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A B S T R A C T

This paper presents a mirror-like augmented reality (AR) system to display the internal
anatomy of the current user. Using a single Microsoft V2.0 Kinect (later on referenced
as the Kinect), we animate in real-time a user-specific model of internal anatomy ac-
cording to the user’s motion and we superimpose it onto the user’s color map. Users
can visualize their anatomy moving as if they where looking inside their own bodies in
real-time.

A new calibration procedure to set up and attach a user-specific anatomy to the Kinect
body tracking skeleton is introduced. At calibration time, the bone lengths are estimated
using a set of poses. By using Kinect data as input, the practical limitation of skin corre-
spondence in prior work is overcome. The generic 3D anatomical model is attached to
the internal anatomy registration skeleton, and warped on the depth image using a novel
elastic deformer subject to a closest-point registration force and anatomical constraints.

The noise in Kinect outputs precludes direct display of realistic human anatomy.
Therefore, to enforce anatomical plausibility, a novel filter to reconstruct plausible
motions based on fixed bones lengths as well as realistic angular degrees of freedom
(DOFs) and limits are introduced. Anatomical constraints, applied to the Kinect body
tracking skeleton joints, are used to maximize the physical plausibility of the anatomy
motion while minimizing the distance to the raw data. At run-time, a simulation loop
is used to attract the bones towards the raw data. Skinning shaders efficiently drag the
resulting anatomy to the user’s tracked motion.

Our user-specific internal anatomy model is validated by comparing the skeleton with
segmented MRI images. A user study is established to evaluate the believability of the
animated anatomy.

As an extension of Bauer et al. (2016), we also propose an image-based algorithm
that corrects accumulated inaccuracy of the system steps: motion capture, anatomy
transfer, image generation and animation. These inaccuracies show up as occlusion
and self-occlusion misalignments of the anatomy regions when superimposed between
them and on top of the color map. We also show that the proposed work can efficiently
reduce these inaccuracies.

c© 2017 Elsevier B. V. All rights reserved.

http://www.sciencedirect.com
http://www.elsevier.com/locate/results-in-physics
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Introduction1

The emergence of commodity depth cameras such as Kinect2

sensors motivates new educational, medical and healthcare3

applications. However, previous studies show that raw Kinect4

data cannot be easily employed in human motion tracking5

(see Pfister et al. (2014), and also Malinowski and Matsinos6

(2015)). In this paper, a new calibration and motion capture7

sufficiently accurate for AR applications are introduced and8

demonstrated by superimposing internal anatomy on the user’s9

color map in real-time. At calibration time, the length and10

width of body segments are estimated based on specific body11

poses and silhouettes. A novel anatomically sound deformer12

is applied to fit a high-quality generic 3D biomechanical13

model in order to generate a user-specific anatomical model.14

At run-time, our model tracks bone motions based on the15

Kinect body tracking skeleton joints output, while enforcing16

anatomical plausibility rules such as constant lengths and joint17

limits. Our user study preliminary shows that the precision is18

sufficient to superimpose the user-specific anatomical model19

onto the color image, using linear blend skinning. We also20

propose an efficient image-based corrective registration method21

to correct any anatomy misalignments that can occur during22

3D registration.23

24

This paper is organized as follows: Section 1 briefly survey25

related work. Section 2 introduces a body size measurement26

procedure based on multiple poses, silhouette points and an27

anatomically sound deformer. Section 3 describes how it is28

animated based on robust motion capture using anatomical29

constraints. Section 4 goes through results and the validation30

process. Section 5 explains how final adjustments can be made31

at the image level in order to improve the rendering and to solve32

occlusion issues. Section 6 finally concludes by presenting33

possible applications of this work and under development34

features.35

36

This paper is an extended version of the paper Bauer et al.37

(2016), presented at MIG’16. Superimposing the anatomy onto38

the users image allows us to create a real-time augmented re-39

ality experience. However, the AR paradigm impose us recur-40

rent evolutions to improve immersion. As seen in Bauer et al.41

(2016) attached video (see https://youtu.be/Ip17-Vaqqos), in the42

previous version we had good but not optimal results. This pa-43

per presents an image-based correction system that is a major44

contribution: it allows perfect alignment of virtual data onto45

streamed video.46

1. Related Work47

Nowadays, human body modeling and tracking are widely48

studied for a variety of applications such as motion capture or49

morphometric studies.50

51

Skin Registration is the most accessible approach to52

generate a wide range of human bodies. Most studies are53

based on skin statistical models generated by a shape and54

pose database (Helten et al. (2013)). Gilles et al. (2011) use55

frame-based skinning methods to deform a generic skin to fit 56

at best the user data. Other approaches using point cloud (Li 57

et al. (2013)) or multi-position silhouettes (Vlasic et al. (2008)) 58

may also be used to reconstruct the body skin. Most often, raw 59

data comes from acquisition of people wearing clothes and this 60

may lead to non-realistic bodies. Bălan and Black (2008), as 61

well as Zeng et al. (2015) intend to find ways to pass through 62

these limitations. Since they rely only on skin models and 63

do not include internal anatomy, those methods may result in 64

unrealistic skin twisting. 65

66

Anatomy Registration The most accurate subject-specific 67

anatomy registration methods come from the medical imaging 68

fields (Sotiras et al. (2013)). However, 3D medical images 69

are not easily used in a non medical context and are not 70

adapted to real-time capture. Several other methods have 71

been proposed. Quah et al. (2005) present a pose-dependent 72

method to register a 3D anatomical model onto 2D images. 73

Based on key points, they register skin and skeleton (no soft 74

tissue). However this method gives static results. Using Kinect 75

point cloud, Zhu et al. (2015) register user-specific skin and 76

skeleton during motion. Ali-Hamadi et al. (2013) as Gilles 77

et al. (2010), present a pose-dependent method to transfer a 3D 78

anatomical model to a target skin. This method is static and 79

time consuming. The method introduced by Saito et al. (2015) 80

achieves near-interactive run time skin, skeleton and soft tissue 81

3D model editing. Tab. 1 compares state of the art anatomy 82

registration methods. 83

84
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Non pose dependent

Skin and Skeleton
Soft Tissue

Table 1. Comparison between state of the art anatomy registration meth-
ods. Legend: green means that the characteristic is totally handled by the
method, orange that it is partly, and red that it is not.

User Tracking In Pfister et al. (2014), the authors assess that 85

the rough Kinect body tracking data are enough for basic mo- 86

tion measurements such as gait analysis, or joint angles during 87

motion, but are far beyond VICON cameras in terms of soft- 88

ware and hardware. 89

The tracking algorithm used in this paper is based on the 90

Kinect body tracking skeleton which is really noisy. Whereas 91

we add constraints to upgrade the tracking, Meng et al. (2013) 92

ask the user to pinpoint anatomical key points to help position- 93

ing the data. Shen et al. (2012) use an example-based method 94

to learn how to correct initially tracked poses. Because body 95
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tracking is a critical step, other methods like those introduced1

by Zhou et al. (2014) or Wei et al. (2012) use the Kinect depth2

map and implement their own posture registration process using3

probabilities or pose estimations. Zhu et al. (2015) use multi-4

Kinect depth maps and anatomical knowledge to enhance real-5

istic limb motions.6

Nowadays, in the game industry, sports and fitness training7

applications based on depth map tracking devices are com-8

monly used (e.g. Nike Kinect+, Get Fit With Mel B, Your9

Shape, etc...). To our knowledge, the best tracking games10

are based on the Microsoft V2.0 Kinect technology. All these11

games only show the user depth map or silhouette .12

By presenting the anatomy superimposed onto the user’s13

color map (AR), a precision and a realism constraint are added14

compared to this field state of the art. Associated Supplemental15

materials presents experiments we did to determine the overall16

Kinect body tracking precision and quality.17

18

AR Systems In the last few years, the number of AR appli-19

cations increased in the medical education field (see Kamphuis20

et al. (2014)).21

The Magic Mirror, by Blum et al. (2012), superimposes stat-22

ically CT scans of the abdomen onto the user’s image with23

gesture-based interaction. A more recent version of the Magic24

Mirror (see also Ma et al. (2016)) also presents an “organ explo-25

sion effect” and the possibility to visualize precomputed muscle26

simulation of the user’s arm in real-time. The Digital Mirror, by27

Maitre (2014), shows full body CT scans but does not superim-28

pose them on the user image. In these two cases, data follow29

the user’s motion but are not deformed with respect to these30

motions. The Anatomical Mirror, by Borner and Kirsch (2015),31

allows full-body motion by using the Kinect body tracking, but32

displays animated generic 3D models while we show a user-33

specific one.34

Thanks to the use of rules coming from anatomical knowl-35

edge, we significantly improve AR realism and anatomy motion36

plausibility with respect to Bauer et al. (2014) and Bauer et al.37

(2015) in the Living Book of Anatomy project. Tab. 2 sum-38

marizes comparisons between state-of-the-art demos and our39

work.40

41

Data Validation Validation of anatomical data requires in-42

vivo measurements, the simplest way is to use as ground truth43

body measurements (see Dao et al. (2014)) or/and anatomical44

landmarks (see Espitia-Contreras et al. (2014)) taken directly45

onto the user’s body. The study made by Malinowski and Matsi-46

nos (2015) gives limb bones length during motion and compare47

them with ground truth body measurements.48

Using user body anatomical landmarks introduces measure-49

ment errors due to body position and skin curvature. We de-50

cided to use MRI data as ground truth to be able to obtain in-51

ternal specific points (e.g. femoral head of bone) in addition to52

externally visible specific anatomical points.53

2. User-Specific Anatomy54

We present a novel approach using Kinect SDK outputs55

(color map, body tracking skeleton and point cloud) and a 3D56

B
lu

m
et

al
.(

20
12

)

M
ai

tr
e

(2
01

4)

B
or

ne
r

an
d

K
ir

sc
h

(2
01

5)

B
au

er
et

al
.(

20
14

)

B
au

er
et

al
.(

20
15

)

B
au

er
et

al
.(

20
16

)

M
a

et
al

.(
20

16
)

cu
rr

en
tw

or
k

Application
Real-Time

Anatomy Choice
Advanced Interaction

3D Model
User-Specific

Male/Female or Unisex F F T T T T T T
Whole Body F T T T T T F T

Skeleton System T F T T T T T T
Muscular System F T T T T T T T

Organs F T T T T T T T
Anatomy Motion

User Position
User Posture

Precision
Validation
User Study T T F F F T T T

Augmented Reality

Table 2. Comparison between anatomical mirror-like applications. Leg-
end: green for good (or True), orange for average, red for bad (or False).

reference model including skin surface and internal anatomy 57

(skeleton, muscles, organs, etc) to generate user-specific 58

anatomical data. 59

60

The method consists of four steps. First, the user-specific 61

body segment lengths and widths are computed using the Kinect 62

SDK outputs (see Section 2.1) to define a list of 3D key points. 63

In the second step the generic skin is deformed based on key 64

points and the partial user’s point cloud (Section 2.2). The third 65

step consists in transferring the reference skeleton inside the 66

user-specific skin (Section 2.3). Finally soft tissue between the 67

bones and the skin is determined using Laplacian interpolation 68

in a way similar to Ali-Hamadi et al. (2013). These different 69

steps are summarized in Fig. 1. 70

To ease the understanding of the rest of this Section, descrip- 71

tions of each type of deformation skeleton used are provided 72

below: 73

• Kinect body tracking skeleton: composed of 25 joints, 74

this animation skeleton is given by the Kinect SDK. 75

• skin registration skeleton: composed of 22 control 76

frames and 18 control points. Control frames (Fig. 4, red 77

dots) are defined on the generic 3D skin and they corre- 78

sponds to some of the Kinect body tracking joints. Control 79

points are defined on the generic 3D skin contour (Fig. 4, 80

green dots) and corresponds to the silhouette key points 81
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skin surface

(b)

skeleton

(c)

soft tissue

(d)

key points

(a)

Step 2: skin 

registration
skin

(j)

Step 3: skeleton 

registration

Step 4: soft tissue 

registration

skeleton

(k)

soft tissue

(l)

User-specific anatomy

Kinect

Source

(Reference model)

in

in

in
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out

out

out

key points

(i)

cloud points

(h)

color map

(g)

skeleton

(f)

Step 1: key points 

computation

output

in in

Fig. 1. Pipeline of the user-specific anatomy generation.

computed in Section 2.2. This system is used for skin reg-1

istration.2

• Internal anatomy registration skeleton: composed of 963

joint constraints between bones and 373 control frame po-4

sitions (see Fig. 7). This system is used to keep anatomical5

consistency during internal skeleton registration and is de-6

fined based on anatomical rules presented in Section 2.3.7

2.1. Body size8

The Kinect SDK provides a simple body tracking skeleton,9

without temporal coherence: links may have different lengths10

at each frame. At calibration time: starting from a T-pose11

(Fig. 2.a), the user flexes his or her elbows (Fig. 2.b) and knees12

(Fig. 2.c). This allows us to estimate the length of upper and13

lower limb segments.

Fig. 2. Calibration process: (a) to have global proportions (head and torso),
(b) for real upper limb parts lengths, (c) for real lower limb parts lengths.

14

15

The user silhouette and the body tracking skeleton given by16

Kinect are needed to compute body measurements (see Fig. 3.b)17

and define the 18 key points used for skin registration, as pre-18

sented in Section 2.2. The Kinect body tracking skeleton is19

mapped from camera space to image space using Kinect SDK20

tools.21

A key point corresponds to the intersection between the22

user’s silhouette edge pixel and a perpendicular line computed23

using a Bresenham algorithm. For robustness, we have de-24

signed a silhouette detection criterion: an edge pixel is defined25

by a black pixel followed by three white pixels to avoid silhou- 26

ette holes. 27

For each key point, the Bresenham algorithm is initialized 28

using the middle of links as starting point and the perpendicular 29

vector as the direction to follow. For instance using the point 30

in-between the shoulder and elbow link gives us the upper arm 31

width. 32

The 2D key points are mapped from image space to camera 33

space using Kinect SDK tools, Fig. 3.c shows the key points 34

we use.

Fig. 3. (a): skeleton key points. (b): body measurements key points. (c): 3D
key points used in skin registration.

35

36

Due to clothing and occlusion, some dimensions might be 37

unreliable, especially thigh widths. Firstly, by assuming the 38

human body symmetric along the sagittal plane, small errors 39

in limb lengths are avoided. For each limb the average length 40

value is used as real length in both sides. Other key point posi- 41

tions are inferred based on the user silhouette and basic anatom- 42

ical knowledge. Based on an average human body, we defined 43

ratios between body parts. For instance, knowing that the thigh 44

measurement should be half of the hip measurement, the thigh 45

width can be inferred. Some validations are shown in Section 4. 46

2.2. Skin registration 47

The skin registration method is based on the silhouette key 48

points computed in Section 2.1 and the Kinect point cloud. The 49

main difficulties are the inaccuracy of the Kinect output data 50

and the fact that people clothes are captured within the Kinect 51

point cloud. To solve these issues, a new elastic deformer is 52

introduced. 53

The skin is rigged using frame-based elastic deformers 54

(Gilles et al. (2011)) corresponding to the Kinect body track- 55

ing skeleton joints (red dots in Fig. 4). Each skin vertex is 56

controlled by several frames, using linear blend skinning. The 57

skinning weights are computed using Voronoi shape functions 58

as in Faure et al. (2011). The silhouette key points (green dots 59

in Fig. 4) are mapped onto the skin to optimize the final result. 60

Instead of using global affine transformations (12DOFs) as 61

in Ali-Hamadi et al. (2013); we use 9DOFs scalable rigids as 62

frames, each bone matrix combines 3 translation, 3 rotation and 63

3 scale parameters. The advantage over affine control frames is 64

obtaining a better non-uniform local scaling to avoid shearing 65

artifacts. 66
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Fig. 4. Skin registration. Red dots: origins of control frames; green dots:
silhouette key points; blue dots: Kinect point cloud.

The skin model is registered to the target by minimizing a1

weighted sum of three energies (see Gilles et al. (2011, 2013))2

using an implicit solver.3

The predominant energy Eskeleton =
∑22

i=1
1
2 Kd2

i (where K is4

the stiffness and d the distance to rest) defined by point to point5

zero length springs, attracts the control frames of the template to6

the bones of the user-specific model (red points in Fig. 4). Then7

the energy Ekeypoint =
∑18

i=1
1
2 Kd2

i , also defined by point to point8

zero length springs, attracts the silhouette points (green points9

in Fig. 4). Minimizing these first two energies scales the limbs,10

the torso, the neck and the head of the generic model accord-11

ing to the target body measurements as illustrated in Fig. 5.a12

and b. The energy Ecloudpoint attracts the skin to the target point13

cloud using an ICP approach minimizing the distance between14

two sets of points. At each iteration, the point to point corre-15

spondence is reevaluated and the quadratic energy (as Eskeleton16

and Ekeypoint) attracts each skin point to the closest target point.17

The forces are propagated from the skin vertices to the skeleton18

control frames (see Fig. 4 and Fig. 5.c). Thanks to the fact that19

a small set of control frames are used, awkward configurations20

are avoided and no smoothness or kinematic constraint terms21

are needed.

Fig. 5. Skin registration result at the end of each step of the optimization
process. (a): minimizing Eskeleton. (b): minimizing Eskeleton and Ekeypoint .
(c): minimizing the three energies.

22

Fig. 6 presents the skin results after registration with the cor-23

responding Kinect point cloud. By using Ecloudpoint, the torso 24

skin is slightly deformed to refine the model in the same way, 25

the user being a woman or a man. 26

Fig. 6. Kinect point cloud and corresponding registered skin. Top: 1.55m
female. Bottom: 1.85m male.

2.3. Internal Anatomy Registration 27

User-specific anatomy reconstruction is divided in two sub- 28

parts: anatomical skeleton registration and soft tissue registra- 29

tion. Tissues are deformed as described in Ali-Hamadi et al. 30

(2013); here the only focus is on internal skeleton registration. 31

Inputs are the 3D reference of the skin and skeleton models and 32

the estimate of the user skin registered obtained in Section 2.2. 33

First, our method uses a volumetric interpolation to estimate 34

the user anatomical skeleton. As in Ali-Hamadi et al. (2013), 35

the use of Laplacian interpolation (Fig. 8.a) with as boundary 36

condition the transformations between the two skins ensures 37

that all the internal anatomy is bounded inside the user’s skin 38

after transfer. 39

A major limitation of the Anatomy Transfer (Ali-Hamadi 40

et al. (2013)) is the fact that the joint structure of the generic 41

model is not maintained. Nothing prevents a bone from pass- 42

ing through another one (Fig. 8.b) or from being disconnected 43

from a bone to which it should be connected (for instance ribs 44

and thoracic vertebra, or ulna and humerus around the elbow 45

joint, see Fig. 8.c). To keep correct joint structures and avoid 46

these shortcomings, joint constraints between the elements of 47

our elastic bone model are added. The joint location, kinemat- 48

ics and limits are set according to Nordin and Frankel (2001) 49

(see Fig. 7). 50

Thus, the internal anatomy registration skeleton is defined 51

using frame based elastic deformations (defined in Gilles et al. 52

(2010)) with weights computed using a Voronoi shape function 53

as in Faure et al. (2011) to smoothly propagate along the bone 54

each control frame transformation. 9DOFs scalable rigids for 55

the control are used to keep head bone consistency as it is in the 56

generic model. This guarantees that the bone heads can only 57
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Fig. 7. Right arm internal anatomy registration skeleton. Blue dots for
control frame positions; yellow lines and middle bone frames for alignment
constraints; other frames for joint constraints.

translate, rotate and scale, and thus they keep a similar type of1

shape as in the generic bone model.2

The list of anatomical rules used to define the internal anatomy3

registration skeleton follows:4

• R01: Keep long bones straightness (no bending or twist-5

ing)6

• R02: Keep 3D model consistency: the complete set of en-7

tities is transferred to avoid holes8

• R03: Keep bone head consistency9

• R04: Keep consistency of rib cage and limbs: symmetry10

with respect to the sagittal plane11

• R05: Keep body joints consistency: type of joint and12

movement amplitude13

Transversal PlaneFrontal Plane

Laplacian Interpolation

(b)

(c)

(d)

Our method

(a)

(e)

Fig. 8. (a): Laplacian Interpolation, (b): registration without joint con-
straint (overlaps between bones), (c): registration without joint constraint
(bone heads disconnection), (d): registration without alignment constraint
(bent and twisted bones), (e): our method.

To avoid bending bones (Fig. 8.d), an alignment constraint is14

added between the two bone heads. This constraint restrains the15

possible displacements between the control frames in only one16

direction defined by the line between them (see yellow lines in17

Fig. 7). Thereby, the control frames can translate in one direc- 18

tion, but can still scale in all three directions. This alignment 19

constraint is applied to long bones only. 20

It has been shown in Zhu et al. (2015) and similar approaches 21

has been explored in Saito et al. (2015) that non-uniform scaling 22

can be used to get more plausible bone deformations. This is 23

why we introduced more control frames per anatomical bone. 24

The number of frames varies according to bone type, the goal 25

being to give enough deformability to each (for the registration 26

process) while keeping good computation times (see blue dots 27

in Fig. 7). For the short bones such as carpal bones, one frame 28

per bone is used. For the long bones such as the femur two 29

frames per bone are needed: one at the center of each bone 30

head. For the flat bones such as the ribs three frames per bone 31

are defined to keep ribs close to the skin in terms of curvature: 32

two on bone heads (e.g. close to the joints rib-vertebra and 33

rib-sternum), and one between the two others (middle of the 34

rib). For bones with more complex shape such as vertebrae 35

three frames per bone allows enough deformability to register 36

the model while avoiding overlaps (e.g. overlaps between facet 37

joints, and spinous process of two different vertebrae). 38

3. User Tracking 39

A single Kinect is used to perform body tracking. To re- 40

duce tracking noise, we record Kinect data in daylight, Kinect 41

gives better results with background and ground matte materi- 42

als. We observed that if the user’s ground reflection is too vis- 43

ible, the Kinect includes it as part of the user silhouette which 44

leads to lower limb length errors. The Kinect position is 60cm 45

off ground for good lower-limb tracking results as determined 46

in Pfister et al. (2014). 47

Because Kinect segments the depth map to compute body 48

tracking joints at each frame, link distances change from frame 49

to frame. This may lead to a disconnected anatomical skeleton 50

(on the limbs) or elongated meshes (on the torso zone). We 51

present the pipeline of our enhanced body tracking system in 52

Fig. 9. 53

Body tracking skeleton
(25 joints positions)

Smoothing of small tracking noise
(Kalman filter on positions)

Realistic body tracking
(body joints position and orientations)

Hierarchical body tracking system
(in-between joint distances)

Anatomically contrained joint Orientations
(dofs and angle limits)

Input :

Output :

Fig. 9. Enhanced body tracking pipeline.

54
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Firstly we define a hierarchical body tracking system by con-1

straining the limb lengths and by recomputing joint orientations2

(see Section 3.1 for more details).3

To smooth out small tracking noise, we then apply a Kalman4

filter onto the joint positions. Joint orientations are recom-5

puted from the filtered joint positions. Finally, we anatomically6

constrain the joint orientations: more details are given in Sec-7

tion 3.2.8

3.1. Hierarchical body tracking system9

Our hierarchical body tracking system is composed of 2510

joints according to the Kinect SDK body tracking system.11

To define each joint f , the position and the orientation of its12

parent p is required. To overcome this, we begin by comput-13

ing the joints from the root (spine base joint) to the leaves (e.g.14

hand tips, foot joints and head joint). The root joint is defined15

by keeping the filtered Kinect position and orientation.

(a) (b) (c)

p(t0) p(t) p(t)

f(t0)

f(t) f(t)

c(t0)

c(t)

c(t)

R
fc(t0)

fc(t)

Fig. 10. (a): our hierarchical body tracking skeleton at (t0). (b): Kinect
body tracking skeleton at (t). (c): our result.

16

At initialization time t0 (see Fig. 10.a), each joint position17

is defined by our generic anatomical model and link distances18

computed after calibration (see Section 2); and each joint orien-19

tation is defined by the initial Kinect orientation determined in20

Kinect SDK.21

The advantage of using a hierarchical skeleton is to obtain22

the body pose at each time t using only the joint rotations. We23

use the current Kinect body tracking skeleton to retrieve these24

rotations.25

Most often, orientations given by Kinect are incorrect so we26

decided to recompute them using link directions by finding the27

smallest rotation R between initial direction ( f c(t0)) and current28

direction ( f c(t)), see Fig. 10.b. Fig. 10.c shows our hierarchical29

body skeleton system at step t.30

3.2. Anatomically constrained joint orientations31

To correct non-anatomically plausible behaviors due to track-32

ing errors, each Kinect hierarchical body tracking joint orienta-33

tion is constrained by limiting the number of possible rotations34

based on anatomical motion knowledge (e.g. knee joint can be35

approximated as a 1DOF joint, whereas the hip joint is a 3DOFs36

joint). This is done by constraining a given quaternion using37

Euler-angle constraints to find the closest rotation matrix de-38

fined only with valid axis within the joint limits. Computation39

is made using the Geometric Tools library by Eberly (2008). 40

Fig. 11.a illustrates in red a raw Kinect tracking and in gray the 41

result after applying this constraint. To add even more anatom- 42

ical plausibility to the result, joint limits are added to each rota- 43

tion axis. Fig. 11.b highlights this constraint by showing Kinect 44

raw data in red and realistic angular limits obtained in gray. 45

Fig. 11. Kinect data in red and corrected in gray. (a): off angular limits
rotation. (b): rotation axis error (DOFs).

4. Results and Validation 46

To our knowledge, dealing with realistic anatomy visualiza- 47

tion and motion is one of the most complex AR system ever be- 48

cause superimposing 3D anatomical data onto the user’s color 49

map reveals all the user measurement and tracking errors. 50

Our calibration method is a little time consuming (1-2sec 51

for skin registration, 15-30sec for skeleton registration and 30- 52

60sec for soft tissue registration) but allows us to obtain a 3D 53

model with accurate user measurements; moreover the motion 54

capture pipeline, even with the introduction of delay during 55

quick motions, leads to realistic and stable user tracking. 56

Thanks to these two features, the presented method allows a 57

realistic experience for understanding anatomy. The described 58

method is implemented in C++ and runs on a commodity laptop 59

(Intel CoreI7 processor at 3 GHz, Nvidia Quadro K2100M and 60

8GB of RAM). The real-time AR visualization runs between 61

35 to 62 fps depending on the 3D feedback: full-body muscu- 62

loskeletal system (49211 vertices, 95189 faces) will run at 35 63

fps whereas internal organs (20144 vertices, 39491 faces) will 64

run at 62 fps. 65

The computational bottleneck of our system is the quality 66

of the 3D model (number of faces and vertices) alongside the 67

quality of the user color map (Kinect gives a high definition 68

color map, which is reloaded at each frame). 69

We provide the visual feedback on a commodity laptop 70

screen and onto a 1.50m/2.0m screen for a demo display (see 71

right side of Fig. 12). 72

Fig. 12 presents snapshots of the provided visualization. In a 73

first set of experiments, the motion sequences were acquired for 74

4 men with an average height of 1.70m, and 3 women with an 75

average height of 1.60m. To get uniform results we work with 76

Kinect sequences made in similar environment conditions (day- 77

light, background material reflections, Kinect position, etc...). 78

Fig. 13 presents two tracking data of the same user wear- 79

ing different clothing and with different hair styles. It can be 80
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Fig. 12. Left: system set-up. Right: snapshots of results.

seen on the right side that the registered skeleton for these1

two datasets are almost identical; the red one is slightly big-2

ger (1.2% for the limbs lengths and 2.5% for torso widths) than3

the other one (green). This comparison allows the validation of4

our skin registration process (see Section 2.2).5

Fig. 13. For the same user with different clothing and hair style (Left), we
obtain almost identical results (Right).

4.1. Validation with MRI6

The major contribution of our work, and also the most crit-7

ical point is the closeness between the user-specific anatomy8

generated and the user’s own. As explained in Section 1, using9

MRI data as ground truth allows us to obtain external as well as10

internal specific anatomical points for validation purpose.11

Fig. 14 presents MRI data of two users (1.55m female and12

1.85m male) in front and lateral views side to side with the cor-13

responding 3D user-specific registered anatomies. The internal14

anatomy registration skeleton introduced in Section 2.3 is used15

to set the 3D model in a pose similar to MRI acquisitions. Af-16

ter comparing body height, we found an average error of 1.5%17

between 3D and MRI data, 3D data being always smaller than18

MRI data. This quite small error is mainly due to limited skull19

deformations.20

Fig. 14. Morphometric measurements (green lines) used to compare our
results with ground truth MRI data. Top: 1.55m female. Bottom: 1.85m
male.

In the Kinect body tracking skeleton data, we observe a lot of 21

change in limbs lengths. Thus, we pinpoint anatomical specific 22

points (long bones protuberances) onto the MRI and onto the 23

user-specific associated 3D model. With these specific points, 24

we compare ulna and tibia lengths in real and 3D data. We 25

suffer an average 5.2% error in limb lengths : most often the 26

user-specific 3D model lacks a few centimeters. This percent- 27

age seems quite acceptable taking into account Kinect raw data 28

noisiness. 29

To evaluate the torso body part realism, we propose to com- 30

pare the user-specific 3D model and full-body MRI data by 31

comparing the distance between left and right humerus bone 32

heads. The average error between 3D and MRI data is rather 33

small: 1.5%. 34

Fig. 6 shows that the point cloud and skin are fairly close; 35

our generic skin being registered for a woman or a man, but 36
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what about internal anatomy? We know that women hips are1

in average larger than men to allow birth. The 3.1% error be-2

tween MRI and 3D data (the 3D data being always bigger than3

the MRI data) demonstrates that the distances between left and4

right femoral bones head difference between women and men5

is well transcribed in internal anatomy.6

Using the lateral view, we pinpointed specific points to find7

rib cage depth. The user-specific rib cage is always bigger than8

the MRI data (around 20% bigger). It may be due to the dif-9

ference in posture during acquisition : for MRI data, the user is10

lying whereas for Kinect data the user is standing. It may also11

come from the use of a partial point cloud instead of a complete12

one. Due to front view capture, we observe depth errors in the13

skull as well: the skull is about 12% bigger in depth in 3D than14

in MRI data.15

4.2. Validation with User Study16

In a second set of experiments 20 different subjects with17

no motor problems and working everyday on tools involving18

medicine or medical imaging were involved. For each subject,19

we captured a range of full body motions involving upper and20

lower limb motion as well as torso motion. Fig. 15 presents21

snapshots obtained during the user study.22

23

Fig. 15. snapshots of our system obtained during the user study.

The group is composed of 13 men between 24 and 54 years24

old (average height: 181cm, average weight: 82.6kg), and 725

women between 22 and 44 years old (average height: 164cm,26

average weight: 61.7kg). This user study was designed to27

evaluate the believability of our system. The 4-page user28

study is composed of yes/no questions (with text space for29

elaboration if no is the answer), augmented reality screenshot30

comparison and correctness evaluation, rating-based questions31

(1 to 5), and opened questions (for global feedback). Below32

we present eight criteria extracted from the user study results,33

which evaluation is given in Tab. 3.34

35

Body position range (criterion C01) corresponds to motions36

while standing, crouching or sitting. In most cases, the results37

are well received. For other cases, limitations are directly con-38

nected to Kinect occlusion limitations (for more information39

cf. Associated supplemental materials).40

41

Body orientation range (criterion C02) corresponds to 42

body orientation from Kinect point of view: e.g. facing, profile, 43

3/4, back. When Kinect raw data are occluded or self-occluded, 44

our system returns incorrect motion poses: the more occlusion 45

in Kinect raw data, the more errors we will have (for more 46

information cf. Associated supplemental materials). A major 47

topic is to be able to handle important occlusion zones, this 48

motivates the work presented in Section 5. 49

50

Motion range (criterion C03) defines simple motions like 51

flexion/extension of the knee, as well as complex motions in 52

the extremities like finger motion or supination/pronation of 53

the arm. We obtain high motion quality for simple motions; 54

for complex motions we are limited by Kinect: this criterion 55

suggest further improvements. The Kinect SDK outputs a small 56

number of joints which limits the body motion possibilities 57

(e.g. spine bending). 58

59

For Motion fluidity and delay (criterion C04) and Motion 60

consistency (criterion C05), the goal is reached. Motion 61

consistency refers to the absence of outliers during motion. We 62

should state the fact that part of the visual latency that might 63

occur comes from the low frame rate of the color map display. 64

65

Motion plausibility (criterion C06) corresponds to joint 66

DOFs and angular limits. For this criterion we obtain different 67

results depending on the body segment studied. For instance, 68

it is easier to implement constraint for 1DOF joints than for 69

3DOFs joints such as spine or shoulders joints due to motion 70

range. Work presented in Section 5 allows us to obtain better 71

results on this criterion. 72

73

Anatomy realism (criterion C07) gives a feedback on the 74

registration method by focusing on limb length and torso 75

width. For this criterion, people with professional knowledge 76

in anatomy were the only ones to rate the user-specific anatomy 77

as average. 78

79

For almost everyone, the Augmented reality (criterion C08) 80

results were of good level. The overall quality can even be in- 81

creased with mesh texturing, or by adding a transition effect 82

between virtual and real data (e.g. 3D anatomy and the user’s 83

color map).

C01 C02 C03 C04 C05 C06 C07 C08
−− 00% 15% 05% 00% 00% 10% 00% 00%
+− 20% 50% 30% 10% 10% 25% 15% 05%
++ 80% 35% 65% 90% 90% 65% 85% 95%

Table 3. User study compiled results according to quality criteria for a
mirror-like augmented reality system. For each criterion: the percentage
of bad/average/good reviews.

84

5. Towards Image-based Corrective Registration 85

In Section 2 and 3 we proposed a system that can efficiently 86

register user-specific anatomy and provide interactive visual- 87

ization of it in motion based on data captured by Kinect. In 88
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this section, we will refer to this system as the “3D registration1

system”.2

The feedback obtained during the user study (see Section 4.2)3

suggests that a supplementary process for better quality of the4

overlay is needed. Anatomy misalignments are in particular5

visible when presenting anatomy superimposed onto the user’s6

color map (AR). For example, anatomical limbs can sometimes7

be out of the user’s silhouette as shown in Fig. 16 (e.g. arms8

and hands). We avoid performing these corrections in our 3D9

registration system as they make it overly constrained.10

Image-based Correction In this section, we describe a11

method to solve this problem efficiently in image domain. Our12

image-based corrective registration allows to reduce the errors13

that accumulate during previous system steps such as motion14

capture, anatomy transfer, image generation and animation.15

Occlusion Handling We perform these image-based correc-16

tions for separate regions of the registered 3D anatomy (see17

Fig. 16). To generate the final overlay image we have to deter-18

mine in which order these corrected images should be layered.19

Therefore, we propose an image-based occlusion handling tech-20

nique that automatically decides how to overlay these images21

relatively to each other in the final AR rendering.22

5.1. Input Data From 3D Registration23

By projecting and rendering registered 3D anatomy on the24

2D color map we generate anatomy images (Fig. 16 top row)25

corresponding to a set of predefined 3D anatomy regions. Each26

anatomy region is composed of a specific set of bones, organs27

and muscles of the registered 3D anatomical model. For ex-28

ample, in Fig. 16, we show the anatomy images corresponding29

to the five anatomy regions we use in our examples. Unfor-30

tunately, after superimposing them onto the color map we can31

clearly observe that they are misaligned (see Fig. 16 bottom-32

left). Using our image-based correction, we deform or warp33

these anatomy images to correct the misalignments. In Sec-34

tion 3 we defined our enhanced body tracking system com-35

posed of 25 joints. By mapping it to image space, we gen-36

erate Anatomy landmarks. The same is done with the Kinect37

SDK body tracking skeleton to generate Kinect landmarks. Our38

image-based correction method uses these two sets of land-39

marks and the Kinect depth map to correct the anatomy mis-40

alignments.41

As mentioned earlier, to solve the problem of anatomy mis-42

alignment due to accumulation of errors in the 3D registration43

system, we propose an image-based correction method. Cor-44

recting these errors in a reduced dimension (in image space)45

causes small projective errors to occur, but these corrections46

can be performed very efficiently. Furthermore, the result of47

the 3D registration system is a 2D image that mixes the real48

world captured by the Kinect with a simulated image of the ani-49

mated model; therefore making the correction at the very end of50

the process makes it possible to correct errors of all the stages51

including the final visualization in 2D. The two main stages of52

our algorithm are: (a) image-based correction and (b) occlusion53

estimation and layering. The overview of this pipeline can be54

seen in Fig. 17.55

Fig. 16. We propose an image-based correction (step 1), and an occlusion
estimation and layering technique (step 2). In the first step, we correct
anatomy regions separately. In the second step, we combine them in cor-
rect order to generate the final overlay image.

5.2. Image-based Correction 56

The image-based correction stage can be further divided into 57

three steps: (a) feature estimation, (b) landmark correction and 58

(c) updated anatomy image generation. 59

5.2.1. Feature Estimation 60

We estimate two types of image features: first, we find a set 61

of anatomy features S in the anatomy images, and second, a 62

set of depth features D in the Kinect depth map. Let’s con- 63

sider that we have N (=5 in our examples) anatomy regions. 64

Subsets of the Kinect and anatomy landmarks are assigned to 65

each of the anatomy regions based on the contribution of the 66

3D joints corresponding to these landmarks in producing soft 67

tissue movements in that region. We also describe below, how 68

we can estimate N depth contours corresponding to the anatomy 69

regions and estimate depth features from these regions. 70

We estimate depth contour points by first detecting edges 71

corresponding to the depth discontinuities in the Kinect depth 72

map using Canny edge detector (Canny (1986)) and then com- 73

puting the external contour using contour detection algorithm 74
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Fig. 17. Overview of our corrective registration system.

proposed in Suzuki et al. (1985). Contour segmentation is a1

well researched topic and more recent work, such as Hickson2

et al. (2014); Abramov et al. (2012); Hernandez-Lopez et al.3

(2012) can also be used. For each contour point we find the4

closest Kinect landmark. Conversely, after that, for each Kinect5

landmark we obtain a set of depth contour points. For an6

anatomy region, we estimate depth contour by taking union of7

all depth contour points corresponding to the Kinect landmarks8

of that region. Similarly, we estimate anatomy contour of an9

anatomy region by estimating the contour around the rendered10

anatomy in the corresponding anatomy image.11

12

Fig. 18. Feature estimation for left arm. In left: anatomy features (S) (blue)
are estimated using anatomy landmarks (red) and sub-landmarks (green).
In right: depth features (D) are estimated using Kinect depth landmarks
(red) and sub-landmarks(green). Here we are showing one sub-division of
landmarks.

Anatomy Feature Estimation We denote the anatomy13

features for the ith anatomy region as Si, which are estimated14

in the corresponding anatomy image. For each anatomy15

landmark of the anatomy region we estimate a normal vector16

with a direction which is average of the normals to the lines17

connecting the landmark to the adjacent anatomy landmarks.18

This vector intersects the anatomy contour at two points and19

we add these points to Si. If desired, the lines can be further20

sub-divided to generate sub-landmarks increasing the number21

of features, in our implementation we subdivided the lines22

6 times. Adding more features increases the robustness by23

reducing the contribution of outliers, see Fig.18.24

25

Depth Feature Estimation We denote depth features of the26

ith anatomy region asDi. Similar to the estimation of anatomy 27

features, we can estimate depth features by finding intersections 28

of the normal vectors from Kinect landmarks with the depth 29

contour of the anatomy region (see Fig. 19). Depth contours 30

are mostly fragmented and not closed because the transition be- 31

tween anatomy regions generates depth discontinuities. Since 32

we have missing points in the contour, sometimes normal vec- 33

tors do not intersect with depth contours. In that case, we do not 34

add any depth features to the depth landmark. At the same time, 35

we drop anatomy features of the corresponding anatomy land- 36

mark to ensure one-to-one correspondences between anatomy 37

and depth features. Depth maps are often noisy and causes 38

erroneous depth feature estimation due to noise in the Kinect 39

depth sensor raw data. We apply a Kalman filter onto the depth 40

feature locations to remove the noise effect. 41

Fig. 19. Feature estimation: Preliminary 3D registration when superim-
posed on input image (a) we can observe anatomy misalignments (b). We
estimate anatomy features (d) from the intermediate anatomy images (c).
In the bottom row, we show the estimation (f) and segmentation (g) of depth
contours from the depth map (e), and estimated depth features (h).

5.2.2. Landmark Correction 42

Kinect landmarks provide a reasonable estimate of the skele- 43

ton in the 2D image space, we will call it Kinect 2D skeleton. 44

Similarly, we will call the corresponding skeleton formed by 45
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the anatomy landmarks as anatomy 2D skeleton. But if we warp1

our anatomy regions using a map learned from anatomy land-2

marks to Kinect landmarks, it does not ensure that the mapped3

regions will entirely reside within the depth contours. To main-4

tain smoothness in shape at boundary of the warped region, we5

look into a reliable warp map, we call T .6

We use a thin plate spline-based interpolation (see Bookstein7

(1989)) represented with radial basis functions (RBF) to ap-8

proximate the mapping T from anatomy features to depth fea-9

tures. This mapping is composed of an affine transformation10

and a non-affine deformation. We use a regularizer parameter11

λ to control the influence of the non-affine deformation part,12

which refers to a physical analogy of bending. More recent13

techniques, such as Sorkine and Alexa (2007) can also be used14

to compute the image warp map.15

For an anatomy region with M feature points. The parame-
ters of the RBF function are estimated by solving the following
Eq. 1:

Di = A Si + λ
∑

i=1:M

∑
j=1:M

(w j R(||si − d j||)) (1)

Where,Di and Si are Mx2 matrices containing respectively lo-16

cations of depth and anatomy features. si and di are locations17

of ith anatomy and depth features, A is a MxM affine trans-18

formation matrix. w represents weight of non-affine bending19

transformation, and R(r) = r2 log(r) is a RBF function. Addi-20

tionally, we include Kinect landmarks and anatomy landmarks21

respectively in the matricesD and S.22

We can rewrite Eq. 1 in matrix form as:

Di =

[
K(R) PT (Si)
P(Si) 0

] [
W
A

]
, (2)

Where, P contains homogenized Si, K contains values of RBF
functions and W is a vector with non-affine weights. We can
further simplify Eq. 2 as Di = Mi(Si) Xi, where Mi and Xi

represent the first and second matrix of the right hand side of
Eq. 2. Now, by combining equations of all the body parts in
one global equation, we can write:

D1
...
DN

 =


M1(S1) · · · 0

...
. . .

...
0 · · · MN(SN)



X1
...

XN

 (3)

We can rewrite Eq. 3 as:

D = M̃(S) X̃ (4)

In our current implementation N=5, size of M̃ and D are23

240 × 240 and 240 × 2 respectively. Finally, we can also write24

Eq. 3 as D = T (M̃(S), X̃. where, T maps anatomy features in25

S to the depth features in D, and X̃ includes the parameters of26

the mapping.27

We solve Eq. 4 to estimate mapping parameters X̃ of T by28

formulating it as a linear least squares system for given S and29

D which includes anatomy and depth features that have one-30

to-one correspondences. In our regularized optimization frame-31

work, we constrain the anatomy landmarks with soft constraints32

to map Kinect landmarks. T can be used to warp anatomy 33

regions such that they remain enclosed within the depth con- 34

tour while maintaining a smooth boundary shape. Note that 35

T is composed of N separate mappings corresponding to the 36

anatomy regions. By remapping the anatomy landmarks using 37

T , we also obtain a better estimate of the original Kinect 2D 38

skeleton formed by Kinect landmarks, which we call updated 39

2D skeleton. Furthermore, to ensure the connectivity of land- 40

marks across different anatomy regions, we set the location of 41

shared landmarks to the average of their estimates for different 42

anatomy regions. Fig. 20 shows the resulting landmark correc- 43

tions. 44

Fig. 20. Landmark correction: Our skeleton correction algorithm corrects
initial Kinect 2D skeleton in image space (b) to produce more consistent
configurations (c).

Note that depth contours are noisy if the user wears loose 45

clothes, which in turn makes the depth features noisy. There- 46

fore, we prefer to maintain a smooth shape of the mapped 47

anatomy region instead of mapping anatomy features exactly to 48

the depth features. By picking a suitable λ in Eq. 1 we can con- 49

trol the smoothness. In our current implementation we chose 50

λ = 0.01. 51

5.2.3. Updated Anatomy Image Generation 52

As explained previously, to each anatomy region corre- 53

sponds an anatomy image, therefore, to warp an anatomy 54

region, we simply need to warp the corresponding anatomy 55

image. We decided to separately warp each of these images 56

based on the transformation from anatomy 2D skeleton to 57

updated 2D skeleton. To obtain the final anatomy corrected 58

rendered image, we combine these warped anatomy images to 59

a single composite image. For each pixel of that composite 60

image, we should render the anatomy region closest to the 61

camera (e.g. smallest depth value). To estimate the closest 62

anatomy region, we propose a novel occlusion estimation and 63

layering algorithm. 64

65

Image Warping We generate bounding boxes, which we call 66

anatomy cages, around links of the updated 2D skeleton. Now, 67

our goal is to deform these anatomy cages based on the defor- 68

mation field. Fig. 21 shows warping of the right upper limb 69

with cages. 70

Using T as a deformation field is not a good choice for two 71

reasons: first, T does not include the additional deformations 72
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Fig. 21. Cage generation and warping of the right upper limb. Yellow points
are anatomy landmarks, White ones are updated landmarks. The red zones
present anatomy cages.

we introduced in the post-processing step (where we modify1

the locations of mapped anatomy landmarks). Second, T is re-2

liable within the regions enclosed by the anatomy landmarks,3

but if we use these landmarks to generate the cages, we will4

end up having a piecewise linear approximation of the bound-5

ary of the anatomy in the image space. Therefore, we chose6

to use wider cages to get a smoother anatomy boundary after7

warping. This puts the cage points outside the regions enclosed8

by the landmarks and so we cannot use T reliably. Therefore,9

instead of T , we use dual-quaternion skinning (Kavan et al.10

(2008)) driven by the skeleton to perform image warping from11

anatomy to updated 2D skeleton landmarks. Using this, we es-12

timate deformed anatomy cages corresponding to each of the13

anatomy cages. To warp the anatomy images, we triangulate the14

anatomy cages, and then we estimate affine transformation of15

the individual element of the cages from original anatomy cage16

to the deformed anatomy cage configuration. Using bilinear in-17

terpolation we then warp the anatomy image pixels inside the18

triangles. We call the new warped images as warped anatomy19

images. We define one for each anatomy region. Fig. 22 shows20

warping results for the complete set of anatomy images.21

5.3. Occlusion Estimation and Layering22

As mentioned before, the main challenge in generating final23

composite image of the warped anatomy images is to figure out24

which anatomy region is closest to the camera for a given view.25

If images are naively combined as layers, occlusions such as in26

Fig. 23, (b) can occur. In this case, the anatomy region corre-27

sponding to the torso is occluding the hands, which is not what28

we expect. Our method described below tackles this problem.29

We first generate synthetic depth images for the anatomy re-30

gions based on the Kinect 2D skeleton. For each anatomy re-31

gion, we know 3D configuration of the corresponding Kinect32

joints in the Kinect 2D skeleton. We model cylindrical primi-33

tives around the bones. The radius is set equal to the maximum34

cross-section radius of the corresponding anatomy region. Us-35

ing the projection matrix of the camera, for each anatomy re-36

gion, we render a depth map. We call this image anatomy37

depth image.38

Fig. 22. Image-based corrective registration: Misalignments in the anatomy
regions observed in (a) are corrected by our image-based corrective algo-
rithm to produce (b).

The size of the warped anatomy images and the composite 39

image are the same. For each warped anatomy image, we cat- 40

egorize the pixels into two types: valid when pixels belong to 41

anatomy, and invalid when they do not. In the composite image 42

domain we loop through all the pixels: for each pixel, we check 43

if at that location any of the warped anatomy images contains a 44

valid pixel. If not, we set that pixel to black. If yes, we check 45

which of the warped anatomy images contain valid pixels. Out 46

of all those warped anatomy images we pick the one that is clos- 47

est to the camera. The distance from the camera is determined 48

based on anatomy depth images. We then update the pixel of the 49

composite image with the color of that closest warped anatomy 50

image. In Fig. 23 (c) we can see how our algorithm corrected 51

the problem of occlusion (b). 52

Fig. 23. Occlusion handling: Our image-based corrective algorithm cor-
rects misalignments in the rendering (a) of initial 3D registration by warp-
ing anatomy regions in image space and in separate layers. Rendering
them without knowing their relative distances from camera create occlu-
sions (b). Our occlusion handling algorithm can recover these relative dis-
tances and render these regions in correct order (c).
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5.4. Evaluation1

We have shown qualitative results of our landmark correction2

in Fig. 20, where we used non-linear thin plate spline-based3

interpolation to model the deformation. Fig. 22 shows how4

we improve anatomy registration by applying dual-quaternion5

skinning based on deformations produced by landmark correc-6

tion. The results of our occlusion handling algorithm is shown7

in Fig. 23. We quantitatively analyze the results of our image-8

based corrective registration using an anatomy intersection co-9

efficient η. If n f is the total of anatomy pixels in the final com-10

posite image and nk is the total of anatomy pixels that also be-11

long to the user according to the Kinect depth map. We can12

define η as: η = nk
n f

. In Tab. 5.4, results are shown for two video13

sequences and they clearly indicate the improvement after ap-14

plying our image-based corrective registration algorithm. Our15

unoptimized routines take around 75ms per frame to perform16

this correction.

Video Before After
Squat motion 0.939 ± 0.184 0.994 ± 0.026
Hand crossing 0.961 ± 0.159 0.988 ± 0.089

Table 4. Image-based corrective registration results: anatomy intersection
coefficient before and after corrections

17

Fig. 24 shows the temporal profile of η for individual18

anatomy regions in the squat motion video. Anatomy regions19

are represented with different colors. As we can see, η consis-20

tently remains close to 1 after our corrections. Thus, image-21

based correction drastically reduced the alignment errors.22

Furthermore, we can make our corrective registration faster23

by generating warped anatomy images only when the η value24

of an anatomy region is below a certain threshold (which means25

they are not well aligned). For example, in the 81 frames of the26

squat motion video we originally estimate 405 warped anatomy27

images (e.g. 81 (number of video frames) × 5 (number of28

anatomy regions)). If we set the threshold of η to be 0.9, we29

reduce this number to 137: this is a 66.2% reduction.30

Fig. 24. The anatomy alignment coefficients for anatomy regions are shown
before and after image-based correction for the squat sequence.

In the 3D registration system, the errors in orientation of the31

anatomy regions produce wrong color maps of the anatomy re-32

gions. Since we use these color maps as color or texture of33

the anatomy regions, we cannot correct orientation errors in the34

image-based correction step. Currently, integration of the pro- 35

posed image-based corrective registration step within the 3D 36

registration system is not real-time. The image-based correction 37

uses color maps rendered by the 3D registration system. In our 38

current implementation, we save these color maps to the disk 39

and read them later for image-based corrections. These com- 40

putationally expensive file operations prevent real-time image- 41

based misalignment correction. Furthermore, with the current 42

latency, the combined system does not satisfy “motion fluidity 43

and delay”(criterion C04 as mentioned in Section 4.2). 44

6. Conclusion 45

We present the first live system of personalized anatomy in 46

motion. Superimposing the anatomy onto the user’s image 47

allows us to create a real-time augmented reality experience. 48

The first paper version Bauer et al. (2016) attached video (see 49

https://youtu.be/Ip17-Vaqqos) illustrates the application pipeline 50

and shows AR results of our system (before image-based cor- 51

rective registration presented in Section 5). 52

We also proposed an image-based corrective registration to 53

correct the errors that build up during system steps: motion cap- 54

ture, anatomy transfer, image generation and animation. Cur- 55

rently, the combined pipeline is not real-time due to expen- 56

sive file read and write operations. Using unoptimized code 57

for image-based corrective registration we currently achieve a 58

frame rate of 12fps on average for the combined pipeline. In 59

future, we plan to read color maps from memory instead, and 60

build a combined real-time system. Another limitation of the 61

current image-based correction is that we cannot correct the er- 62

rors in orientation of the anatomy regions relative to the bones. 63

In future, to solve this problem, we can use an image-based 64

hybrid solution, such as Zhou et al. (2010); Jain et al. (2010); 65

Richter et al. (2012) that use a 3D morphable model to fit to 66

some features in 2D images. In our case, we can model our 3D 67

anatomical reference model as a morphable model and then fit 68

it based on 2D joint locations of the updated Kinect 2D skele- 69

ton. Then, we can re-render the anatomy regions from camera 70

view to generate updated anatomy images. This should be able 71

to recover the color of anatomy regions that get occluded due 72

to orientation error in 3D registration system. After that we can 73

follow our usual skinning and occlusion handling routines to 74

generate final results. We believe that the basic Kinect body 75

tracking enhanced with our method is sufficiently accurate for 76

our needs. 77

The system could be extended or improved in different ways. 78

Posture reconstruction proposed by the Kinect SDK could be 79

replaced by more sophisticated approaches such as presented in 80

Liu et al. (2016). This could make the system not only more ro- 81

bust but also more independent of the selected sensor. Another 82

solution could be the use of physical priors such as introduced 83

in Andrews et al. (2016). It would certainly enable suppressing 84

some outliers resulting of Kinect data. On the other hand, the 85

addition of biomechanical simulations could allow to get more 86

realistic deformations of soft tissue and organs but this could be 87

at the cost of interactivity. 88

To show full body muscular activity for every possible body 89
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motion, inverse dynamics (Murai et al. (2010)) will also be de-1

veloped.2

An improvement in the skin registration can be done by reduc-3

ing the 9DOFs controllers to 6DOFs (3 rotations and 3 scales).4

This can be done by exploiting appropriately the hierarchical5

structure and would allow more robustness and skin consistency6

around body joints.7

Our work is designed to be used as a tool for anatomy learn-8

ing for medical and sports students. This is why in the future it9

is planned to display anatomical educational content (text, im-10

ages, videos, etc) in addition to the AR visualization.11

This system could also be used as a way to communicate be-12

tween medical practitioners and their patients, about surgery,13

rehabilitation or any other health issue. Novel artistic content14

might also be produced using our technology, as well as inter-15

active advertising.16

Our system has been featured as a live demo during two con-17

ferences and at the Consumer Electronic Show. More than 40018

people have been able to test it out. Most of them enjoyed the19

experience and a lot of them recommended it and came back20

with others.21
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