
HAL Id: hal-01633711
https://hal.science/hal-01633711

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-response shaping using Output to Input
Saturation Transformation
E. Chambon, L. Burlion, P. Apkarian

To cite this version:
E. Chambon, L. Burlion, P. Apkarian. Time-response shaping using Output to In-
put Saturation Transformation. International Journal of Control, 2017, 90, pp.1 - 32.
�10.1080/00207179.2017.1286043�. �hal-01633711�

https://hal.science/hal-01633711
https://hal.archives-ouvertes.fr


October 9, 2015 International Journal of Control ijc˙OIST

Submitted to the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1–32

Time-response shaping using Output to Input Saturation Transformation

E. Chambona∗, L. Burliona and P. Apkariana

aOnera – The French Aerospace Lab, 2 Avenue Édouard Belin, FR-31055, Toulouse, France

(Received 00 Month 20XX; accepted 00 Month 20XX)

For linear systems, the control law design is often performed so that the resulting closed-loop meets
specific frequency-domain requirements. However, in many cases, it may be observed that the obtained
controller does not enforce time-domain requirements amongst which the objective of keeping an output
variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an
output variable into time-varying saturations on the synthesized linear control law. This transformation
uses some well-chosen time-varying coefficients so that the resulting time-varying saturations do not
overlap in the presence of disturbances. Using an anti-windup approach, it is demonstrated that the origin
of the resulting closed-loop is globally asymptotically stable and that the regulated variable satisfies the
time-domain constraints in the presence of an unknown finite-energy bounded disturbance. An application
to a linear ball and beam model is presented.

Keywords: constrained control; linear systems; unknown disturbance; interval constraint; time-domain
constraint; anti-windup

1. Introduction

To stabilise a given system, many techniques exist to obtain a control law satisfying to specified
constraints. As far as MIMO systems are concerned, H∞ loop-shaping can for example be used
to enforce frequency-domain requirements. However it is possible that, using such control law,
time-domain requirements on a so-called regulated variable α = Cαy ∈ R are not fulfilled. This is
illustrated on Fig. 1 where α time-response violates expected bounds [α(t), α(t)]. In practice, a good
knowledge of the studied system is often sufficient to shape its time-response. However, designing
controllers satisfying to such prescribed time-domain requirements remains tedious and relies on
numerous trial-and-errors involving simulations. Consequently, for more complex systems, and from
the theoretical point of view, dedicated methods are often required to enforce both stability and
time-domain constraints.

Amongst existing strategies to enforce time-domain requirements like response-time or overshoot
limitation, it is possible to mention the work presented in Gevers (2002) which introduced the notion
of Iterative Feedback Tuning (IFT). The idea is to shape the closed-loop in response to specific
input signals so as to satisfy time-domain constraints. In the PID-tuning case, a comparison with
practitioners methods was performed in Mossberg, Gevers, and Lequin (2002) which gives a hint
on how to achieve time-domain requirements using this method. Time-domain specifications are
also treated through optimal control strategies as extensively presented in Goodwin, Seron, and de
Doná (2005). These approaches include model predictive control (MPC) in which the optimisation
problem can take constraints into account, see for example Chen and Allgöwer (1996) or Chen and
Allgöwer (1999). Computationally effective methods close to MPC are reported in Ghaemi, Sun,
and Kolmanovsky (2012). The notion of reference-governor to adjust the reference trajectory so
that the constraints on the system are satisfied is also noticeable. It was presented in Gilbert and
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Kolmanovsky (2002) with an application to aerospace systems in Polóni, Kalabić, McDonough, and
Kolmanovsky (2014). The combination of frequency-domain and time-domain constraints has been
explored in Apkarian, Ravanbod-Hosseini, and Noll (2011) and references therein. This method
makes use of non-smooth bundle optimization methods and is referred to as “constrained structured
H∞-synthesis”. It combines simulation optimization with H∞ synthesis to enforce both frequency-
and time-domain requirements.
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Figure 1. Illustration of system (G) in closed-loop with controller K. The requirement on the regulated variable α(t) is violated.

These strategies often include the control law design, especially when an optimising scheme is
used. Alternative schemes including anti-windup systems were proposed for example in Turner and
Postlethwaite (2002) and Rojas and Goodwin (2002). Compared to the aforementioned results, the
anti-windup design is interesting because the nominal control law remains unchanged when acting
far from the constraints. Also, an extensive literature on the subject is available, see Tarbouriech
and Turner (2009) or Galeani, Tarbouriech, Turner, and Zaccarian (2009) for instance. However,
there is not necessarily a guarantee on the fact that the time-domain constraints will actually
be satisfied. In this article, the approach presented in Burlion (2012) and applied for example
in Burlion and de Plinval (2013) is presented in-depth for state-feedback minimum-phase linear
systems subject to disturbances. The output– to input–saturation transformation (OIST) theory
proposes to reformulate prescribed bounds on the regulated variable α into state-dependent satura-
tions on the control input u. This approach is illustrated on Fig. 2 where an ad hoc saturating block
is inserted before the system control input. As indicated in this figure, additional information may
be required to express these saturations. Using this method along with some assumptions, it is pos-
sible to obtain guarantees on the fulfilment of the time-domain constraints when an unsatisfactory
control law has already been designed.
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Figure 2. Illustration of system (G) in closed-loop with the saturations obtained using OIST, and expected performance result.

This article is an extension of the work presented in Chambon, Burlion, and Apkarian (2015a). It
gives a comprehensive description of the method for minimum-phase linear systems with unknown
finite-energy bounded disturbances. It also provides a stability proof when inserting the obtained
saturations in the closed-loop. Other cases of application were presented in Chambon, Burlion, and
Apkarian (2015b).

The article is organised as follows: the ball and beam example is introduced in Sect. 2 as a
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case study to introduce the OIST problem formulation. Notations and definitions along with some
functions properties are also presented in this section as well as the assumptions satisfied by the
considered class of systems. Then, the output to input saturations transformation proposed to
solve this problem is presented in Sect. 3. Due to the conservatism introduced by the bounds on
the disturbances, special attention is paid in the selection of the design parameters so that the
resulting time-varying saturations do not overlap1. Stability of the system in closed-loop with the
obtained saturated control is established in Sect. 4. Finally, the whole approach is applied to the
linear ball and beam model in Sect. 5. Conclusions and perspectives are then presented in Sect. 6.

2. Problem formulation

2.1 Definitions and notations

Before introducing the problem in Sect. 2 and for the sake of consistency, some definitions and
notations are presented or recalled here.

2.1.1 Acronyms

The acronyms listed in Tab. 1 are used throughout the article.

Table 1. Acronyms.

Acronym Definition

CICS Converging Input Converging State
GAS Globally Asymptotically Stable (system)
GES Globally Exponentially Stable (system)
ISS Input-to-state Stable (system)
LQR Linear-Quadratic Regulator
LTI Linear Time-Invariant
MIMO Multiple Inputs Multiple Outputs (system)
OIST Output to Input Saturation Transformation

2.1.2 Notations

If not stated otherwise, the state-space representation of a LTI system (G) is denoted G =
(A,B,C,D) where A ∈ Rn×n, B =

[
Bd Bu Be

]
∈ Rn×l, C ∈ Rm×n and D =

[
Dd Du De

]
∈

Rm×l. The state vector is then denoted x ∈ Rn and the measurements vector is denoted y ∈ Rm
with m ≤ n. The input vector lying in Rl is divided between the control inputs denoted u and
the unknown inputs (disturbances) which are denoted d (state disturbance) and e (measurements
disturbance). The transfer function from an input u to an output y is denoted Tu→y(s) where s is
the Laplace variable.

Inequalities involving matrices of identical dimensions are understood component-wise: let
(A,B) ∈ Rn×m, then, A ≤ B⇔ ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m, Aij ≤ Bij .

For a given bounded vector x(t), if the bounds are known they are denoted (x(t),x(t)), i.e.
∀t, x(t) ≤ x(t) ≤ x(t).

The saturation and deadzone functions applied to a bounded variable x are respectively denoted

satxx (x) and Dzxx (x). They are related to each other by

satxx (x) = x−Dzxx (x) (1)

1For more details on how the notion is used in the following, the reader should refer to Def. 1.
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The standard Euclidean norm of a given signal x(t) defined for t ≥ 0 is denoted ‖x‖. The
L2-norm of the same signal is denoted ‖x‖2 and is given by

‖x‖2 =

√∫ ∞

0
|x(t)|2 dt (2)

2.1.3 Definitions

Some definitions are now introduced, starting with the notion of the “overlap” of two signals:

Definition 1: In the article, the term “overlap” is used to refer to two signals taking the same
value at a given instant and possibly changing order. Given two unidimensional signals s(t) and
s(t), a definition of overlapping would thus be: ∃t1 > 0, δ > 0 such that ∀t < t1, s(t) ≤ s(t) and
∀t ∈ [t1, t1 + δ[ , s(t) > s(t).

The Lambert function will be used to define constants. It is defined as follows:

Definition 2: Let ∀x ∈ R, F (x) = xex. The inverse function of F is the Lambert function denoted
W0(y) which fulfils ∀y, F (W0(y)) = W0(y)eW0(y) = y.

This definition is used to define constants which in turn will help define differentiable approxi-
mates of some non-differentiable functions:

Definition 3: Let define the constants ξ := 1
2W0

(
1
e

)
+ 1

2 and Ξ := ξ − tanh(ξ)ξ > 0. Using these
notations, let also define the following functions, ∀(x, y) ∈ R2:

fabs (x) := tanh(x)x+ Ξ

fmax (x, y) := 1
2 [x+ y + fabs (x− y)]

g(x, y) := fmax (fabs (x) , fabs (y))

(3)

which definition is extended to vectors (x,y) ∈ Rn×2 in a component-wise manner. This definition
triggers some remarks:

Remark 1: Note that ξ is the solution to the equation (2x− 1)e2x = 1. Also note that fabs, fmax

and g are continuous differentiable over R or R2. Moreover,

• ∀x ∈ R, fabs (x) ≥ |x|;
• ∀(x, y) ∈ R2, fmax (x, y) ≥ max(x, y).

Proof. First, let f(x) = (2x − 1)e2x. Then, f(ξ) = W0

(
1
e

)
eW0( 1

e )e = 1
e × e = 1 by definition of

the Lambert function. Second, using the basics of functional analysis on the function h(x) defined
by ∀x, h(x) = fabs (x) − |x|, the inequalities in Remark 1 are achieved. As far as the function
fmax is concerned, the same study is performed using the following equality: ∀(x, y), max(x, y) =
1
2 [x+ y + |x− y|].

The following definitions are directly related to the implementation of the OIST method.

Definition 4: Let k ∈ N. Considering a LTI system (G), the regulated output variable α(t) =
Cαy(t) is said to be of relative degree k with respect to u if and only if

4
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Figure 3. Representation of the absolute value function (in black) and its differentiable approximate fabs (in blue) over the
interval [−3, 3].

∀0 ≤ i < k − 1, CαAiBu = 0 and CαAk−1Bu 6= 0 (4)

Definition 5: Let S =
[
s0 . . . sk

]
∈ Rk+1. The function

σ(S) =
[
σ(s0) . . . σ(sk)

]
(5)

where

σ(si) :=

{
si−1 if 1 ≤ i ≤ k
sk if i = 0

(6)

is called the cyclic permutation of length k + 1 on the elements of S.

2.2 Case study

In this section, an example is introduced where the control synthesis problem has been solved. In
this case, there is a violation of the expected time-domain performance of the considered regulated
variable α which motivates the formulation of a new problem in Sect. 2.3. The solution to this
problem is the main result proposed in this article.

Note that in this example, a more thorough control design study may be sufficient to enforce the
time-domain requirement. However, this is not considered in this article for two reasons:

• the OIST method was proposed to enforce time-domain requirements when the controller is
not able to do so;
• other criteria often enter in the control design. Enforcing the time-domain criterion may

degrade nominal performance from other points of view.

The OIST method proposes to achieve a time-domain requirement while ensuring the nominal2

performance. This case study is dedicated to the position control of a ball on a beam. The physical
system and the notations are represented in Fig. 4.

2In the sense: when the time-domain condition is met.
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Figure 4. Ball and beam system example, thick dots represent fixed axes of rotation
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Figure 5. Disturbances d and e applied to the ball and beam system in simulation.

The beam is actuated using a lever arm. An unknown disturbance force d is eventually applied
to the ball acceleration and an unknown bias3 e is introduced on the measure of the ball position
r. Both disturbances are represented on Fig. 5. The state vector of the system is defined by

x =
[
r ṙ

]>
and the measurements vector by y = x + Dee where De =

[
1 0

]>
. The regulated

variable is defined as:

α(t) = Cαy(t) = Cαx(t) + CαDee(t) = Cαx(t) + Eαe(t) (7)

with Cα =
[
1 0

]
and Eα = 1. It corresponds to the measured disturbed ball position.

The reason for monitoring this variable is quite obvious. The beam length is limited to L = 1 m
which means that even a theoretically stabilizing control law can result in the ball falling off the
beam. The objective – i.e. the time-domain requirement – is thus to satisfy ∀t, 0.1 ≤ α(t) ≤ 0.9
(in meters) while driving the system from r0 = 0.5 m to the setpoint rs = 0.6 m. The system
state-space representation is given by:

3In simulation, a uniform number generator with limited rate is used.
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Figure 6. Simulation of the control signal u using the controller with integral action defined in Eq. (10).

A =

[
0 1
0 0

]
, B =

[
0 0 0
1 −0.21 0

]
, C = I2, D =

[
0 0 1
0 0 0

]
(8)

where the inputs are respectively d, u and e. As far as the nominal control design is concerned,
it is decided to implement a state-feedback controller with integral action to achieve steady-state
accuracy. Let consider the following augmented system

Aa =

[
A 0
−Cint 0

]
, Ba =

[
Bu 0
0 1

]
(9)

where Bu =
[
0 −0.21

]>
and Cintx = ṙ. Using LQR design on this augmented system with

R = diag
([

10 4
])

and Q = diag
([

1 10 10
])

, the following state-feedback gain Kp and integral
action gain Ki are obtained:

Kp =

[
−0.3156 −2.0937

0.0322 −0.7661

]
, Ki =

[
0.0644
1.5779

]
(10)

which state-space representation is given by

(K)

{
ẋK(t) = −Ki(2)xK(t) +

[
0 1

]
{ys − y(t)}

yK(t) = −KixK(t) + Kp {ys − y(t)}
(11)

where ys =
[
rs 0

]>
. This dynamic controller is stable and yields good results on rs-setpoint

tracking. The control signal simulation is shown on Fig. 6. However, violation of the time-domain
requirement 0.1 ≤ α(t) ≤ 0.9 occurs as one can see on Fig. 7.

2.3 Problem formulation

Let consider a LTI system (G) with the following state-space representation:

7
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Figure 7. Simulation of the regulated variable α (in blue). The time-domain requirement (in red) is clearly violated. The
set-point rs is represented in green.

(G)




ẋ(t) = Ax(t) + Buu(t) + Bdd(t) State
y(t) = x(t) + Dee(t) Measurements
α(t) = Cαx(t) + Eαe(t) Regulated variable

(12)

where u ∈ R is the control input, d ∈ R is an unknown disturbance and e ∈ R is an unknown
signal. The time-domain constraint consists in ensuring α(t) ∈ [α(t), α(t)] , ∀t where α(t) and α(t)
are design parameters. This is expressed in the following problem – which was introduced in Burlion
(2012) and translated in the linear framework in Chambon et al. (2015a):

Problem 1: Find [u(t), u(t)] and C0 such that

α(t) ∈ [α(t), α(t)] , ∀t (13)

for the system described as





ẋ(t) = Ax(t) + Buu(t) + Bdd(t)
y(t) = x(t) + Dee(t)
α(t) = Cαx(t) + Eαe(t)
u(t) ∈ [u(t), u(t)]
x0 ∈ C0

(14)

where x ∈ Rn, y ∈ Rm, u ∈ R is the command input, d ∈ R is an unknown disturbance and e ∈ R
is an unknown signal with Eα ∈ R.

Remark 2: Note that d and e are chosen as unidimensional signals. This is non-limiting as long
as the hypotheses are satisfied on each component in case of multidimensional signals.

Finding a solution to this problem motivates the Output to Input Saturation Transformation
(OIST) where a constraint on the output α is transformed into saturations [u(t), u(t)] on the control
input u.

8
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2.4 Assumptions

Prior to the application of the transformation which will be presented in Sect. 3, the considered
system has to fulfil some assumptions which are recalled here. First, the time-domain requirements
needs to be meaningful:

Assumption 1: It is assumed that the expected bounds on the regulated variable α are chosen
consistently:

∀t, α(t) ≥ α(t) (15)

Assumption 2: The time-domain requirement signals are supposed to converge towards constant
values satisfying Assum. 1:

lim
t→∞

α(t) = α?, lim
t→∞

α(t) = α? (16)

Second, the relative degrees of the regulated variable with respect to the inputs is detailed:

Assumption 3: Let (k, l) ∈ N2 such that 1 ≤ l ≤ k. It is supposed the regulated variable α is of
relative degree k (resp. l) with respect to u (resp. d).

Let D(t) =
[
d ḋ . . . d(k−l−1)

]> ∈ Rk−l and E(t) =
[
e ė . . . e(k)

]> ∈ Rk+1. The next
assumption makes sure that these quantities are bounded by known time-varying matrices.

Assumption 4: Continuous time-varying bounds
[
D(t),D(t)

]
on the unknown disturbance and

its derivatives D(t) are supposed to be known, that is

D(t) ≤ D(t) ≤ D(t), ∀t (17)

or, more precisely,

∀0 ≤ i ≤ k − l − 1, d(i)(t) ≤ d(i)(t) ≤ d(i)(t), ∀t (18)

The same holds for E(t) with time-varying bounds
[
E(t),E(t)

]
. Also:

lim
t→∞

D(t) = D?, lim
t→∞

D(t) = D?
, lim
t→∞

E(t) = E? and lim
t→∞

E(t) = E? (19)

where D? =
[
d? 0 . . . 0

]
, etc.

As conservative as this assumption may be, it is not so different from supposing the disturbances
follow some theoretical model. The following assumptions will be used in the proof of the system
state convergence in closed-loop:

Assumption 5: The disturbance d is supposed to be of finite energy ‖d‖2 < ∞. The same holds
for e with energy ‖e‖2 <∞.

Assumption 6: Let K(s) = (AK ,BK ,CK ,DK) a strictly stable controller with state vector di-
mension nK . It is supposed the control law u = K(s)y asymptotically (resp. exponentially) stabilizes

9
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system (G) to the origin x? = 0 (without loss of generality), under Assum. 5 (resp. d = 0 and
e = 0). The controller state at the equilibrium is denoted x?K = 0.

In this article, only minimum-phase systems are considered. In the non-minimum-phase case,
additional analysis is required to ensure stability, which is considered as a perspective for future
works.

Assumption 7: The zeros of the transfer function Tu→α(s) from the control input u to the regu-
lated variable α are supposed to be of strictly negative real part.

To simplify the formulation of iterative expressions for the saturations components, the following
assumption is made to ensure some terms will not re-appear upon derivation of the components:

Assumption 8: The relative degrees in Assum. 3 satisfy to the relation 2l > k.

For any system fulfilling these hypotheses, the Output to Input Saturation Transformation
(OIST) is proposed as a solution to Pb. 1. This transformation is detailed in the following section
while closed-loop stability is established in Sect. 4.

3. Output to Input Saturation Transformation

The Output to Input Saturation Transformation is presented in this section in the case of known
LTI systems fulfilling Assum. 3 to 8. In presence of unknown disturbances d and e, time-varying
coefficients are used in the obtained saturations so as to avoid overlap. Their expressions are derived
from the known bounds on D(t) and E(t).

3.1 Regulated variable differentiation and relative degree

Using Assum. 3 and 8, the k-th derivative of the regulated variable α in function of u, d and e(k)

has the following expression:

α(k)(t) = CαAkx(t) + Eαe
(k)(t) + CαAk−1Buu(t) +

k∑

j=l

CαAj−1Bdd
(k−j)(t) (20)

By definition of the relative degree (Def. 4), the k-th derivative of the regulated variable α thus
depends on the control input signal u(t). In the next section, a lemma will be formulated so that
properly differentiated design bounds on α can lead to saturations on u, using Eq. (20).

3.2 Fulfilling the time-domain requirement

Considering Pb. 1, the objective is to ensure α(t) ∈ [α(t), α(t)], ∀t. In this section, it is shown how
adequate constraints on the successive derivatives of α can be used to fulfil this requirement. Let
consider a vector of known positive time-varying signals

κ(t) =
[
κ1(t) . . . κk(t)

]
∈ Rk+ (21)

which will act as “design parameters”. Let α(0)(t) = α(t) and α(0)(t) = α(t). Also con-

sider the vectors A(t) =
[
α(t) . . . α(k)(t)

]>
, Ω(t) =

[
α(0)(t) . . . α(k)(t)

]>
and Ω(t) =

10
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[
α(0)(t) . . . α(k)(t)

]>
. Using these notations, the following lemma is proposed:

Lemma 1: Let A(0) ∈
[
Ω(0),Ω(0)

]
. Let define ∀1 ≤ j ≤ k, ∀t:

α(j)(t) = κj(t)
(
α(j−1)(t)− α(j−1)(t)

)
+

˙︷ ︷
α(j−1)(t)

α(j)(t) = κj(t)
(
α(j−1)(t)− α(j−1)(t)

)
+

˙︷ ︷
α(j−1)(t)

(22)

Then,

α(k)(t) ∈
[
α(k)(t), α(k)(t)

]
, ∀t⇒ α(t) ∈ [α(t), α(t)] , ∀t

Proof. See Appendix A.

Remark 3: As shown in Sect. 3.3, the OIST method consists in transforming output constraints
into time-varying input saturations. It will be proved in Th. 1 that the introduction of the time-
varying coefficients κ(t) in Eq. (21) is crucial to avoid the time-varying input constraints to overlap.
Note that in the absence of unknown disturbances, these coefficients could be chosen positive
constants, see Burlion (2012).

Remark 4: Considering Eq. (22), the notations are determining. For example, it should be clear

that ∀j, ∀t, α(j)(t) 6= (α)(j) (t). More generally, and using notations defined later4, ∀t, Ω(t) 6= A(t).
Moreover, while A(t) can be determined quite easily, this is much more difficult for Ω(t) since it
depends on possibly unknown variables.

The main purpose of this lemma is to be able to satisfy the time-domain requirement on α(t)
while setting constraints on α(k)(t). Since the k-th derivative α(k)(t) depends on u, this in turn
leads to saturations on the control input signal which allow to fulfil α(t) ∈ [α(t), α(t)] , ∀t. This is
presented in the next section.

Remark 5: Note this Lemma is still valid when introducing more conservative bounds βj(t) and

βj(t) on α(j)(t), ∀1 ≤ j ≤ k:

∀t, α(j)(t) ≤ βj(t) ≤ α(j)(t) ≤ βj(t) ≤ α(j)(t) (23)

Of course, there is no more relation between these new bounds such as in Eq. (22). Their expres-
sions can however be obtained using the expressions of the original bounds. This remark will be used
in Sect. 3.5.1 to derive differentiable κ(t)-coefficients from differentiable – yet more conservative –
bounds.

3.3 Control saturations

Given Assum. 3, there is CαAk−1Bu 6= 0. Let also suppose that CαAk−1Bu > 0. Considering

Lemma 1 and Eq. (20), and supposing that the expressions of α(k)(t) and α(k)(t) are known ∀t,
the saturations to apply to the control input u are obtained in Eq. (24). In this case, it is also
supposed that d and e are known signals:

4See Sect. 3.4.
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u(t) = 1
CαA

k−1Bu

[
α(k)(t)−CαAkx(t)− Eαe(k)(t)−

∑k
j=l CαAj−1Bdd

(k−j)(t)
]

u(t) = 1
CαA

k−1Bu

[
α(k)(t)−CαAkx(t)− Eαe(k)(t)−

∑k
j=l CαAj−1Bdd

(k−j)(t)
] (24)

In case the disturbances d and e are unknown but Assum. 4 is satisfied, the following more
conservative expressions are obtained:

u(t) ≤ uc(t) = 1
CαA

k−1Bu

[
α(k)(t)−CαAkx(t) + |Eα|max

(
|e(k)(t)|, |e(k)(t)|

)

+
∑k

j=l

∣∣CαAj−1Bd

∣∣max
(
|d(k−j)(t)|, |d(k−j)(t)|

)]

u(t) ≥ uc(t) = 1
CαA

k−1Bu

[
α(k)(t)−CαAkx(t)− |Eα|max

(
|e(k)(t)|, |e(k)(t)|

)

−
∑k

j=l

∣∣CαAj−1Bd

∣∣max
(
|d(k−j)(t)|, |d(k−j)(t)|

)]

(25)

With a slight abuse of notation, the expressions from Eq. (25) will be used and denoted re-
spectively u(t) and u(t). Before concluding this section, the following remark is made where it is
observed that the expressions in Eq. (25) may be inconsistent due to the introduced conservatism:

Remark 6: For the saturations definition in Eq. (25) to be consistent and to avoid the control
input saturations to overlap, one must ensure that u(t) ≤ u(t), ∀t, i.e.:

α(k)(t)− α(k)(t) ≥ 2|Eα|max
(
|e(k)|, |e(k)|

)
+ 2

k∑

j=l

|CαAj−1Bd|max(|d(k−j)|, |d(k−j)|) (26)

Remark 7: In case CαAk−1Bu < 0 and to avoid loss of generality, proper re-ordering of u(t) and
u(t) is required. For a given input signal u, the saturating operator can be defined as follows:

sat(u)(t) := max(min(u(t), u(t)),min(u(t),max(u(t), u(t)))) (27)

Proof. It is proved here that the operator sat(u)(t) as defined in Eq. (27) fulfils sat(u)(t) ∈
[u(t), u(t)], ∀t:

• suppose u(t) > u(t), ∀t. Then, min(u(t), u(t)) = u(t) and max(u(t), u(t)) = u(t). Thus,
Eq. (27) becomes sat(u)(t) = max(u(t),min(u(t), u(t)));
• Suppose u(t) < u(t), ∀t. Then, min(u(t), u(t)) = u(t) and max(u(t), u(t)) = u(t). Thus,

Eq. (27) becomes sat(u)(t) = max(u(t),min(u(t), u(t))).

In both cases, the expected result is obtained.

3.4 Determination of bounds on the regulated variable derivatives

In this section, an expression is established of the successive bounds on the derivatives of the
regulated variable α. This is done using the iterative definition given in Eq. (22) and supposing at

12
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first that d and e as well as their derivatives are known.
For any integer j such that 1 ≤ j ≤ k, let define the two following vectors:

• Uj(t) =
[
uj0(t) . . . ujk(t)

]
∈ R1×(k+1) where ujj(t) = 1 and ∀i > j, uji (t) = 0;

• Vj(t) =
[
vj0(t) . . . vjk−l−1(t)

]
∈ R1×(k−l) where ∀i > max(−1, j − l − 1), vji (t) = 0 and

vl+1
0 (t) = ull−1(t)CαAl−1Bd

Let A =
[
α
︷̇︷
α . . . (α)(k)

]>
∈ Rk+1, A =

[
α
︷̇︷
α . . . (α)(k)

]>
and Θ =

[
Cα CαA . . . CαAk

]> ∈ R(k+1)×n. Supposing E(t) and D(t) are known, one can express the

bounds α(j)(t) ∈ R and α(j)(t) to be satisfied by α(j)(t), ∀t, as

α(j)(t) = U j(t) {A(t)−Θx(t)− EαE(t)}+ CαAjx(t) + Eαe
(j)(t)− V j(t)D(t)

α(j)(t) = U j(t)
{
A(t)−Θx(t)− EαE(t)

}
+ CαAjx(t) + Eαe

(j)(t)− V j(t)D(t)
(28)

Then, using Eq. (22), one can obtain the coefficients vectors U j and V j iteratively. This is
illustrated in Eq. (29) where σ

(
U j−1

)
(t) is the cyclic permutation of length k+ 1 on the elements

of U j−1(t), as defined in Def. 5.

U0(t) =
[
1 0 . . . 0

]

∀j s.t. 1 ≤ j ≤ k, U j(t) = κj(t)U
j−1(t) + U̇

j−1
(t) + σ

(
U j−1(t)

)

∀j s.t. 0 ≤ j ≤ l, V j(t) = 0

∀j s.t. l < j ≤ k, V j(t) = κj(t)
(
V j−1(t) + CαAj−l−1

[
Al−1Bd . . . A2l−jBd

])
+ V̇

j−1
(t)

+σ
(
V j−1(t)

)
+
[∑j−l−1

w=0 uj−1
l−1+w(t)CαAl−1+wBd 0 . . . 0

]

(29)

Proof. Tedious rewriting of Eq. (28) in explicit form and using Eq. (22) to express α(j+1) for j ≥ 0
starting with α(0)(t) = α(t) leads to Eq. (29). The same calculus is performed as far as the upper
bound is concerned.

Remark 8: Using the obtained iterative expressions and the fact that u1
0(t) = κ1(t), one can

determine that ∀j, 0 ≤ j ≤ k, uj+1
j (t) =

∑j+1
w=1 κw(t).

However, E(t) and D(t) are concatenations of unknown signals. By Assum. 4, only bounding
signals are known on these disturbances. As stated in Remark 5, Lemma 1 is still valid if more
conservative bounds are considered for application on the derivatives α(j)(t). In case E(t) and D(t)
are bounded by known bounds, the expressions in Eq. (28) become

βj(t) = U j(t) {A(t)−Θx(t)}+ |Eα|
∣∣U j(t)

∣∣max
(
|E(t)| ,

∣∣E(t)
∣∣)+ CαAjx(t)

+ |Eα|max
(∣∣e(j)(t)

∣∣ ,
∣∣∣e(j)(t)

∣∣∣
)

+
∣∣V j(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)

βj(t) = U j(t)
{
A(t)−Θx(t)

}
− |Eα|

∣∣U j(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)+ CαAjx(t)

− |Eα|max
(∣∣e(j)(t)

∣∣ ,
∣∣∣e(j)(t)

∣∣∣
)
−
∣∣V j(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)

(30)

13
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In case differentiable bounds are expected, the expressions in Eq. (31) are considered, where
Def. 3 is used.

γj(t) = U j(t) {A(t)−Θx(t)}+ |Eα| fabs

(
U j(t)

)
g
(
E(t),E(t)

)
+ CαAjx(t)

+ |Eα| g
(
e(j)(t), e(j)(t)

)
+ fabs

(
V j(t)

)
g
(
D(t),D(t)

)

γj(t) = U j(t)
{
A(t)−Θx(t)

}
− |Eα| fabs

(
U j(t)

)
g
(
E(t),E(t)

)
+ CαAjx(t)

− |Eα| g
(
e(j)(t), e(j)(t)

)
− fabs

(
V j(t)

)
g
(
D(t),D(t)

)

(31)

where the following is fulfilled ∀0 ≤ j ≤ k, ∀t:

α(j)(t) ≤ βj(t) ≤ γj(t)

α(j)(t) ≥ βj(t) ≥ γj(t)
(32)

which is compatible when used along with Lemma 1 as stated in Remark 5. However, the intro-
duction of some conservatism requires to choose the coefficients κ(t) in U j(t) and V j(t) wisely.
This is considered in the next section, along with other problems.

3.5 Saturations analysis

Using the expressions in Eq. (30) with j = k, the objective is to ensure α(k)(t) ∈
[
βk(t), βk(t)

]
, ∀t

so that, after using Lemma 1, the time-domain requirement is fulfilled:

βk(t) = Uk(t) {A(t)−Θx(t)}+ |Eα|
∣∣Uk(t)

∣∣max
(
|E(t)| ,

∣∣E(t)
∣∣)+ CαAkx(t)

+ |Eα|max
(∣∣e(k)(t)

∣∣ ,
∣∣∣e(k)(t)

∣∣∣
)

+
∣∣V k(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)

βk(t) = Uk(t)
{
A(t)−Θx(t)

}
− |Eα|

∣∣Uk(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)+ CαAkx(t)

− |Eα|max
(∣∣e(k)(t)

∣∣ ,
∣∣∣e(k)(t)

∣∣∣
)
−
∣∣V k(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)

(33)

These expressions are then used in Eq. (25) in place of α(k)(t) and α(k)(t) to obtain explicit
expressions of the control input saturations:

u(t) = 1
CαA

k−1Bu

[
Uk(t) {A(t)−Θx(t)}+ |Eα|

∣∣Uk(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)

+2 |Eα|max
(∣∣e(k)(t)

∣∣ ,
∣∣∣e(k)(t)

∣∣∣
)

+
∣∣V k(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)

+
∑k

j=l

∣∣CαAj−1Bd

∣∣max
(
|d(k−j)(t)|, |d(k−j)(t)|

)]

u(t) = 1
CαA

k−1Bu

[
Uk(t)

{
A(t)−Θx(t)

}
− |Eα|

∣∣Uk(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)

−2 |Eα|max
(∣∣e(k)(t)

∣∣ ,
∣∣∣e(k)(t)

∣∣∣
)
−
∣∣V k(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)

−
∑k

j=l

∣∣CαAj−1Bd

∣∣max
(
|d(k−j)(t)|, |d(k−j)(t)|

)]

(34)

14



October 9, 2015 International Journal of Control ijc˙OIST

These now depend on the design parameters κ(t) from Eq. (21), A(t) and A(t) and on the signals
describing the limited knowledge of the disturbances: D(t), D(t), E(t) and E(t). As suggested by
Remark 6, some further analysis is however required. It is particularly important to detect possible
saturations overlap – by choosing the κ(t)-signals wisely – or to study the reachability of the origin
– a result which will be used to prove the closed-loop stability.

3.5.1 Saturations overlap

Let define ∀t, ∆0(t) := α(t) − α(t) and, ∀1 ≤ j ≤ k, ∆j(t) := βj(t) − βj(t). By Assumption 1,
∆0(t) > 0 is satisfied ∀t. Thus,

∆j(t) = U j(t)
{
A(t)−A(t)

}
− 2 |Eα|

∣∣U j(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)

− 2
∣∣V j(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)− 2 |Eα|max

(∣∣∣e(j)(t)
∣∣∣ ,
∣∣∣e(j)(t)

∣∣∣
)

(35)

Using Eq. (30) and the fact that the signals in κ(t) are chosen positive by construction (see
below), the dependence on κj(t) can be made explicit, ∀1 ≤ j ≤ k, ∀t:

∆j(t) ≥ ∆̃j(t) = κj(t)
[
U j−1(t)

{
A(t)−A(t)

}
− 2 |Eα|

∣∣U j−1(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)

−2
∣∣∣V j−1(t) + CαAj−l−1

[
Al−1Bd . . . A2l−kBd

]∣∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)
]

+
[
U̇
j−1

(t) + σ
(
U j−1(t)

)] {
A(t)−A(t)

}
− 2 |Eα|

∣∣∣U̇ j−1
(t) + σ

(
U j−1(t)

)∣∣∣max
(
|E(t)| ,

∣∣E(t)
∣∣)

− 2 |Eα|max
(∣∣∣e(j)(t)

∣∣∣ ,
∣∣∣e(j)(t)

∣∣∣
)
− 2

∣∣∣V̇ j−1
(t) + σ

(
V j−1(t)

)
+

[∑j−l−1
w=0 uj−1

l−1+w(t)CαAl−1+wBd 0 . . . 0
]∣∣∣max

(
|D(t)| ,

∣∣D(t)
∣∣) (36)

which is, in turn, less conservative than the differentiable approximate:

∆̃j(t) ≥ ∆̂j(t) = κj(t)
[
U j−1(t)

{
A(t)−A(t)

}
− 2 |Eα| fabs

(
U j−1(t)

)
g
(
E(t),E(t)

)

−2fabs

(
V j−1(t) + CαAj−l−1

[
Al−1Bd . . . A2l−kBd

])
g
(
D(t),D(t)

)]

+
[
U̇
j−1

(t) + σ
(
U j−1(t)

)] {
A(t)−A(t)

}
− 2 |Eα| fabs

(
U̇
j−1

(t) + σ
(
U j−1(t)

))
g
(
E(t),E(t)

)

− 2 |Eα| g
(
e(j)(t), e(j)(t)

)
− 2fabs

(
V̇
j−1

(t) + σ
(
V j−1(t)

)
+

[∑j−l−1
w=0 uj−1

l−1+w(t)CαAl−1+wBd 0 . . . 0
])
g
(
D(t),D(t)

)
(37)

which is simplified into

∆̂j(t) = κj(t)λ̂
d
j (t) + λ̂nj (t) (38)

where λ̂dj (t) and λ̂dj (t) only depend on κl(t) with l < j. Considering Remark 6, the following lemma
is proposed:

Lemma 2: Saturations overlap is avoided if
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• ∆0(t) ≥ 0, ∀t, which is true by Assumption 1;

• ∀1 ≤ j < k, ∆̂j(t) ≥ 0, ∀t;
• ∆̂k(t) ≥ 2|Eα|max

(
|e(k)|, |e(k)|

)
+ 2

∑k
j=l |CαAj−1Bd|max(|d(k−j)|, |d(k−j)|), ∀t.

The last condition ensures that u(t) − u(t) ≥ 0, ∀t. A constructive definition of the coefficients
κj(t) in Eq. (21) can be used to fulfil Lemma 2.

Theorem 1: Saturations overlap is avoided if

• Assumption 1 is satisfied, i.e. α(t) ≥ α(t) and λ̂d1(t) 6= 0, ∀t;
• ∀1 ≤ j < k, one ensures ∆̂j(t) ≥ 0 by choosing, ∀t,

κj(t) =
κ̆j − λ̂nj (t)

λ̂dj (t)
(39)

where κ̆j > 0 is chosen such that κ1(t) > 1
2 , ∀j > 1, κj(t) > 1 and λ̂dj+1(t) 6= 0, ∀t.

• for j = k, one ensures

∆̂k(t) ≥ 2|Eα|max
(
|e(k)|, |e(k)|

)
+ 2

k∑

j=l

|CαAj−1Bd|max(|d(k−j)|, |d(k−j)|)

by choosing, ∀t,

κk(t) =
κ̆k − λ̂nk(t) + 2|Eα|max

(
|e(k)|, |e(k)|

)
+ 2

∑k
j=l |CαAj−1Bd|max(|d(k−j)|, |d(k−j)|)

λ̂dk(t)
(40)

where κ̆k > 0 is chosen such that κk(t) >
1
2 , ∀t.

Proof. Straightforward using Lemma 2 and Eq. (38). As far as the minimal values for the κj(t) are
concerned, this is discussed in the proof of Prop. 2, in Appendix B.

Remark 9: Note that κk(t) is not differentiable with respect to t by definition but this is not
required contrary to the other coefficients.

By the end of this section, a vector of design parameters κ̆ =
[
κ̆1 . . . κ̆k

]
is obtained, ensuring

no overlap and the differentiability of κ(t) (to the exception of κk(t)).

3.5.2 State-independent saturations

It is interesting to note that only one term depends on the state vector x(t) in the expressions of
the control input saturations obtained in Eq. (34). Let define:

∀t, Koist(t) :=
Uk(t)Θ

CαAk−1Bu

∈ R1×n (41)

It is observed that introducing saturations on the control input u is equivalent to saturating the
signal v defined as:

16
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v(t) := u(t) +Koist(t)y(t) = u(t) +Koist(t)x(t) +Koist(t)Dee(t), ∀t (42)

by the following state-free saturations:

v(t) = u(t) +Koist(t)x(t) + |Koist(t)De|max (|e(t)| , |e(t)|)
v(t) = u(t) +Koist(t)x(t)− |Koist(t)De|max (|e(t)| , |e(t)|) (43)

or, more precisely

v(t) = 1
CαA

k−1Bu

[
Uk(t)A(t) + |Eα|

∣∣Uk(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)+ 2 |Eα|max

(∣∣e(k)(t)
∣∣ ,
∣∣∣e(k)(t)

∣∣∣
)

+
∣∣V k(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)+

∑k
j=l

∣∣CαAj−1Bd

∣∣max
(
|d(k−j)(t)|, |d(k−j)(t)|

)]

+ |Koist(t)De|max (|e(t)| , |e(t)|)

v(t) = 1
CαA

k−1Bu

[
Uk(t)A(t)− |Eα|

∣∣Uk(t)
∣∣max

(
|E(t)| ,

∣∣E(t)
∣∣)− 2 |Eα|max

(∣∣e(k)(t)
∣∣ ,
∣∣∣e(k)(t)

∣∣∣
)

−
∣∣V k(t)

∣∣max
(
|D(t)| ,

∣∣D(t)
∣∣)−∑k

j=l

∣∣CαAj−1Bd

∣∣max
(
|d(k−j)(t)|, |d(k−j)(t)|

)]

− |Koist(t)De|max (|e(t)| , |e(t)|)
(44)

Remark 10: One now has to ensure that v(t)− v(t) ≥ 0, ∀t using similar considerations than in
Th. 1.

Using v instead of u as the new input to system (G) in Eq. (12), the saturated system becomes

ẋ(t) = [A−BuKoist(t)]x(t) + Busat
v(t)
v(t) (v(t))−BuKoist(t)Dee(t) + Bdd(t) (45)

3.5.3 Admissible asymptotic equilibrium

Using Eq. (34) and the definitions of the state-free saturations in Eq. (43) the saturations in Eq. (44)
were obtained. Using Assum. 2, it comes that:

lim
t→∞

A(t) =
[
α? 0 . . . 0

]>
, lim
t→∞

A(t) =
[
α? 0 . . . 0

]
(46)

Considering Th. 1 along with Assum. 5, it can be observed that the design signal κ(t) in Eq. (21)
converges towards a constant value. Thus, this is also the case of vectors U j(t) and V j(t), ∀1 ≤ j ≤
k, and limt→∞Koist(t) = K?

oist. Consequently, as far as the saturations in Eq. (44) are concerned
and using Assum. 4, they tend towards the following limits:

17
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v? = 1
CαA

k−1Bu

[
uk,?0 α? + |Eα|

∣∣∣uk,?0

∣∣∣max (|e?| , |e?|) +
{∣∣∣vk,?0

∣∣∣+
∣∣CαAk−1Bd

∣∣
}

max
(
|d?|, |d?|

)]

+ |K?
oistDe|max (|e?| , |e?|)

v? = 1
CαA

k−1Bu

[
uk,?0 α? − |Eα|

∣∣∣uk,?0

∣∣∣max (|e?| , |e?|)−
{∣∣∣vk,?0

∣∣∣+
∣∣CαAk−1Bd

∣∣
}

max
(
|d?|, |d?|

)]

− |K?
oistDe|max (|e?| , |e?|)

(47)
and the unsaturated state-free control becomes5:

v? = CKx
?
K + (DK +K?

oist) (x? + Dee
?) = 0 (48)

In the following proposition it is shown that the origin is an admissible equilibrium under some
condition. This condition can be evaluated during the analysis phase of the unconstrained closed-
loop system.

Proposition 1: Let x? ∈ Rn and suppose Assum. 2, 4 and 5 are satisfied. In the non-restrictive
case where x? = 0, this is an admissible asymptotic equilibrium if

v? = 0 ∈ [v?, v?] (49)

or, more precisely, if:

1

CαAk−1Bu

[
uk,?0 α? + |Eα|

∣∣∣uk,?0

∣∣∣max (|e?| , |e?|) +
{∣∣∣vk,?0

∣∣∣+
∣∣∣CαAk−1Bd

∣∣∣
}

max
(
|d?|, |d?|

)]

+ |K?
oistDe|max (|e?| , |e?|) ≤ 0 ≤ − |K?

oistDe|max (|e?| , |e?|)

+
1

CαAk−1Bu

[
uk,?0 α? − |Eα|

∣∣∣uk,?0

∣∣∣max (|e?| , |e?|)−
{∣∣∣vk,?0

∣∣∣+
∣∣∣CαAk−1Bd

∣∣∣
}

max
(
|d?|, |d?|

)]

(50)

Proof. Straightforward using the asymptotic results in Eq. (47) and (48).

Using this analysis on the saturations, the stability of the system in closed-loop with the saturated
nominal controller is studied in the next section.

4. Closed-loop stability

In this section, the stability of the system is proved in closed-loop with the saturated control signal

sat
u(t)
u(t) (CKxK(t) + DKy(t)), where u(t) and u(t) have been obtained using the approach presented

in Sect. 3.

5In the non-pathological case where e is a physical signal converging to zero under Assum. 5.
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4.1 Considered system

As mentioned in Sect. 3.5.2, the control signal saturations depend on the system state x(t). Chang-
ing the control signal into v(t) = u(t)+Koist(t)y(t), the system studied in this section is equivalent
to the system in Eq. (51) where the saturations on v(t) do not depend on the state vector anymore.

(G)





ẋ(t) = [A−BuKoist(t)]x(t) + Busat
v(t)
v(t) (v(t))−BuKoist(t)Dee(t) + Bdd(t)

y(t) = x(t) + Dee(t)

ẋK(t) = AKxK(t) + BKy(t)

v(t) = CKxK(t) + (DK +Koist(t))y(t)

α(t) = Cαx(t) + Eαe(t)

(51)

The following lemma will be used to demonstrate the final theorem of this paper:

Lemma 3: ∀x(t) ∈ Rn, ∀t, the function −Koist(t)x(t) is Lipschitz (with respect to x). Moreover,
−Koist(t)x(t) is K1-Lipschitz, where K1 = maxt ‖Koist(t)‖ ∈ R.

Proof. Let define, ∀x ∈ Rn, ∀t, f(x, t) = −Koist(t)x(t). Then, ∀x ∈ Rn, ∂f
∂x (x, t) =

−Koist(t). Since Koist(t) is continuous ∀t by definition of the coefficients κ(t) and continuity
of
[
D(t),D(t),E(t),E(t)

]
(see Assum. 4), the function f is continuously differentiable with respect

to the state x. This implies that Koist(t)x(t) is a Lipschitz continuous function with respect to
x.

4.2 Closed-loop stability using an anti-windup approach

Due to the presence of a dynamic controller and saturations, unexpected closed-loop behaviour is
expected. Anti-windup techniques have been widely studied and used to avoid behaviours like con-
troller state divergence. Some of these techniques are presented in Grimm et al. (2003); Kapoor,
Teel, and Daoutidis (1998); Tarbouriech and Turner (2009). The approach proposed in Menon,
Herrmann, Turner, Bates, and Postlethwaite (2006) and Herrmann, Menon, Turner, Bates, and
Postlethwaite (2010) deals with a specific class of nonlinear systems to which the system presented
in Eq. (51) belongs. In this article, the anti-windup framework is used to prove the closed-loop
stability of the system in Eq. (51) where the time-varying gain Koist(t) and saturations are respec-
tively given by Eq. (41) and Eq. (44).

Proposition 2: The open-loop system

ẋ(t) = [A−BuKoist(t)]x(t) (52)

is GES.

The proof is inspired by Herrmann et al. (2010).

Proof. See Appendix B.

To ensure asymptotic stability of the closed-loop containing the dynamic controller, it is necessary
to introduce an anti-windup. Considering the system in Eq. (51), the following anti-windup with
state xa ∈ Rn is introduced
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Figure 8. Closed-loop illustration.

(Ga)





ẋa(t) = Axa(t) + Buua(t)

ya = xa

ua(t) = −Koist(t)ya(t)−Dz
v(t)
v(t) (v(t))

v1(t) = − [K(s) +Koist(t)]ya(t)

(53)

The control v is then modified into

v(t) = u(t) +Koist(t)y(t) + v1(t)

= CKxK(t) + DK (y(t)− ya(t)) +Koist(t) (y(t)− ya(t))
(54)

The main result of this section is the following theorem which proves stability of the system in
closed-loop with the saturated nominal controller. Both this theorem and its proof are inspired
from Menon et al. (2006) and Herrmann et al. (2010).

Theorem 2: If Assum. 1 to 8 are satisfied6 (resulting in Th. 1 and Prop. 2), the origin of the
closed-loop system consisting of the system in Eq. (45) – where the time-varying saturations are
given in Eq. (44) – the control law in Eq. (54) and the anti-windup compensator given in Eq. (53)
is GAS.

Proof. See Appendix C.

An illustration of the system in closed-loop with the anti-windup and saturating block is given
in Fig. 8. This is the typical structure obtained when implementing OIST on a linear system.

6And in the non-pathological case where d is a non-converging finite energy distribution, which is not a realistic physical case.
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Figure 9. Disturbances d and e applied to the ball and beam system in simulation, with bounds in red.

5. Example

The ball and beam example which served as a case study in Sect. 2.2 is considered again for
application of the method which was presented in Sect. 3.

5.1 Assumptions

In this section, the assumptions in Sect. 2.4 are reviewed in the case of the ball and beam example
introduced in Sect. 2.2.

• Assum. 1 and 2 are satisfied as was already illustrated on Fig. 7;
• As far as the relative degrees are concerned, k = 2 and l = 2 which fulfils Assum. 3 and 8;
• The disturbances and bounds are represented on Fig. 9. They fulfil Assum. 4;
• Assum. 5 is satisfied;
• The state-feedback controller with integral action proposed in Eq. (10) asymptotically sta-

bilises the augmented system in Eq. (9). Also, it is strictly stable (see Eq. (11)), hence
Assum. 6 is satisfied;
• The system is equivalent to a double-integrator with no transmission zero: Tu→α(s) = −0.21

s2 .
Assum. 7 is fulfilled.

Remark 11: Note that the set-point rs = 0.6 m (and ṙs = 0 m/s) is not the origin of the system
(it is still a feasible equilibrium). However, using some transformation equivalent to a translation,
one can obtain a set-point on the origin of the system. Hence Th. 2 and its proof are still valid.

5.2 OIST implementation

Using results in Sect. 3 and considering α = 0.1 m, α = 0.9 m, the following expressions are
obtained for the successive ∆i(t):

∀t,





∆̂0(t) = 0.8

∆̂1(t) = κ1(t)λ̂d1(t) + λ̂n1 (t)

∆̂2(t) = κ2(t)λ̂d2(t) + λ̂n2 (t)

(55)
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where

λ̂d1(t) = α(t)− α(t)− 2g (e(t), e(t))

λ̂n1 (t) = −2g
(
e(1)(t), e(1)(t)

)

λ̂d2(t) =
[
κ1(t) 1 0

] {
A(t)−A(t)

}
− 2fabs

([
κ1(t) 1 0

])
g
(
E(t),E(t)

)

−2g
(
e(1)(t), e(1)(t)

)

λ̂n2 (t) =
[
κ̇1(t) κ1(t) 1

] {
A(t)−A(t)

}
− 2fabs

([
κ̇1(t) κ1(t) 1

])
g
(
E(t),E(t)

)

−2g
(
e(2)(t), e(2)(t)

)

(56)

Then, the values of the design signals κi(t) are deduced from these expressions and Th. 1:

κ1(t) = κ̆1−λn1 (t)
λd1(t)

κ2(t) =
κ̆2−λn2 (t)+2 max(|e(2)(t)|,|e(2)(t)|)+2|CαABd|max(|d(t)|,|d(t)|)

λd2(t)

(57)

where κ̆ =
[
κ̆1 κ̆2

]
=
[
0.05 2

]
are chosen so that the conditions in Th. 1 are satisfied. It

is then possible to obtain saturations on the control signal in the form of Eq. (34). Note that
CαABu = −0.21 < 0 in this example so the operator in Eq. (27) is used to obtain the adequate
saturations. As far as the anti-windup design is concerned, the time-varying coefficient Koist(t) is
defined as follows:

Koist(t) =
U2(t)Θ

CαABu
(58)

where U2(t) =
[
κ2(t)κ1(t) + κ̇1(t) κ1(t) + κ2(t) 1

]
and Θ =

[
Cα CαA CαA2

]
.

5.3 Simulations and results

Using the results in Sect. 5.2, simulations are performed over 100 s. The disturbance signals used in
simulation are shown in Fig. 9. At time t = 65 s, the non-null disturbance input d is used to show
that the nominal control law is recovered when the time-domain constraint is not violated (see
results). The simulation results are represented on Fig. 10 to 12. The data are represented in blue
when considering the nominal control law only (no saturations) and in orange when the saturations
obtained using OIST are introduced in the closed-loop. As mentioned in Sect. 2.2, the synthesized
controller is not efficient enough and the ball falls off the beam. Using OIST and the knowledge
on the disturbances bounds, the time-domain constraint is satisfied and nominal performance is
recovered whenever the constraint is not violated. Note that the proposed approach results in some
conservatism due to the lack of knowledge on d and e, which do not necessarily equal their known
bounds. Also, some conservatism is introduced by using differentiable upper-approximates of the
absolute value and maximum functions.

On Fig. 11, it appears that the control law variations are much sharper in the saturated case.
This is a trade-off required for complying with the time-domain requirement. Optimization of the
constants κ̆ may help to obtain less demanding although satisfying control laws. This is considered
future works.
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On Fig. 12, the coefficients κ1(t) and κ2(t) as well as the quantities ∆̂i(t) are represented. This
allows to check that the assumptions and conditions in Th. 1 are fulfilled.
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6. Conclusion

In this article, the problem of keeping a linear system output – or regulated variable – in an interval
has been formalized. A solution based on a transformation from the output expected “saturation”
to a saturation on the existing linear control input has been proposed. A constructive method to
apply this transformation has been introduced. Time-varying saturations are obtained and used in
closed-loop. Special attention is paid to choose the OIST time-varying design parameters κi(t) in
Eq. (21) in order to avoid saturations overlap. Using results from the anti-windup design community,
the stability of the system in closed-loop with the resulting non-linear control has been proved. An
application to a linear ball and beam model has been proposed, showing satisfactory results.

However, throughout this article, the specific class of minimum-phase linear systems has been
considered. Also, it has been supposed that the whole state is measured. Future works will be
dedicated to extend the approach to non-minimum phase systems and to systems with output
feedback. Optimizing the coefficients κ̆ will also be considered.
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Appendix A. Proof of Lemma 1

The proof is performed iteratively with fixed k. Let j such that 1 ≤ j ≤ k. Suppose that α(k)(t) ∈[
α(k)(t), α(k)(t)

]
⇒ α(j)(t) ∈

[
α(j)(t), α(j)(t)

]
, ∀t. Also, α(j−1)(0) ∈

[
α(j−1)(0), α(j−1)(0)

]
. Only

the lower bound is considered. The demonstration is similar in the upper bound case. Suppose

∃t2 > 0, α(j−1)(t2) < α(j−1)(t2) (A1)

then, since α(j−1)(0) ∈
[
α(j−1)(0), α(j−1)(0)

]
and, by continuity of α(j−1) and α(j−1),

∃t1, 0 < t1 < t2,





α(j−1)(t1) = α(j−1)(t1)

∀t ∈ [t1, t2] , α(j−1)(t) ≤ α(j−1)(t)
(A2)

But, using the recurrence hypothesis, the definition of α(j)(t) and the fact that ∀t, κj(t) ≥ 0, one
obtains, ∀t ∈ [t1, t2],

α(j)(t) ≥ α(j)(t)

≥ κj(t)
(
α(j−1)(t)− α(j−1)(t)

)
+

˙︷ ︷
α(j−1)(t)

≥
˙︷ ︷

α(j−1)(t)

(A3)
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hence, using the property of integrals,

∫ t2
t1
α(j)(λ)dλ ≥

∫ t2
t1

˙︷ ︷
α(j−1)(λ)dλ

α(j−1)(t2)− α(j−1)(t1) ≥ α(j−1)(t2)− α(j−1)(t1)

(A4)

which contradicts Eq. (A1). In other words

∀t > 0, α(j−1)(t) ≥ α(j−1)(t) (A5)

which proves the lemma.

Appendix B. Proof of Proposition 2

Considering Eq. (42) and the system in Eq. (51), this problem is equivalent to studying the stability
of the system ẋ(t) = Ax(t)+Buu(t) in closed-loop with v(t) = 0 or u(t) = −Koist(t)x(t) (d(t) = 0
and e(t) = 0). The transfer function between u and the regulated variable α is given by

α = Tu→α(s)

= sm+p1sm−1+...+pm−1s+pm
sn+d1sn−1+...+dn−1s+dn

u
(B1)

with k = n−m (see Assum. 3). Theoretically speaking, a minimum state-space representation of
this transfer can be represented in the canonical form which can in turn be expressed as a chain
of integrators in addition to the considered transfer zero dynamics, see (Hu, Lindquist, Mari, &
Sand, 2012, Chapter 4). The chain of integrators is given by





︷̇︷
α = α̇

...

˙︷ ︷
α(k−2) = α(k−1)

˙︷ ︷
α(k−1) = α(k)

= −Uk(t)Θx+ CαAkx

(B2)

where the last equality is obtained by observing that u = −Koist(t)x (and d = 0, e = 0). Let
∀0 ≤ j ≤ k − 1, γj = α(j) + U j(t)Θx − CαAjx and Γ =

[
γ0 . . . γk−1

]
∈ Rk. Using Eq. (22)

and (28) with null disturbances, the chain of integrators in Eq. (B2) can be re-written as
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Γ̇ =




−κ1 1 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
−κk−1 1

0 . . . 0 −κk




Γ

= AΓΓ

(B3)

This is completed by the zero dynamics as shown in (Hu et al., 2012, Chapter 4) which results
in the open-loop transfer in Eq. (B1) being equivalent to the following state-space representation

˙︷ ︷[
Γ
Z

]
=

[
AΓ 0
AZΓ AZ

] [
Γ
Z

]
(B4)

where

AZ =




0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1
−pm −pm−1 . . . −p2 −p1




(B5)

and AZΓ is the null matrix except for the coefficient AZΓ (n− k, 1) = 1. Considering Assum. 7, AZ

eigenvalues are with strictly negative real parts. As far as the dynamics of Eq. (B4) is concerned,
the following candidate Lyapunov positive definite function is considered

V (Γ,Z) =
1

2
Γ>Γ +

ε

2
Z>Z (B6)

where ε is a positive constant. Then

V̇ (Γ,Z) = Γ>AΓΓ + εZ>AZZ + εZ>AZΓΓ (B7)

where, using the logarithmic function concavity and the fact that ∀1 ≤ i ≤ k, γi−1γi ≤ |γi−1γi|:

Γ>AΓΓ = −
∑k−1

i=0 κi+1γ
2
i +

∑k−1
i=1 γi−1γi

≤ −
∑k−1

i=0 κi+1γ
2
i + 1

2

∑k−1
i=1 γ

2
i + 1

2

∑k−2
i=0 γ

2
i

Γ>AΓΓ ≤ −Γ>DV ΓΓ

≤ −Γ>diag
(
κ1 − 1

2 , κ2 − 1, . . . , κk−1 − 1, κk − 1
2

)
Γ

(B8)

so that DV Γ is a positive definite diagonal matrix upon adapted selection of the positive time-
varying coefficients κi(t). In the same vein
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εZ>AZΓΓ ≤ εν

2

(
A>ZΓZ

)>
A>ZΓZ +

ε

2ν
Γ>Γ (B9)

where ν is a positive constant. It comes that

V̇ (Γ,Z) ≤ −Γ>DV ΓΓ +
ε

2ν
Γ>Γ + ε

(
Z>AZZ +

ν

2
Z>

(
AZΓA>ZΓ

)
Z
)

(B10)

Using the notations λmin(M) and λmax(M) to denote the minimal and maximal real parts of the
eigenvalues of the matrix M , it is observed that

Z>AZZ +
ν

2
Z>

(
AZΓA>ZΓ

)
Z ≤ λmax(AZ)Z>Z +

ν

2
λmax

(
AZΓA>ZΓ

)
Z>Z (B11)

and

−Γ>DV ΓΓ +
ε

2ν
Γ>Γ ≤ −λmin (DV Γ) Γ>Γ +

ε

2ν
Γ>Γ (B12)

By choosing ν = − λmax(AZ)

λmax(AZΓA
>
ZΓ)

> 0 (since AZΓA>ZΓ is positive semi-definite) and ε =

νλmin(DV Γ) > 0 and by observing that the eigenvalues of AZ are with strictly negative real
parts (see Assum. 7) and DV Γ is a positive definite matrix, one obtains

V̇ (Γ,Z) ≤ −1
2λmin(DV Γ)Γ>Γ + 1

2λmax(AZ)Z>Z

≤ −min
(
λmin(DV Γ),−1

ελmax(AZ)
)
V (Γ,Z)

≤ −k1V (Γ,Z)

(B13)

where k1 > 0. Also note that V̇ (0, 0) = 0. As a consequence, the candidate function V is a Lyapunov
function and the open-loop system ẋ = [A−BuKoist(t)]x is GES.

Appendix C. Proof of Theorem 2

First, considering Prop. 1, the origin is a reachable equilibrium of the system in closed-loop with
the saturated control signal. Thus, it is of some interest to study the asymptotic stability of this
equilibrium. Using Eq. (1), the state equation in Eq. (45) can be re-written as

ẋ(t) = Ax(t) + Bu

[
−Koist(t)xa(t) + CKxK(t) + DK (y(t)− xa(t))−Dz

v(t)
v(t) (v(t))

]
+ Bdd (C1)

Using a similar approach to Kapoor and Daoutidis (1999), let define ex(t) := x(t) − xa(t). It
follows that

ėx(t) = (A + BuDK) ex(t) + BuCKxK(t) + BuDKDee(t) + Bdd(t)

ẋK(t) = AKxK(t) + BKex(t) + BKDee(t)
(C2)
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Let X =
[
ex xK

]>
and W =

[
d e

]>
, then

Ẋ =

[
A + BuDK BuCK

BK AK

]
X +

[
Bd BuDKDe

0 BKDe

] [
d
e

]

= AXX + BXW

(C3)

Under Assum. 4 and 5, ‖W ‖2 is finite and ‖W ‖ is bounded. It follows that ‖X‖2 is finite and
‖X‖ converges to zero. In case W = 0, the state X converges exponentially to zero. Replacing v
in Eq. (53) by its expression in Eq. (54), one obtains the following equation:

ẋa(t) = [A−BuKoist(t)]xa(t)

−BuDz
v(t)
v(t) (Koist(t)ex(t) +Koist(t)Dee(t) + DKex(t) + DKDee(t) + CKxK(t)) (C4)

Considering Prop. 2, the open-loop system ẋa = [A−BuKoist(t)]xa(t) is exponentially stable.
Thus, for some positive definite function V (xa), there exist by the converse Lyapunov theorem,
see Khalil (1996), constants αi, 1 ≤ i ≤ 4, such that

α1 ‖xa‖2 ≤ V (xa) ≤ α2 ‖xa‖2∥∥∥∂V (xa)
∂xa

∥∥∥ ≤ α3 ‖xa‖
∂V (xa)
∂xa

[Axa −BuKoist(t)xa] ≤ −α4 ‖xa‖2
(C5)

Since, by Eq. (C4):

V̇ (xa) =
∂V (xa)

∂xa
[Axa −BuKoist(t)xa]

− ∂V (xa)

∂xa
BuDz

v(t)
v(t) (Koist(t)ex(t) + DKex(t) + CKxK(t) + (DK +Koist(t)) Dee(t)) (C6)

it comes

V̇ (xa) ≤ −α4 ‖xa‖2

+ α3 ‖xa‖ ‖Bu‖
∥∥∥Dz

v(t)
v(t) (Koist(t)ex(t) + DKex(t) + CKxK(t) + (DK +Koist(t)) Dee(t))

∥∥∥ (C7)

First, using Lemma 3 and ex := x− xa, it is observed that since Koist(t)x is K1-Lipschitz then

‖Koist(t)ex‖ ≤ K1 ‖ex‖ , ∀t (C8)

Second, by property of the deadzone function,
∥∥∥Dz

v(t)
v(t) (v(t))

∥∥∥ ≤ ‖v(t)‖ , ∀t. It comes that
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V̇ (xa) ≤ −α4 ‖xa‖2 + α3 ‖Bu‖ ‖xa‖ {[K1 + ‖DK‖] (‖ex‖+ ‖De‖ ‖e‖) + ‖CK‖ ‖xK‖}

≤ −α4 ‖xa‖2 + α3 ‖Bu‖ ‖xa‖
[
K1 +

∥∥[DK CK

]∥∥] ‖X‖
+α3 ‖Bu‖ ‖xa‖

[
K1 +

∥∥[0 DK

]∥∥] ‖De‖ ‖W ‖

(C9)

Using k1 > 0 and k2 > 0 such that

k1 ≥ α3 ‖Bu‖
[
K1 +

∥∥[DK CK

]∥∥] ∈ R
k2 ≥ α3 ‖Bu‖

[
K1 +

∥∥[0 DK

]∥∥] ‖De‖ ∈ R
(C10)

then Eq. (C9) becomes

V̇ (xa) ≤ −α4 ‖xa‖2 + ‖xa‖ [k1 ‖X‖+ k2 ‖W ‖] (C11)

Applying the inequality 2ε ‖xa‖ ‖X‖ ≤ ε2 ‖xa‖2 + ‖X‖2
ε2 for ε > 0, Eq. (C11) is re-written as

V̇ (xa) ≤ −α4 ‖xa‖2 + 1
2k

2
1ε

2
1 ‖xa‖

2 + 1
2k

2
2ε

2
2 ‖xa‖

2 + k2
1

2ε21
‖X‖2 + k2

2

2ε22
‖W ‖2

≤
(
−α4 + 1

2k
2
1ε

2
1 + 1

2k
2
2ε

2
2

)
‖xa‖2 + k2

1

2ε21
‖X‖2 + k2

2

2ε22
‖W ‖2

≤ −α5 ‖xa‖2 + k2
1

2ε21
‖X‖2 + k2

2

2ε22
‖W ‖2

(C12)

where α5 = α4 − 1
2k

2
1ε

2
2 − 1

2k
2
2ε

2
2 > 0 if the constants ε1 and ε2 are chosen small enough so that

α4 >
1
2k

2
1ε

2
1 + 1

2k
2
2ε

2
2. Using (Isidori, 1999, Lemma 10.4.2, p.21), V is thus an ISS-Lyapunov function

for the system

ẋa = f1

(
xa,

[
X
W

])
(C13)

where f1 is a non-linear function adequately defined. According to (Isidori, 1999, Theorem 10.4.1,
p.21), the system in Eq. (C13) is thus ISS. At the beginning of this proof, it has been shown that –
for a specific class of bounded finite energy disturbances d and e – ‖X‖2 is finite and ‖X‖ converges
to zero. Using a similar approach to the previous case, there exists VX and strictly positive constants
β1, β2 such that V̇X(X) ≤ −β1 ‖X‖2 + β2 ‖W ‖2. This function is an ISS-Lyapunov function to
the following system

Ẋ = f2 (X,W ) (C14)

where f2 is a linear function adequately defined. Using (Isidori, 1999, Theorem 10.5.2, p.34), it is
possible to conclude that the cascade of systems in Eq. (C15) is ISS. The cascade is illustrated on
Fig. C1. Note that in case d = 0 and e = 0 and using (Isidori, 1999, Corollary 10.5.3, p.35), the
origin (xa,X) = (0, 0) is GAS for the cascade.
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(C14)

(C13) xa

W
X

W

Figure C1. Illustration of the interconnections in the cascade described by Eq. (C15).




ẋa = f1

(
xa,

[
X
W

])

Ẋ = f2 (X,W )

(C15)

Using the relation between ISS and CICS property, as stated in (Terrell, 2009, Theorem 16.4,
p.373), it comes that the cascade in Eq. (C15) is CICS. Hence, using the theorem in Sontag (1989)
(where CIBS property is a weaker property than CICS), the origin (xa,X) = (0, 0) is GAS for the
cascade. This concludes the proof.
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