415–1419, Jun 2012.

[7] S. Deorowicz and S. Grabowski. Compression of dna sequence reads in fastq
format. Bioinformatics, 27(6):860–862, Mar 2011.

[8] P. Deutsch and J. Gailly. Zlib compressed data format specification version
3.3. RFC 1950, 1996.

[9] S. Grabowski, S. Deorowicz, and . Roguski. Disk-based compression of data
from genome sequencing. Bioinformatics, Dec 2014.

[10] F. Hach, I. Numanagic, C. Alkan, and S. C. Sahinalp. Scalce: boosting se-
quence compression algorithms using locally consistent encoding. Bioinfor-
matics, 28(23):3051–3057, Dec 2012.

[11] D. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers, 1952.

[12] L. Janin, G. Rosone, and A. J. Cox. Adaptive reference-free compression of
sequence quality scores. Bioinformatics, page btt257, 2013.

[13] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. Compression of next-
generation sequencing reads aided by highly efficient de novo assembly. Nu-
cleic Acids Res, 40(22):e171, Dec 2012.

[14] H. Li and R. Durbin. Fast and accurate short read alignment with burrows–
wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[15] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup. The sequence align-
ment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009. doi:
10.1093/bioinformatics/btp352.

[16] M. Mahoney. http://mattmahoney.net/dc/.
[17] M. Mahoney. Adaptive weighing of context models for lossless data compres-

sion. Florida Tech. Technical Report, 2005.
[18] A. Moffat. Implementing the ppm data compression scheme. IEEE Transac-

tions on communications, 1990.
[19] G. Rizk, D. Lavenier, and R. Chikhi. Dsk: k-mer counting with very low

memory usage. Bioinformatics, 29(5):652–653, Feb 2013.



De Novo NGS Data Compression 25

[20] L. Roguski and S. Deorowicz. Dsrc 2–industry-oriented compression of fastq
files. Bioinformatics, 30(15):2213–2215, Aug 2014.

[21] S. Saha and S. Rajasekaran. Efficient algorithms for the compression of
fastq files. In 2014 IEEE International Conference on Bioinformatics and
Biomedicine, 2014.

[22] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic
matching of patterns using a labeling paradigm. In Proceedings of the
37th Annual Symposium on Foundations of Computer Science, FOCS ’96,
pages 320–, Washington, DC, USA, 1996. IEEE Computer Society. URL
http://dl.acm.org/citation.cfm?id=874062.875524.

[23] J. Seward. bzip2 : http://www.bzip.org/1.0.3/html/reading.html. 1996.
[24] C. Shannon and W. Weaver. The mathematical theory of communication. Ur-

bana: University of Illinois Press, 1949.
[25] W. Tembe, J. Lowey, and E. Suh. G-sqz: compact encoding of genomic se-

quence and quality data. Bioinformatics, 26(17):2192–2194, Sep 2010.
[26] W. Tembe, J. Lowey, and E. Suh. G-sqz: compact encoding of genomic se-

quence and quality data. Bioinformatics, 2010.
[27] R. Wan, V. N. Anh, and K. Asai. Transformations for the compression of fastq

quality scores of next-generation sequencing data. Bioinformatics, 28(5):628–
635, 2012.

[28] T. Welch. A technique for high-performance data compression. Computer,
1984.

[29] I. Witten, R. Neal, and J. Cleary. Arithmetic coding for data compression.
Communications of the ACM, 1987.

[30] V. Yanovsky. Recoil - an algorithm for compression of extremely large datasets
of dna data. Algorithms Mol Biol, 6:23, 2011.

[31] Y. W. Yu, D. Yorukoglu, and B. Berger. Traversing the k-mer landscape of ngs
read datasets for quality score sparsification. In Research in Computational
Molecular Biology, pages 385–399. Springer, 2014.

[32] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans Inf Theory, 1977.


