
HAL Id: hal-01633653
https://hal.science/hal-01633653

Submitted on 18 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving 114-bit ECDLP for a Barreto-Naehrig Curve
Takuya Kusaka, Sho Joichi, Ken Ikuta, Md Al-Amin Khandaker, Yasuyuki

Nogami, Satoshi Uehara, Nariyoshi Yamai, Sylvain Duquesne

To cite this version:
Takuya Kusaka, Sho Joichi, Ken Ikuta, Md Al-Amin Khandaker, Yasuyuki Nogami, et al.. Solving
114-bit ECDLP for a Barreto-Naehrig Curve. Information Security and Cryptology - ICISC 2017,
Nov 2017, Séoul, South Korea. pp.231-244, �10.1007/978-3-319-78556-1_13�. �hal-01633653�

https://hal.science/hal-01633653
https://hal.archives-ouvertes.fr


Solving 114-bit ECDLP for a Barreto-Naehrig
Curve

Takuya Kusaka1, Sho Joichi1, Ken Ikuta1, Md. Al-Amin Khandaker1,
Yasuyuki Nogami1, Satoshi Uehara2, Nariyoshi Yamai3, and Sylvain Duquesne4

1 Graduate School of Natural Science and Technology, Okayama University,
700-8530, Okayama, Japan

{sho.joichi,pwu03iut,khandaker}@s.okayama-u.ac.jp
{t-kusaka,yasuyuki.nogami}@okayama-u.ac.jp

2 Dept. of Information and Media Engineering, The University of Kitakyushu,
808-0135, Fukuoka, Japan
uehara@kitakyu-u.ac.jp

3 Institute of Engineering, Tokyo University of Agriculture and Technology,
184-8588, Tokyo, Japan
nyamai@cc.tuat.ac.jp

4 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
sylvain.duquesne@univ-rennes1.fr

Abstract. The security of cryptographic protocols which are based on
elliptic curve cryptography relies on the intractability of elliptic curve
discrete logarithm problem (ECDLP). In this paper, the authors de-
scribe techniques applied to solve 114-bit ECDLP in Barreto-Naehrig
(BN) curve defined over the odd characteristic field. Unlike generic el-
liptic curves, BN curve holds an especial interest since it is well studied
in pairing-based cryptography. Till the date of our knowledge, the pre-
vious record for solving ECDLP in a prime field was 112-bit by Bos et
al in Certicom curve ‘secp112r1’. This work sets a new record by solving
114-bit prime field ECDLP of BN curve using Pollard’s rho method. The
authors utilized sextic twist property of the BN curve to efficiently carry
out the random walk of Pollard’s rho method. The parallel implemen-
tation of the rho method by adopting a client-server model, using 2000
CPU cores took about 6 months to solve the ECDLP.

Keywords: ECDLP, Barreto-Naehrig curve, Pollard’s rho method

1 Introduction

The complexity of solving a difficult mathematical problem such as discrete loga-
rithm problem (DLP) and elliptic curve discrete logarithm problem (ECDLP) in
a practical amount of time determines the security level of many popular public
key cryptosystems. The mathematical estimation of such complexity is common
in literature [10]. However, actual experiment is also bearing same importance,
which is the focus of this work.



Pairing-based cryptography became popular as a form of public key cryp-
tography (PKC) by the works of [18, 4, 3, 17]. Typically, pairing is defined as
a bilinear map of two additive cyclic sub-groups G1 and G2 of prime order r
to the same order multiplicative group G3. In practice, G1 and G2 are defined
over a certain pairing-friendly curve of embedding degree k and G3 is defined in
extension field F∗pk . This paper considers Barreto-Naehrig curve [1], one of the
widely used curves for pairing-based cryptographic applications. Let the curve
be E, defined over the finite extension field Fpk , where embedding degree k is the
smallest positive integer such that r|(pk − 1). The set of rational points E(Fp)
is defined over the prime field Fp, together with the point at infinity O forms
a commutative group. The curve’s order r is a large prime number such that
r|#E(Fp), where #E(Fp) denotes the total number of rational points. The bi-
linearity property of pairing is e given as e(aP, bQ) = e(P,Q)ab for every rational
point P ∈ G1, Q ∈ G2 and a, b ∈ Z. In the case of BN curve, G1 = E(Fp) and
G2 ⊂ E(Fp12). The ECDLP in G1 = E(Fp) with two arbitrary rational point
P,R is finding an integer s (0 < s ≈ r) such that [s]P = R in E, provided that
such s exists for P,R. The security of pairing-based cryptosystems depends on
the difficulty of

– solving ECDLP in G1 and G2,

– solving DLP of the multiplicative group G3.

– and the difficulty of pairing inversion, i.e. G1 ×G2 ← G3.

This paper focuses on solving ECDLP in G1 = E(Fp) of BN curve.

The Pollard’s rho algorithm [16] can solve the ECDLP in
√
πr/2 steps. Later

Gallant et al. [8] improved the time complexity of the Pollard’s rho method by√
2 factors, that took

√
πr/2 steps. Van Oorschot and Wiener[20] proposed a

distributed version of Pollard’s rho algorithm that can be parallelized on n CPUs
taking

√
πr/2n steps giving n-fold speed up. This paper utilizes the above idea

of parallelized rho method together with an efficient implementation of elliptic
curve arithmetic using Montgomery reduction [13] and Montgomery trick [14].

In the experimental implementation, a client-server model consisting 2000
processor cores (each core acts as a single client for generating random rational
points) is utilized. The generated random points with special feature also called
the distinguished point, is sent to server to minimize collision detection cost.
The server checks collision detection and uses MySQL database to store received
rational points. The inversion in elliptic curve addition and doubling steps are
efficiently carried out by applying Montgomery tricks while creating 95 random
walks for each inversion in each thread. In addition, the sextic twist property
of BN curve is utilized to apply skew Frobenius map on the twisted curve. The
skew Frobenius map generates 6 associated rational points, which are treated as
a single rational point in a random walk. The distinguished points technique is
applied with the condition of 29 trailing zeros of x-coordinate to send the filtered
point to the server. The experiment took about 6 months to solve the 114-bit
ECDLP in BN curve defined over the prime field.



Related works

Several works have been done both from the algorithmic perspective and ac-
tual attack implementation. However, most of the works are focused on solving
ECDLP in curves defined over binary field [2, 21]. A very few works have done
on the actual attack for solving ECDLP in curves defined over Fp. In 2016, Ka-
jitani et al. [9] solved 70-bit prime field ECDLP in less than 24 minutes by using
web-based volunteer computing. The authors of this paper have been influenced
by Miyoshi et al. [12] work, where 94-bit ECDLP on was solved in 28 hours by
parallelizing 71 computers. In 2012, Bos et al. [5] set a record by solving 112-bit
ECDLP in prime field using about 200 Sony PlayStation 3s for about 6 months.
Before that in 2002, the 109-bit ECDLP of Certicom ECCp-109 curve defined
over Fp wast solved by Chris Monico [6] in 549 days of calendar time. There-
fore, this works sets a new record for solving ECDLP on BN curve defined over
114-bit prime field.

2 Preliminaries

2.1 Elliptic Curve and ECDLP

Let p be a prime number and Fp be a prime field. An elliptic curve, generally
represented by affine coordinates over Fp is defined as,

E(Fp) : y2 = x3 + ax+ b, a, b ∈ Fp. (1)

A pair of coordinates x and y that satisfy Eq.(1) are known as rational points
on the curve. Let #E(Fp) be the set of all rational points on the curve defined
over Fp including the point at infinity denoted by O.

Elliptic curve addition (ECA) between rational pointsQ1(x1, y1) andQ2(x2, y2)
is Q1 +Q2 = Q3(x3, y3), defined as follows:

λ =


y2 − y1
x2 − x1

, if Q1 6= Q2 and x1 6= x2,

3x21 + a

2y1
, else if Q1 = Q2 and y1 6= 0,

∅, otherwise,

(2)

(
x3, y3

)
=


(
λ2 − x1 − x2, (x1 − x3)λ− y1

)
, if λ 6= ∅,

O, otherwise.
(3)

where Q3 is also a rational points of elliptic curve E(Fp) and λ is the tangent
between the points. If Q1 = Q2 then Q1 +Q2 = 2Q1, which is known as elliptic
curve doubling (ECD). ECDLP is the problem that calculates the scalar s only
by using rational points P and Q in E(Fp) such that Q = [s]P , where [s]P is

[s]P = P + P + · · ·+ P︸ ︷︷ ︸
s−1 times addition of P

. (4)



2.2 BN Curve

BN curve is a class of non super-singular pairing friendly elliptic curve of em-
bedding degree 12, defined over extension field Fq (q = p12) is given by

E : y2 = x3 + b, (b 6= 0 ∈ Fq and x, y ∈ Fq). (5)

Other parameter settings are given by

p = 36χ4 − 36χ3 + 24χ2 − 6χ+ 1, (6)

r = 36χ4 − 36χ3 + 18χ2 − 6χ+ 1, (7)

where χ is a certain integer and p is the characteristic of Fp. Let #E(Fq) be
the set of all rational points on the curve defined over Fq including the point at
infinity denoted by O.

2.3 Pollard’s Rho Method

Pollard’s rho method is known as an efficient technique for solving an ECDLP.
We designed and implemented a parallelized rho method for solving a 114-bit
ECDLP with thousands of CPU cores. The proposed method consists of three
steps. The first step generates a set of n different random rational points denoted
by L. For an integer i where 1 ≤ i ≤ n and two random scalars αi, βi (∈ Fq),
let Wi denote i-th random walk seed to be used in random walks where

Wi , [αi]P + [βi]Q, (8)

L , {Wi|1 ≤ i ≤ n}. (9)

Let m be the number of branches of the parallel random walks. The second
step generates a set of m different random starting rational points in the m
parallel random walk branches, denoted by U . For two integers i and j where
1 ≤ i ≤ m and 0 ≤ j, let Ri,j denote the j-th rational point which is generated
with random scalars αi,j and βi,j by the i-th random walk branch. For an integer
i where 1 ≤ i ≤ m, since Ri,0 denotes the starting point of the i-th random walk
branch where

Ri,0 = [αi,0]P + [βi,0]Q, (10)

Ri,0 is randomly generated and,

U , {Ri,0|1 ≤ i ≤ m}. (11)

The third step performs m random works in parallel by using L and U . For a
rational point R, let η(R) be a function which gives an unique index of a rational
point in L. For two integers i and j where 1 ≤ i ≤ m and 1 ≤ j, let the rational
points Ri,j which is the j-th rational point in the i-th random walk branch, be
calculated by the following,

Ri,j = Ri,j−1 +Wη(Ri,j−1), (12)

= [αi,j−1 + αη(Ri,j−1)]P + [βi,j−1 + βη(Ri,j−1)]Q, (13)

= [αi,j ]P + [βi,j ]Q. (14)



Let H be the set of all generated rational points in the rho method. Suppose
the i-th random walk branch generate a rational point Ri,j ∈ H at the j-th
iteration step and we have a rational point Ri,j = Ri′,j′ where αi,j 6= αi′,j′

and βi,j 6= βi′,j′ , the case is called a collision and the ECDLP is solved by a
simultaneous equation.

The algorithm of parallelized rho method is given as Alg.1. An example of
parallelized rho method with 12-bit ECDLP is shown as follow Fig.1. In this
paper, L and U are generated as preparation steps, and perform random walk at
every random walk branches by using L and U . Each attacking clients run the
algorithm. Therefore, the total number of random walk branches is m times the
number of attacking clients. It is said that a collision would occur when

√
πr/2

points are generated on average according to the birthday paradox.

Algorithm 1: Parallelized rho Method

Input: P, Q(= [s]P ) ∈ E(Fp)(0 ≤ s < r)
Output: s

for i = 1 to n do1

αi, βi are random elements (0 ≤ αi, βi < r),2

Wi ← [αi]P + [βi]Q.3

H ← φ.4

for i = 1 to m do5

αi,0, βi,0 are random elements (0 ≤ αi,0, βi,0 < r),6

Ri,0 ← [αi,0]P + [βi,0]Q.7

H ← H ∪ {Ri,0}.8

for j = 1 to r − 1 do9

for i = 1 to m do10

l← η(Ri,j−1).11

Ri,j ← Ri,j−1 +Wl, αi,j ← αi,j−1 + αl, βi,j ← βi,j−1 + βl.12

if Ri,j = Ri′,j′(Ri′,j′ ∈ H,αi,j 6= αi′,j′ , βi,j 6= βi′,j′) then13

go to line 15.

else14

H ← H ∪ {Ri,j}.

s← − (αi,j−αi′,j′ )

(βi,j−βi′,j′ )
(mod r).15

3 Techniques for accelerating random walk

In the attack, Montgomery reduction[13] is used for efficient modular arithmetics
over Fp. Montgomery trick[14] is also used for reducing the number of inversions
over Fp by parallelizing many random walks on each client. Then, this paper
attacks 114-bit ECDLP in G1 on BN curve to which a grouping technique is
applied based on the sextic twist[15]. This section concentrates on introducing
the grouping technique with skew Frobenius mapping defined in G1.



Fig. 1. parallelized rho method with 12bit ECDLP, n=4 and 4 branches

3.1 Groups of rational points for Ate pairing on BN curve

Let us remember the additive groups of rational points for Ate pairing e defined
as follows, where E(Fpk)[r], Ker, and π denote the set of rational points of order
r, kernel of homomorphism, and Frobenius mapping[7], respectively.

G1 = E(Fpk)[r] ∩Ker(π − [1]), (15)

G2 = E(Fpk)[r] ∩Ker(π − [p]), (16)

e(·, ·) : G1 ×G2 → G3 = F∗pk/(F∗pk)r. (17)

In the case of BN curve, the embedding degree k is equal to 12 and the above
G1 is equal to E(Fp). Based on these definitions, the next section introduces a
grouping technique with sextic twist and skew Frobenius mapping.

3.2 Sextic twist and Skew-Frobenius Mapping

Basically, in order to improve Ate or optimal-ate pairing with BN curve, the
sextic-twist technique is available. However, it also contributes to attacking the
ECDLP on BN curve. Since the embedding degree of BN curve is 12 and BN
curve is written as Eq. (5), sextic-twisted curve E′ is given by

E′ : y2 = x3 + bv−1, (18)



where v is a cubic and quadratic non residue in Fp2 . In this case, we have the
following isomorphism[19].

G′1 = E′(Fp12)[r] ∩Ker(π2 − [p2]), (19)

ψ6 : (x, y) ∈ G1

7−→ (v1/3x, v1/2y) ∈ G′1. (20)

G′1 has the following automorphism mapping π̃, where Q is a rational point in
G1. It is called skew Frobenius mapping.

π̃(Q) = ψ−16 (π2(ψ6(Q)))

= (v
p2−1

3 x, v
p2−1

2 y). (21)

In this case, π̃6(Q) = π̃, v(p
2−1)/3 becomes a primitive cubic root of unity ε in Fp,

and v(p
2−1)/2 becomes p− 1. Thus, in what follows, the skew Frobenius π̃ map

in this case is denoted by π̃6 because it is periodic of period 6. Then, π̃6 enables
an efficient grouping in the rho method as introduced in the next section.

3.3 A grouping of rational points in G1 on BN Curve

Let us consider a rational point Ti ∈ G1 as generated in the random walk process.
Then, based on the skew Frobenius mapping π̃, the following six rational points
in G1 are easily obtained.

Ti = (xi, yi), (22a)

π̃6(Ti) = (εxi, yi), (22b)

π̃2
6(Ti) = (ε2xi, yi), (22c)

π̃3
6(Ti) = (xi,−yi), (22d)

π̃4
6(Ti) = (εxi,−yi), (22e)

π̃5
6(Ti) = (ε2xi,−yi). (22f)

Then, a certain representative point among the six points is systematically
and efficiently determined, which enables the following efficient grouping attack.
For a rational point R ∈ G1, let Rep(R) denote a function which uniquely gives
the representative in the group of six rational points given by the skew Frobenius
map π̃6.

Let us suppose that a collision is detected as

Rep(Ti) = Rep(Tj), (23)

Rep(Ti) = [αi]P + [βi]Q, (24)

Rep(Tj) = [αj ]P + [βj ]Q, (25)



where (αi, βi) 6= (αj , βj). Then, since π̃t6(Tj) = [p2t]Tj , it means that the follow-
ing relation holds:

Ti = π̃t6(Tj),

Ti = [p2t]Tj ,

[αi]P + [βi]Q = [p2t]([αj ]P + [βj ]Q),

αi + βi · s ≡ p2t · αj + p2t · βj · s (mod r),

s ≡ − (αi − p2t · αj)
(βi − p2t · βj)

(mod r). (26)

where 0 ≤ t < 6. Therefore, since the skew Frobenius mapping is efficiently
carried out as previously introduced, this grouping technique enables to reduce
the average number for detecting a collision from

√
πr/2 to

√
πr/12. Alg. 2

accommodates the above procedure of obtaining representative point among the
6 associated rational points. The step 7, 12, 13 and 16 actually differs from
Alg. 1. In this paper, the last 16 generated scalars α are saved in order to avoid
fruitless cycles. If a new generated scalar α is same as one of the previous scalars,
η(R) in Sec.2.3 is incremented by 1.

4 Implementation

In this experiment, the authors employed about 2000 heterogeneous Intel64 CPU
cores to attack the ECDLP by the rho method. In the parallel rho method,
each random walk branches are executed on distributed computer resources in
parallel. It is necessary to aggregate all the generated random rational points to
a single computer in order to check the collision. Therefore, this paper employs a
typical client-server model. In this context, all clients generate random rational
points in parallel and only the distinguished points are sent to the server. The
collision detection is done on the server.

4.1 Basic Integer Operations and Algebra

To handle the 114-bit integers efficiently, the authors employed 128-bit integer
type on Intel64 CPUs. Since the target is a 114-bit ECDLP, an addition and a
subtraction between two 114-bit integers never causes an overflow or an under-
flow. In contrast, since a result of a multiplication between two 114-bit integers
easily exceeds 128-bit integer, the authors implemented big number arithmetic
to handle this case.

In this attack, since the most of multiplications are multiplication modulo
prime p or r; Montgomery reduction is implemented by using the 128-bit multi-
plication. A calculation of a multiplicative inverse is implemented by using the
well-known extended Euclid’s algorithm.

Since the majority of the computational cost of an ECA or an ECD is the cost
of the inversion, well-known Montgomery trick is also employed. Since several



Algorithm 2: Customized parallelized rho method with representative point
technique

Input: P, Q(= [s]P ) ∈ E(Fp)(0 ≤ s < r)
Output: s

for i = 1 to n do1

αi, βi are random elements (0 ≤ αi, βi < r),2

Wi ← [αi]P + [βi]Q.3

H ← φ.4

for i = 1 to m do5

αi,0, βi,0 are random elements (0 ≤ αi,0, βi,0 < r),6

Ri,0 ← Rep([αi,0]P + [βi,0]Q).7

H ← H ∪ {Ri,0}.8

for j = 1 to r − 1 do9

for i = 1 to m do10

l← η(Ri,j−1).11

if αi,j−1 = αi,c(j − 18 < c < j − 1) then12

l + +.

Ri,j ← Rep(Ri,j−1 +Wl). αi,j ← αi,j−1 + αl, βi,j ← βi,j−1 + βl.13

if Ri,j = Ri′,j′(Ri′,j′ ∈ H,αi,j 6= αi′,j′ , βi,j 6= βi′,j′) then14

go to line 16.

else15

H ← H ∪ {Ri,j}.

s← − (αi,j−p2t·αi′,j′ )

(βi,j−p2t·βi′,j′ )
(mod r).16

inversions must be aggregated to utilize Montgomery trick, the authors evaluated
the performance of our implementation of the inversion and choose 95 number
of aggregation for Montgomery trick. Therefore, 95 random walk branches are
synchronized and handled in a single thread in the implementation. The number
of the threads in a client computer m is chosen as the number of real CPU
cores or the number of Hyper Threading of the computer. For this case, the
computational cost of a single step in rho method having Montgomery trick
with a grouping (Sec.3.3) and without a grouping are shown in Table.1. The
inversion takes 305 additions and a single multiplication on average.

Table 1. The computational cost of a single step in Rho method with Montgomery
trick

Operations (mod p) With grouping Without grouping

Addition 1073 760

Multiplication 691 472

Squaring 95 95

Inversion 1 1



4.2 Distinguished Point Method

The collision detection is a check whether a rational point is in the set of all
previously stored rational points or not. If the all generated rational points are
sent to the server from the all clients, the number of rational points which must be
stored in the server easily exceeds the capacity of the memory space of the server.
For example, when solving 114-bit ECDLP, about

√
π × 2114/12 ≈ 7.4 × 1016

points need to be stored to the server. If the size of the data of a rational point is
50[Byte], 3.7× 106[TB] storage space is required. Therefore, the authors choose
distinguished point method to reduce the number of transmitted and stored
rational points. In this attack, a distinguished point is a rational point where
it’s x-coordinate is divisible by an integer θ of the form of power of two. Here θ
is called parameter of the distinguished point method. The computational cost
to distinguish the point is a logical AND operation and comparison to numerical
zero. The number of rational points sent to the server is reduced to 1/θ. The
number of stored rational points are also reduced to 1/θ which significantly
reduce the cost of collision detection on the server. This reduction causes an
overhead by generating extra rational points in the random walk branches.

If there is a pair of two rational points (Ri,j , Ri′,j′) where Ri,j = Ri′,j′ for
positive integer h, (αi,j , βi,j) 6= (αi′,j′ , βi′,j′), the following holds.

η(Ri,j) = η(Ri′,j′), (27)

Ri,j+1 = Ri′,j′+1, (28)

Ri,j+h = Ri′,j′+h. (29)

In addition, if θ/2 rational points are generated in a random walk branch, a
distinguished point can be generated in the random walk branch on average.
Therefore, the overhead is at most θ/2 iterations in the pair of random walk
branches, which means the distinguished method does not significantly increase
the number of iteration steps before the rho method ends.

4.3 Aggregation on Generated Distinguished Points

By using the distinguished point method, the frequency to transmit the distin-
guished points can be significantly reduced. However, to reduce the frequency to
transmit the IP datagrams, which includes the distinguished points, we employ
a method to aggregate the distinguished points.

Each processor acts as a single client for generating random rational points
in the experiment. The frequency to transmit the generated rational points to
the server depends on the parameter of the distinguished method θ. A client
stores a set of distinguished points. If the number of stored points becomes
large enough, they are sent to the server at once. The number of the aggregated
distinguished points is set 128 in this work. Therefore, the frequency to transmit
the IP datagrams is reduced to 1/128 in the implemented system.



Table 2. Computer Resources

Client 1
The number of computers 150

OS Mac OSX 10.7.5 (64-bit)
CPU Intel Core i5 (2.50GHz)

Client 2
The number of computers 716

OS Windows7 Professional (64-bit)
CPU Intel Core 2 Duo E7600 (3.06GHz)

Client 3
The number of computers 162

OS FreeBSD 11 (64-bit)
CPU Dual Intel Xeon X5670 (2.90GHz)

Server
OS CentOS 6.8 (64–bit)

CPU Intel Core i5 (3.40GHz)
Database MySQL ver. 5.1.73

4.4 Collision Detection at Server

The server stores information about coordinate of the rational point and scalars.
For example, when the server receives R(x,y) = [α]P + [β]Q, it stores x and α,
β. When a new rational point is received, the server compares the information
with stored rational points. If any corresponding point is found in the server, a
scalar is calculated and the attack is ended.

By using Sec.4.2, the number of stored rational points is reduced. However, it
is difficult to store all generated points on the memory of the server. Therefore,
this study stores rational points on the MySQL databases.

4.5 Computer Resources

This attack employed several types of computers for both the server and the
clients. Table 2 shows the major clients and the specification of the computers.
The attack consists of 3 phases. The first phase was 51 days attack with Client
1 and 2. The second phase was 47 days attack with same clients. The final phase
was 81 days attack with Client 3.

5 Result and Analysis

The parameter settings of BN curve for this attack is as follows:

χ = 135000271,

b = 3,

r = 11957518425389075145185553763727233,

p = 11957518425389075254535992784167879.



The rational points for this ECDLP attack were randomly chosen by Mersenne
Twister (MT) pseudorandom number generator [11] as follows:

P = (2555802502070605019799774084777870,

2766213229730430765452066521605006),

Q = (8729198974879999392476239739358779,

2797493486736137111251588290298576).

The x coordinate of rational point P is generated randomly where x satisfies
Eq.(5) for the first time. The secret scaler s was incremented by 1 after generating
randomly. The random seed of MT pseudorandom number generator is 5489. The
Q is obtained as [s]P = Q. This s is only used to obtain Q in initial step but
no longer used during the attack stage. After the 81 days, the attack introduced
in Sec. 4.5 with 136887663 rational points stored in the server; ended with the
following two pairs of random scalars of a collision:

(α, β) = (10978171553023857380293303028367032,

7667182665169261066594516279554751),

(α′, β′) = (49568355245740117450745472411632,

1446344014944960931462013632028773),

where [α]P + [β]Q = [α′]P + [β′]Q. The secret scalar s was calculated by

s = 10928603197778117262842557555955400/

5736679775164775010053051116201255.

The results proved that this attack certainly succeeded to solve the 114-bit
ECDLP. Note that 5.5GB of memory was consumed to store the information
of generated rational points.

To save the memory space of the collision detection server and to reduce the
network traffic, the authors disposed the information on the actual number of
all the generated points, the authors give an estimation of the number. Since
the authors chose θ = 229 as the parameter of the distinguished points, we
can estimate the the total number of generated rational points is 136887663 ×
229 = 73491004476358656. Since r = 11957518425389075145185553763727233,
the result might be one of the typical average cases. However, the result of the
authors attack is little bit better than the average number of rational points
where a simple collision attack stops.

6 Conclusion

In this paper, the authors implemented a parallel rho attack for a 114-bit BN
curve and solved an ECDLP for the curve. The attack system employed well-
known Montgomery reduction, Montgomery trick and the extended Euclid’ al-
gorithm by using specially implemented integer operations over 128-bit integer



type on Intel64 CPUs. The authors also employed a grouping of rational points
in G1 on BN curve which significantly reduced the number of useless collision
detections in the attack. The results of the experiment indicates that the 114-bit
ECDLP for BN curves can be solved in 81 days with 2000 cores of Intel Xeon
X5670 (2.90GHz) CPU on average.

References

1. Barreto, P.S., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: In-
ternational Workshop on Selected Areas in Cryptography, SAC 2005. pp. 319–331.
Springer (2005)

2. Bernstein, D.J., Engels, S., Lange, T., Niederhagen, R., Paar, C., Schwabe, P.,
Zimmermann, R.: Faster elliptic-curve discrete logarithms on fpgas. Tech. rep.,
Cryptology eprint Archive, Report 2016/382 (2016)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 506–522. Springer (2004)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In:
Advances in Cryptology—ASIACRYPT 2001, pp. 514–532. Springer (2001)

5. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using
sloppy reduction. IJACT 2(3), 212–228 (2012), https://doi.org/10.1504/IJACT.
2012.045590

6. Certicom: The Certicom ECC Challenge (Accessed: August 10, 2017), https://
www.certicom.com/content/dam/certicom/images/pdfs/challenge-2009.pdf

7. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC press (2005)

8. Gallant, R., Lambert, R., Vanstone, S.: Improving the parallelized pollard lambda
search on anomalous binary curves. Mathematics of Computation of the American
Mathematical Society 69(232), 1699–1705 (2000)

9. Kajitani, S., Nogami, Y., Miyoshi, S., Austin, T., Al-Amin, K.M., Begum, N.,
Duquesne, S.: Web-based volunteer computing for solving the elliptic curve discrete
logarithm problem. International Journal of Networking and Computing 6(2), 181–
194 (2016)

10. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Advances in Cryptology - CRYPTO 2016 - Proceedings,
Part I. pp. 543–571. Springer (2016)

11. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (Jan 1998), http://doi.acm.org/10.1145/272991.272995

12. Miyoshi, S., Nogami, Y., Kusaka, T., Yamai, N.: Solving 94-bit ecdlp with 70
computers in parallel. International Journal of Computer, Electrical, Automation,
Control and Information Engineering 9(8), 1966 – 1969 (2015)

13. Montgomery, P.: Modular multiplication without trial division,. Math. Computa-
tion 44, 519–521 (1985)

14. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243–264 (1987)



15. Nogami, Y., Sakemi, Y., Okimoto, T., Nekado, K., Akane, M., Morikawa, Y.: Scalar
multiplication using frobenius expansion over twisted elliptic curve for ate pairing
based cryptography. IEICE transactions on fundamentals of electronics, commu-
nications and computer sciences 92-A(1), 182–189 (2009)

16. Pollard, J.M.: Monte carlo methods for index computation (mod p). Mathematics
of computation 32(143), 918–924 (1978)

17. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 457–
473. Springer (2005)

18. Sakai, R., Kasahara, M.: Id based cryptosystems with pairing on elliptic curve.
IACR Cryptology ePrint Archive 2003, 54 (2003)

19. Sakemi, Y., Nogami, Y., Okeya, K., Kato, H., Morikawa, Y.: Skew frobenius map
and efficient scalar multiplication for pairing–based cryptography. In: International
Conference on Cryptology and Network Security. pp. 226–239. Springer (2008)

20. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. Journal of cryptology 12(1), 1–28 (1999)

21. Wenger, E., Wolfger, P.: Solving the discrete logarithm of a 113-bit koblitz curve
with an fpga cluster. In: International Workshop on Selected Areas in Cryptogra-
phy. pp. 363–379. Springer (2014)


