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This paper presents a mirror-like augmented reality (AR) system to display the internal anatomy of the current user. Using a single Microsoft V2.0 Kinect (later on referenced as the Kinect), we animate in real-time a user-specific model of internal anatomy according to the user's motion and we superimpose it onto the user's color map. Users can visualize their anatomy moving as if they where looking inside their own bodies in real-time.

A new calibration procedure to set up and attach a user-specific anatomy to the Kinect body tracking skeleton is introduced. At calibration time, the bone lengths are estimated using a set of poses. By using Kinect data as input, the practical limitation of skin correspondence in prior work is overcome. The generic 3D anatomical model is attached to the internal anatomy registration skeleton, and warped on the depth image using a novel elastic deformer subject to a closest-point registration force and anatomical constraints.

The noise in Kinect outputs precludes direct display of realistic human anatomy. Therefore, to enforce anatomical plausibility, a novel filter to reconstruct plausible motions based on fixed bones lengths as well as realistic angular degrees of freedom (DOFs) and limits are introduced. Anatomical constraints, applied to the Kinect body tracking skeleton joints, are used to maximize the physical plausibility of the anatomy motion while minimizing the distance to the raw data. At run-time, a simulation loop is used to attract the bones towards the raw data. Skinning shaders efficiently drag the resulting anatomy to the user's tracked motion.

Our user-specific internal anatomy model is validated by comparing the skeleton with segmented MRI images. A user study is established to evaluate the believability of the animated anatomy.

As an extension of Bauer et al. (2016), we also propose an image-based algorithm that corrects accumulated inaccuracy of the system steps: motion capture, anatomy transfer, image generation and animation. These inaccuracies show up as occlusion and self-occlusion misalignments of the anatomy regions when superimposed between them and on top of the color map. We also show that the proposed work can efficiently reduce these inaccuracies.

Introduction

The emergence of commodity depth cameras such as Kinect sensors motivates new educational, medical and healthcare applications. However, previous studies show that raw Kinect data cannot be easily employed in human motion tracking (see Pfister et al. (2014), and also Malinowski and Matsinos (2015)). In this paper, a new calibration and motion capture sufficiently accurate for AR applications are introduced and demonstrated by superimposing internal anatomy on the user's color map in real-time. At calibration time, the length and width of body segments are estimated based on specific body poses and silhouettes. A novel anatomically sound deformer is applied to fit a high-quality generic 3D biomechanical model in order to generate a user-specific anatomical model.

At run-time, our model tracks bone motions based on the Kinect body tracking skeleton joints output, while enforcing anatomical plausibility rules such as constant lengths and joint limits. Our user study preliminary shows that the precision is sufficient to superimpose the user-specific anatomical model onto the color image, using linear blend skinning. We also propose an efficient image-based corrective registration method to correct any anatomy misalignments that can occur during 3D registration. This paper is organized as follows: Section 1 briefly survey related work. Section 2 introduces a body size measurement procedure based on multiple poses, silhouette points and an anatomically sound deformer. Section 3 describes how it is animated based on robust motion capture using anatomical constraints. Section 4 goes through results and the validation process. Section 5 explains how final adjustments can be made at the image level in order to improve the rendering and to solve occlusion issues. Section 6 finally concludes by presenting possible applications of this work and under development features.

This paper is an extended version of the paper Bauer et al. (2016), presented at MIG'16. Superimposing the anatomy onto the users image allows us to create a real-time augmented reality experience. However, the AR paradigm impose us recurrent evolutions to improve immersion. As seen in Bauer et al. (2016) attached video (see https://youtu.be/Ip17-Vaqqos), in the previous version we had good but not optimal results. This paper presents an image-based correction system that is a major contribution: it allows perfect alignment of virtual data onto streamed video.

Related Work

Nowadays, human body modeling and tracking are widely studied for a variety of applications such as motion capture or morphometric studies.

Skin Registration is the most accessible approach to generate a wide range of human bodies. Most studies are based on skin statistical models generated by a shape and pose database (Helten et al. ( 2013)). [START_REF] Faure | Sparse Meshless Models of Complex Deformable Solids[END_REF] use frame-based skinning methods to deform a generic skin to fit 56 at best the user data. Other approaches using point cloud (Li 57 et al. ( 2013)) or multi-position silhouettes [START_REF] Vlasic | Articulated Mesh Animation from Multi-view Silhouettes[END_REF]) 58 may also be used to reconstruct the body skin. Most often, raw 59 data comes from acquisition of people wearing clothes and this 60 may lead to non-realistic bodies. [START_REF] Bȃlan | The naked truth: Estimating body shape under clothing[END_REF], as 61 well as [START_REF] Zeng | Estimation of human body shape and cloth field in front of a kinect[END_REF] intend to find ways to pass through 62 these limitations. Since they rely only on skin models and 63 do not include internal anatomy, those methods may result in 64 unrealistic skin twisting.
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Anatomy Registration The most accurate subject-specific 67 anatomy registration methods come from the medical imaging 68 fields [START_REF] Sotiras | Deformable Medical Image Registration: A Survey[END_REF]). However, 3D medical images 69 are not easily used in a non medical context and are not 70 adapted to real-time capture. Several other methods have 71 been proposed. [START_REF] Quah | 3D Modeling of Humans with Skeletons from Uncalibrated Wide Baseline Views[END_REF] present a pose-dependent 72 method to register a 3D anatomical model onto 2D images. 73 Based on key points, they register skin and skeleton (no soft 74 tissue). However this method gives static results. Using Kinect 75 point cloud, [START_REF] Zhu | Adaptable Anatomical Models for Realistic Bone Motion Reconstruction[END_REF] register user-specific skin and 76 skeleton during motion. [START_REF] Ali-Hamadi | Anatomy Transfer[END_REF] as Gilles 77 et al. (2010), present a pose-dependent method to transfer a 3D 78 anatomical model to a target skin. This method is static and 79 time consuming. The method introduced by [START_REF] Saito | Computational Bodybuilding: Anatomicallybased Modeling of Human Bodies[END_REF] 80 achieves near-interactive run time skin, skeleton and soft tissue 81 3D model editing. Tab. 1 compares state of the art anatomy 82 registration methods. Table 1. Comparison between state of the art anatomy registration methods. Legend: green means that the characteristic is totally handled by the method, orange that it is partly, and red that it is not. User Tracking In Pfister et al. (2014), the authors assess that 85 the rough Kinect body tracking data are enough for basic mo-86 tion measurements such as gait analysis, or joint angles during 87 motion, but are far beyond VICON cameras in terms of soft-88 ware and hardware.

89

The tracking algorithm used in this paper is based on the 90 Kinect body tracking skeleton which is really noisy. Whereas 91 we add constraints to upgrade the tracking, [START_REF] Meng | Kinect for interactive AR anatomy learning[END_REF] AR Systems In the last few years, the number of AR applications increased in the medical education field (see [START_REF] Kamphuis | Augmented reality in medical education?[END_REF]).

The Magic Mirror, by [START_REF] Blum | mirracle: An augmented reality magic mirror system for anatomy education[END_REF], superimposes statically CT scans of the abdomen onto the user's image with gesture-based interaction. A more recent version of the Magic Mirror (see also [START_REF] Ma | Personalized augmented reality for anatomy education[END_REF]) also presents an "organ explosion effect" and the possibility to visualize precomputed muscle simulation of the user's arm in real-time. The Digital Mirror, by [START_REF] Maitre | NewScientist : Digital mirror reveals what lies under your skin[END_REF], shows full body CT scans but does not superimpose them on the user image. In these two cases, data follow the user's motion but are not deformed with respect to these motions. The Anatomical Mirror, by [START_REF] Borner | [END_REF], allows full-body motion by using the Kinect body tracking, but displays animated generic 3D models while we show a userspecific one.

Thanks to the use of rules coming from anatomical knowledge, we significantly improve AR realism and anatomy motion plausibility with respect to Bauer et al. (2014) and [START_REF] Bauer | Living Book of Anatomy (LBA) Project: See Your Insides in Motion! In[END_REF] in the Living Book of Anatomy project. Tab. 2 summarizes comparisons between state-of-the-art demos and our work. Using user body anatomical landmarks introduces measurement errors due to body position and skin curvature. We decided to use MRI data as ground truth to be able to obtain internal specific points (e.g. femoral head of bone) in addition to externally visible specific anatomical points.

Data Validation

User-Specific Anatomy

We present a novel approach using Kinect SDK outputs (color map, body tracking skeleton and point cloud) and a 3D 
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User Position User Posture Precision Validation User Study T T F F F T T T Augmented Reality reference model including skin surface and internal anatomy 57 (skeleton, muscles, organs, etc) to generate user-specific 58 anatomical data.
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The method consists of four steps. First, the user-specific 61 body segment lengths and widths are computed using the Kinect 62 SDK outputs (see Section 2.1) to define a list of 3D key points. 63 In the second step the generic skin is deformed based on key 64 points and the partial user's point cloud (Section 2.2). The third 65 step consists in transferring the reference skeleton inside the 66 user-specific skin (Section 2.3). Finally soft tissue between the 67 bones and the skin is determined using Laplacian interpolation 68 in a way similar to [START_REF] Ali-Hamadi | Anatomy Transfer[END_REF]. These different 69 steps are summarized in Fig. 1.

70

To ease the understanding of the rest of this Section, descrip-71 tions of each type of deformation skeleton used are provided 72 below:

73

• Kinect body tracking skeleton: composed of 25 joints, [START_REF] Andrews | Real-time 75 physics-based motion capture with sparse sensors[END_REF] this animation skeleton is given by the Kinect SDK.

75

• skin registration skeleton: composed of 22 control 76 frames and 18 control points. Control frames (Fig. 4, red 77 dots) are defined on the generic 3D skin and they corre-78 sponds to some of the Kinect body tracking joints. Control 79 points are defined on the generic 3D skin contour (Fig. 4, 80 green dots) and corresponds to the silhouette key points 81 Step 2: skin registration skin (j)

Step 3: skeleton registration computed in Section 2.2. This system is used for skin reg- 
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A key point corresponds to the intersection between the 22 user's silhouette edge pixel and a perpendicular line computed 23 using a Bresenham algorithm. For robustness, we have de-24 signed a silhouette detection criterion: an edge pixel is defined by a black pixel followed by three white pixels to avoid silhouette holes.

For each key point, the Bresenham algorithm is initialized using the middle of links as starting point and the perpendicular vector as the direction to follow. For instance using the point in-between the shoulder and elbow link gives us the upper arm width.

The 2D key points are mapped from image space to camera space using Kinect SDK tools, Fig. 3.c shows the key points we use. Due to clothing and occlusion, some dimensions might be unreliable, especially thigh widths. Firstly, by assuming the human body symmetric along the sagittal plane, small errors in limb lengths are avoided. For each limb the average length value is used as real length in both sides. Other key point positions are inferred based on the user silhouette and basic anatomical knowledge. Based on an average human body, we defined ratios between body parts. For instance, knowing that the thigh measurement should be half of the hip measurement, the thigh width can be inferred. Some validations are shown in Section 4.

Skin registration

The skin registration method is based on the silhouette key points computed in Section 2.1 and the Kinect point cloud. The main difficulties are the inaccuracy of the Kinect output data and the fact that people clothes are captured within the Kinect point cloud. To solve these issues, a new elastic deformer is introduced.

The skin is rigged using frame-based elastic deformers [START_REF] Faure | Sparse Meshless Models of Complex Deformable Solids[END_REF]) corresponding to the Kinect body tracking skeleton joints (red dots in Fig. 4). Each skin vertex is controlled by several frames, using linear blend skinning. The skinning weights are computed using Voronoi shape functions as in [START_REF] Faure | Sparse Meshless Models of Complex Deformable Solids[END_REF]. The silhouette key points (green dots in Fig. 4) are mapped onto the skin to optimize the final result.

Instead of using global affine transformations (12DOFs) as in [START_REF] Ali-Hamadi | Anatomy Transfer[END_REF]; we use 9DOFs scalable rigids as frames, each bone matrix combines 3 translation, 3 rotation and 3 scale parameters. The advantage over affine control frames is obtaining a better non-uniform local scaling to avoid shearing artifacts. The skin model is registered to the target by minimizing a 1 weighted sum of three energies (see [START_REF] Faure | Sparse Meshless Models of Complex Deformable Solids[END_REF][START_REF] Gilles | Frame-based interactive simulation of complex deformable objects[END_REF])) 2 using an implicit solver. 

Internal Anatomy Registration

User-specific anatomy reconstruction is divided in two subparts: anatomical skeleton registration and soft tissue registration. Tissues are deformed as described in [START_REF] Ali-Hamadi | Anatomy Transfer[END_REF]; here the only focus is on internal skeleton registration. Inputs are the 3D reference of the skin and skeleton models and the estimate of the user skin registered obtained in Section 2.2.

First, our method uses a volumetric interpolation to estimate the user anatomical skeleton. As in [START_REF] Ali-Hamadi | Anatomy Transfer[END_REF], the use of Laplacian interpolation (Fig. 8.a) with as boundary condition the transformations between the two skins ensures that all the internal anatomy is bounded inside the user's skin after transfer.

A major limitation of the Anatomy Transfer (Ali-Hamadi et al. ( 2013)) is the fact that the joint structure of the generic model is not maintained. Nothing prevents a bone from passing through another one (Fig. 8.b) or from being disconnected from a bone to which it should be connected (for instance ribs and thoracic vertebra, or ulna and humerus around the elbow joint, see Fig. 8.c). To keep correct joint structures and avoid these shortcomings, joint constraints between the elements of our elastic bone model are added. The joint location, kinematics and limits are set according to [START_REF] Nordin | Basic biomechanics of the musculoskeletal system[END_REF] (see Fig. 7).

Thus, the internal anatomy registration skeleton is defined using frame based elastic deformations (defined in [START_REF] Gilles | Creating and animating subject-specific anatomical models[END_REF]) with weights computed using a Voronoi shape function as in [START_REF] Faure | Sparse Meshless Models of Complex Deformable Solids[END_REF] to smoothly propagate along the bone each control frame transformation. 9DOFs scalable rigids for the control are used to keep head bone consistency as it is in the generic model. This guarantees that the bone heads can only To avoid bending bones (Fig. 8.d), an alignment constraint is 14 added between the two bone heads. This constraint restrains the Fig. 7). Thereby, the control frames can translate in one direction, but can still scale in all three directions. This alignment constraint is applied to long bones only.

It has been shown in [START_REF] Zhu | Adaptable Anatomical Models for Realistic Bone Motion Reconstruction[END_REF] and similar approaches has been explored in [START_REF] Saito | Computational Bodybuilding: Anatomicallybased Modeling of Human Bodies[END_REF] that non-uniform scaling can be used to get more plausible bone deformations. This is why we introduced more control frames per anatomical bone. The number of frames varies according to bone type, the goal being to give enough deformability to each (for the registration process) while keeping good computation times (see blue dots in Fig. 7). For the short bones such as carpal bones, one frame per bone is used. For the long bones such as the femur two frames per bone are needed: one at the center of each bone head. For the flat bones such as the ribs three frames per bone are defined to keep ribs close to the skin in terms of curvature: two on bone heads (e.g. close to the joints rib-vertebra and rib-sternum), and one between the two others (middle of the rib). For bones with more complex shape such as vertebrae three frames per bone allows enough deformability to register the model while avoiding overlaps (e.g. overlaps between facet joints, and spinous process of two different vertebrae).

User Tracking

A single Kinect is used to perform body tracking. To reduce tracking noise, we record Kinect data in daylight, Kinect gives better results with background and ground matte materials. We observed that if the user's ground reflection is too visible, the Kinect includes it as part of the user silhouette which leads to lower limb length errors. The Kinect position is 60cm off ground for good lower-limb tracking results as determined in Pfister et al. (2014).

Because Kinect segments the depth map to compute body tracking joints at each frame, link distances change from frame to frame. This may lead to a disconnected anatomical skeleton (on the limbs) or elongated meshes (on the torso zone). We present the pipeline of our enhanced body tracking system in Fig. 9. 

Body tracking skeleton
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Results and Validation

To our knowledge, dealing with realistic anatomy visualization and motion is one of the most complex AR system ever because superimposing 3D anatomical data onto the user's color map reveals all the user measurement and tracking errors.

Our calibration method is a little time consuming (1-2sec for skin registration, 15-30sec for skeleton registration and 30-60sec for soft tissue registration) but allows us to obtain a 3D model with accurate user measurements; moreover the motion capture pipeline, even with the introduction of delay during quick motions, leads to realistic and stable user tracking.

Thanks to these two features, the presented method allows a realistic experience for understanding anatomy. The described method is implemented in C++ and runs on a commodity laptop (Intel CoreI7 processor at 3 GHz, Nvidia Quadro K2100M and 8GB of RAM). The real-time AR visualization runs between 35 to 62 fps depending on the 3D feedback: full-body musculoskeletal system (49211 vertices, 95189 faces) will run at 35 fps whereas internal organs (20144 vertices, 39491 faces) will run at 62 fps.

The computational bottleneck of our system is the quality of the 3D model (number of faces and vertices) alongside the quality of the user color map (Kinect gives a high definition color map, which is reloaded at each frame).

We provide the visual feedback on a commodity laptop screen and onto a 1.50m/2.0m screen for a demo display (see right side of Fig. 12). Fig. 12 presents snapshots of the provided visualization. In a first set of experiments, the motion sequences were acquired for 4 men with an average height of 1.70m, and 3 women with an average height of 1.60m. To get uniform results we work with Kinect sequences made in similar environment conditions (daylight, background material reflections, Kinect position, etc...). seen on the right side that the registered skeleton for these two datasets are almost identical; the red one is slightly bigger (1.2% for the limbs lengths and 2.5% for torso widths) than the other one (green). This comparison allows the validation of our skin registration process (see Section 2.2). 

Validation with MRI

The major contribution of our work, and also the most critical point is the closeness between the user-specific anatomy generated and the user's own. As explained in Section 1, using MRI data as ground truth allows us to obtain external as well as internal specific anatomical points for validation purpose.

Fig. 14 presents MRI data of two users (1.55m female and 1.85m male) in front and lateral views side to side with the corresponding 3D user-specific registered anatomies. The internal anatomy registration skeleton introduced in Section 2.3 is used to set the 3D model in a pose similar to MRI acquisitions. After comparing body height, we found an average error of 1.5% between 3D and MRI data, 3D data being always smaller than MRI data. This quite small error is mainly due to limited skull deformations. In the Kinect body tracking skeleton data, we observe a lot of 21 change in limbs lengths. Thus, we pinpoint anatomical specific 22 points (long bones protuberances) onto the MRI and onto the 23 user-specific associated 3D model. With these specific points, 24 we compare ulna and tibia lengths in real and 3D data. We 25 suffer an average 5.2% error in limb lengths : most often the 26 user-specific 3D model lacks a few centimeters. This percent-27 age seems quite acceptable taking into account Kinect raw data 28 noisiness.

29

To evaluate the torso body part realism, we propose to com-30 pare the user-specific 3D model and full-body MRI data by 31 comparing the distance between left and right humerus bone 32 heads. The average error between 3D and MRI data is rather 33 small: 1.5%. Body orientation range (criterion C02) corresponds to body orientation from Kinect point of view: e.g. facing, profile, 3/4, back. When Kinect raw data are occluded or self-occluded, our system returns incorrect motion poses: the more occlusion in Kinect raw data, the more errors we will have (for more information cf. Associated supplemental materials). A major topic is to be able to handle important occlusion zones, this motivates the work presented in Section 5.

Motion range (criterion C03) defines simple motions like flexion/extension of the knee, as well as complex motions in the extremities like finger motion or supination/pronation of the arm. We obtain high motion quality for simple motions; for complex motions we are limited by Kinect: this criterion suggest further improvements. The Kinect SDK outputs a small number of joints which limits the body motion possibilities (e.g. spine bending).

For Motion fluidity and delay (criterion C04) and Motion consistency (criterion C05), the goal is reached. Motion consistency refers to the absence of outliers during motion. We should state the fact that part of the visual latency that might occur comes from the low frame rate of the color map display.

Motion plausibility (criterion C06) corresponds to joint DOFs and angular limits. For this criterion we obtain different results depending on the body segment studied. For instance, it is easier to implement constraint for 1DOF joints than for 3DOFs joints such as spine or shoulders joints due to motion range. Work presented in Section 5 allows us to obtain better results on this criterion.

Anatomy realism (criterion C07) gives a feedback on the registration method by focusing on limb length and torso width. For this criterion, people with professional knowledge in anatomy were the only ones to rate the user-specific anatomy as average.

For almost everyone, the Augmented reality (criterion C08) results were of good level. The overall quality can even be increased with mesh texturing, or by adding a transition effect between virtual and real data (e.g. 3D anatomy and the user's color map).

C01 C02 C03 C04 C05 C06 C07 C08

--00% 15% 05% 00% 00% 10% 00% 00% +-20% 50% 30% 10% 10% 25% 15% 05% ++ 80% 35% 65% 90% 90% 65% 85% 95% Table 3. User study compiled results according to quality criteria for a mirror-like augmented reality system. For each criterion: the percentage of bad/average/good reviews.

Towards Image-based Corrective Registration

In Section 2 and 3 we proposed a system that can efficiently register user-specific anatomy and provide interactive visualization of it in motion based on data captured by Kinect. In this section, we will refer to this system as the "3D registration system".

The feedback obtained during the user study (see Section 4.2) suggests that a supplementary process for better quality of the overlay is needed. Anatomy misalignments are in particular visible when presenting anatomy superimposed onto the user's color map (AR). For example, anatomical limbs can sometimes be out of the user's silhouette as shown in Fig. 16 (e.g. arms and hands). We avoid performing these corrections in our 3D registration system as they make it overly constrained.

Image-based Correction

In this section, we describe a method to solve this problem efficiently in image domain. Our image-based corrective registration allows to reduce the errors that accumulate during previous system steps such as motion capture, anatomy transfer, image generation and animation.

Occlusion Handling We perform these image-based corrections for separate regions of the registered 3D anatomy (see Fig. 16). To generate the final overlay image we have to determine in which order these corrected images should be layered.

Therefore, we propose an image-based occlusion handling technique that automatically decides how to overlay these images relatively to each other in the final AR rendering.

Input Data From 3D Registration

By projecting and rendering registered 3D anatomy on the 2D color map we generate anatomy images (Fig. 16 16. We propose an image-based correction (step 1), and an occlusion estimation and layering technique (step 2). In the first step, we correct anatomy regions separately. In the second step, we combine them in correct order to generate the final overlay image. We estimate two types of image features: first, we find a set 61 of anatomy features S in the anatomy images, and second, a 62 set of depth features D in the Kinect depth map. Let's con-63 sider that we have N (=5 in our examples) anatomy regions. 64 Subsets of the Kinect and anatomy landmarks are assigned to 65 each of the anatomy regions based on the contribution of the 66 3D joints corresponding to these landmarks in producing soft 67 tissue movements in that region. We also describe below, how 68 we can estimate N depth contours corresponding to the anatomy 69 regions and estimate depth features from these regions.

Image-based Correction

70

We estimate depth contour points by first detecting edges 71 corresponding to the depth discontinuities in the Kinect depth 72 map using Canny edge detector [START_REF] Canny | A Computational Approach to Edge Detection[END_REF]) and then com-73 puting the external contour using contour detection algorithm 74 Anatomy Feature Estimation We denote the anatomy features for the ith anatomy region as S i , which are estimated in the corresponding anatomy image. For each anatomy landmark of the anatomy region we estimate a normal vector with a direction which is average of the normals to the lines connecting the landmark to the adjacent anatomy landmarks. This vector intersects the anatomy contour at two points and we add these points to S i . If desired, the lines can be further sub-divided to generate sub-landmarks increasing the number of features, in our implementation we subdivided the lines 6 times. Adding more features increases the robustness by reducing the contribution of outliers, see Fig. 18.

Depth Feature Estimation We denote depth features of the ith anatomy region as D i . Similar to the estimation of anatomy 27 features, we can estimate depth features by finding intersections 28 of the normal vectors from Kinect landmarks with the depth 29 contour of the anatomy region (see Fig. 19). Depth contours 30 are mostly fragmented and not closed because the transition be-31 tween anatomy regions generates depth discontinuities. Since 32 we have missing points in the contour, sometimes normal vec-33 tors do not intersect with depth contours. In that case, we do not 34 add any depth features to the depth landmark. At the same time, 35 we drop anatomy features of the corresponding anatomy land-36 mark to ensure one-to-one correspondences between anatomy 37 and depth features. Depth maps are often noisy and causes 38 erroneous depth feature estimation due to noise in the Kinect 39 depth sensor raw data. We apply a Kalman filter onto the depth 40 feature locations to remove the noise effect. In the bottom row, we show the estimation (f) and segmentation (g) of depth contours from the depth map (e), and estimated depth features (h).

Landmark Correction

42

Kinect landmarks provide a reasonable estimate of the skele-43 ton in the 2D image space, we will call it Kinect 2D skeleton. 44 Similarly, we will call the corresponding skeleton formed by 45 the anatomy landmarks as anatomy 2D skeleton. But if we warp 1 our anatomy regions using a map learned from anatomy land-2 marks to Kinect landmarks, it does not ensure that the mapped 3 regions will entirely reside within the depth contours. To main-4 tain smoothness in shape at boundary of the warped region, we 5 look into a reliable warp map, we call T .

6

We use a thin plate spline-based interpolation (see Bookstein 
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We can rewrite Eq. 1 in matrix form as:

D i = K(R) P T (S i ) P(S i ) 0 W A , (2) 
Where, P contains homogenized S i , K contains values of RBF functions and W is a vector with non-affine weights. We can further simplify Eq. 2 as D i = M i (S i ) X i , where M i and X i represent the first and second matrix of the right hand side of Eq. 2. Now, by combining equations of all the body parts in one global equation, we can write:

            D 1 . . . D N             =             M 1 (S 1 ) • • • 0 . . . . . . . . . 0 • • • M N (S N )                         X 1 . . . X N             (3) 
We can rewrite Eq. 3 as:

D = M(S) X (4) 
In our current implementation N=5, size of M and D are to map Kinect landmarks. T can be used to warp anatomy regions such that they remain enclosed within the depth contour while maintaining a smooth boundary shape. Note that T is composed of N separate mappings corresponding to the anatomy regions. By remapping the anatomy landmarks using T , we also obtain a better estimate of the original Kinect 2D skeleton formed by Kinect landmarks, which we call updated 2D skeleton. Furthermore, to ensure the connectivity of landmarks across different anatomy regions, we set the location of shared landmarks to the average of their estimates for different anatomy regions. Fig. 20 shows the resulting landmark corrections. Note that depth contours are noisy if the user wears loose clothes, which in turn makes the depth features noisy. Therefore, we prefer to maintain a smooth shape of the mapped anatomy region instead of mapping anatomy features exactly to the depth features. By picking a suitable λ in Eq. 1 we can control the smoothness. In our current implementation we chose λ = 0.01.

Updated Anatomy Image Generation

As explained previously, to each anatomy region corresponds an anatomy image, therefore, to warp an anatomy region, we simply need to warp the corresponding anatomy image. We decided to separately warp each of these images based on the transformation from anatomy 2D skeleton to updated 2D skeleton. To obtain the final anatomy corrected rendered image, we combine these warped anatomy images to a single composite image. For each pixel of that composite image, we should render the anatomy region closest to the camera (e.g. smallest depth value). To estimate the closest anatomy region, we propose a novel occlusion estimation and layering algorithm.

Image Warping We generate bounding boxes, which we call anatomy cages, around links of the updated 2D skeleton. Now, our goal is to deform these anatomy cages based on the deformation field. Fig. 21 shows warping of the right upper limb with cages.

Using T as a deformation field is not a good choice for two reasons: first, T does not include the additional deformations we introduced in the post-processing step (where we modify the locations of mapped anatomy landmarks). Second, T is reliable within the regions enclosed by the anatomy landmarks, but if we use these landmarks to generate the cages, we will end up having a piecewise linear approximation of the boundary of the anatomy in the image space. Therefore, we chose to use wider cages to get a smoother anatomy boundary after warping. This puts the cage points outside the regions enclosed by the landmarks and so we cannot use T reliably. Therefore, instead of T , we use dual-quaternion skinning [START_REF] Kavan | Geometric Skinning with Approximate Dual Quaternion Blending[END_REF]) driven by the skeleton to perform image warping from anatomy to updated 2D skeleton landmarks. Using this, we estimate deformed anatomy cages corresponding to each of the anatomy cages. To warp the anatomy images, we triangulate the anatomy cages, and then we estimate affine transformation of the individual element of the cages from original anatomy cage to the deformed anatomy cage configuration. Using bilinear interpolation we then warp the anatomy image pixels inside the triangles. We call the new warped images as warped anatomy images. We define one for each anatomy region. Fig. 22 shows warping results for the complete set of anatomy images.

Occlusion Estimation and Layering

As mentioned before, the main challenge in generating final composite image of the warped anatomy images is to figure out which anatomy region is closest to the camera for a given view.

If images are naively combined as layers, occlusions such as in The size of the warped anatomy images and the composite 39 image are the same. For each warped anatomy image, we cat-40 egorize the pixels into two types: valid when pixels belong to 41 anatomy, and invalid when they do not. In the composite image 42 domain we loop through all the pixels: for each pixel, we check 43 if at that location any of the warped anatomy images contains a 44 valid pixel. If not, we set that pixel to black. If yes, we check 45 which of the warped anatomy images contain valid pixels. Out 46 of all those warped anatomy images we pick the one that is clos-47 est to the camera. The distance from the camera is determined 48 based on anatomy depth images. We then update the pixel of the 49 composite image with the color of that closest warped anatomy 50 image. In Fig. 23 (c) we can see how our algorithm corrected 51 the problem of occlusion (b). In the 3D registration system, the errors in orientation of the anatomy regions produce wrong color maps of the anatomy re-32 gions. Since we use these color maps as color or texture of 33 the anatomy regions, we cannot correct orientation errors in the image-based correction step. Currently, integration of the proposed image-based corrective registration step within the 3D registration system is not real-time. The image-based correction uses color maps rendered by the 3D registration system. In our current implementation, we save these color maps to the disk and read them later for image-based corrections. These computationally expensive file operations prevent real-time imagebased misalignment correction. Furthermore, with the current latency, the combined system does not satisfy "motion fluidity and delay"(criterion C04 as mentioned in Section 4.2).

Conclusion

We present the first live system of personalized anatomy in motion. Superimposing the anatomy onto the user's image allows us to create a real-time augmented reality experience. The first paper version Bauer et al. (2016) attached video (see https://youtu.be/Ip17-Vaqqos) illustrates the application pipeline and shows AR results of our system (before image-based corrective registration presented in Section 5).

We also proposed an image-based corrective registration to correct the errors that build up during system steps: motion capture, anatomy transfer, image generation and animation. Currently, the combined pipeline is not real-time due to expensive file read and write operations. Using unoptimized code for image-based corrective registration we currently achieve a frame rate of 12fps on average for the combined pipeline. In future, we plan to read color maps from memory instead, and build a combined real-time system. Another limitation of the current image-based correction is that we cannot correct the errors in orientation of the anatomy regions relative to the bones. In future, to solve this problem, we can use an image-based hybrid solution, such as [START_REF] Zhou | Parametric Reshaping of Human Bodies in Images[END_REF]; [START_REF] Jain | MovieReshape: Tracking and Reshaping of Humans in Videos[END_REF]; [START_REF] Richter | Real-time reshaping of humans[END_REF] that use a 3D morphable model to fit to some features in 2D images. In our case, we can model our 3D anatomical reference model as a morphable model and then fit it based on 2D joint locations of the updated Kinect 2D skeleton. Then, we can re-render the anatomy regions from camera view to generate updated anatomy images. This should be able to recover the color of anatomy regions that get occluded due to orientation error in 3D registration system. After that we can follow our usual skinning and occlusion handling routines to generate final results. We believe that the basic Kinect body tracking enhanced with our method is sufficiently accurate for our needs.

The system could be extended or improved in different ways. Posture reconstruction proposed by the Kinect SDK could be replaced by more sophisticated approaches such as presented in [START_REF] Liu | Kinect posture reconstruction based on a local mixture of gaussian process models[END_REF]. This could make the system not only more robust but also more independent of the selected sensor. Another solution could be the use of physical priors such as introduced in Andrews et al. (2016). It would certainly enable suppressing some outliers resulting of Kinect data. On the other hand, the addition of biomechanical simulations could allow to get more realistic deformations of soft tissue and organs but this could be at the cost of interactivity.

To show full body muscular activity for every possible body motion, inverse dynamics (Murai et al. (2010)) will also be de-1 veloped.

2

An improvement in the skin registration can be done by reduc-3 ing the 9DOFs controllers to 6DOFs (3 rotations and 3 scales).

4

This can be done by exploiting appropriately the hierarchical 5 structure and would allow more robustness and skin consistency 6 around body joints. ages, videos, etc) in addition to the AR visualization.

11

This system could also be used as a way to communicate be-12 tween medical practitioners and their patients, about surgery, 13 rehabilitation or any other health issue. Novel artistic content 14 might also be produced using our technology, as well as interactive advertising.

16

Our system has been featured as a live demo during two con- 

  92 ask the user to pinpoint anatomical key points to help position-93 ing the data. Shen et al. (2012) use an example-based method 94 to learn how to correct initially tracked poses. Because body 95 tracking is a critical step, other methods like those introduced by Zhou et al. (2014) or Wei et al. (2012) use the Kinect depth map and implement their own posture registration process using probabilities or pose estimations. Zhu et al. (2015) use multi-Kinect depth maps and anatomical knowledge to enhance realistic limb motions. Nowadays, in the game industry, sports and fitness training applications based on depth map tracking devices are commonly used (e.g. Nike Kinect+, Get Fit With Mel B, Your Shape, etc...). To our knowledge, the best tracking games are based on the Microsoft V2.0 Kinect technology. All these games only show the user depth map or silhouette . By presenting the anatomy superimposed onto the user's color map (AR), a precision and a realism constraint are added compared to this field state of the art. Associated Supplemental materials presents experiments we did to determine the overall Kinect body tracking precision and quality.

  Validation of anatomical data requires invivo measurements, the simplest way is to use as ground truth body measurements (see Dao et al. (2014)) or/and anatomical landmarks (see Espitia-Contreras et al. (2014)) taken directly onto the user's body. The study made by Malinowski and Matsinos (2015) gives limb bones length during motion and compare them with ground truth body measurements.

Fig. 1 .

 1 Fig. 1. Pipeline of the user-specific anatomy generation.

•

  Internal anatomy registration skeleton: composed of 96 3 joint constraints between bones and 373 control frame po-4 sitions (see Fig. 7). This system is used to keep anatomical 5 consistency during internal skeleton registration and is de-6 fined based on anatomical rules presented in Section 2.3.

The

  Kinect SDK provides a simple body tracking skeleton, 9 without temporal coherence: links may have different lengths 10 at each frame. At calibration time: starting from a T-pose 11 (Fig. 2.a), the user flexes his or her elbows (Fig. 2.b) and knees 12 (Fig. 2.c). This allows us to estimate the length of upper and 13 lower limb segments.

Fig. 2 .

 2 Fig. 2. Calibration process: (a) to have global proportions (head and torso), (b) for real upper limb parts lengths, (c) for real lower limb parts lengths.

Fig. 3 .

 3 Fig. 3. (a): skeleton key points. (b): body measurements key points. (c): 3D key points used in skin registration.

Fig. 4 .

 4 Fig. 4. Skin registration. Red dots: origins of control frames; green dots: silhouette key points; blue dots: Kinect point cloud.

1 2

 1 d the distance to rest) defined by point to point 5 zero length springs, attracts the control frames of the template to 6 the bones of the user-specific model (red points in Fig. 4). Then 7 the energy E keypoint = 18 i=1 Kd 2 i , also defined by point to point 8 zero length springs, attracts the silhouette points (green points 9 in Fig. 4). Minimizing these first two energies scales the limbs, 10 the torso, the neck and the head of the generic model accord-11 ing to the target body measurements as illustrated in Fig. 5.a 12 and b. The energy E cloud point attracts the skin to the target point 13 cloud using an ICP approach minimizing the distance between 14 two sets of points. At each iteration, the point to point corre-15 spondence is reevaluated and the quadratic energy (as E skeleton 16 and E keypoint ) attracts each skin point to the closest target point. 17 The forces are propagated from the skin vertices to the skeleton 18 control frames (see Fig. 4 and Fig. 5.c). Thanks to the fact that 19 a small set of control frames are used, awkward configurations 20 are avoided and no smoothness or kinematic constraint terms 21 are needed.

Fig. 5 .

 5 Fig. 5. Skin registration result at the end of each step of the optimization process. (a): minimizing E skeleton . (b): minimizing E skeleton and E keypoint . (c): minimizing the three energies.

Fig. 6 .

 6 Fig. 6. Kinect point cloud and corresponding registered skin. Top: 1.55m female. Bottom: 1.85m male.

Fig. 7 . 4 •

 74 Fig. 7. Right arm internal anatomy registration skeleton. Blue dots for control frame positions; yellow lines and middle bone frames for alignment constraints; other frames for joint constraints.

Fig. 8 .

 8 Fig. 8. (a): Laplacian Interpolation, (b): registration without joint constraint (overlaps between bones), (c): registration without joint constraint (bone heads disconnection), (d): registration without alignment constraint (bent and twisted bones), (e): our method.

(Fig. 9 .

 9 Fig. 9. Enhanced body tracking pipeline.

Firstly

  we define a hierarchical body tracking system by con-1 straining the limb lengths and by recomputing joint orientations 2 (see Section 3.1 for more details). 3 To smooth out small tracking noise, we then apply a Kalman 4 filter onto the joint positions. Joint orientations are recom-5 puted from the filtered joint positions. Finally, we anatomically 6 constrain the joint orientations: more details are given in Sec-7 tion 3.2.

  8 3.1. Hierarchical body tracking system 9 Our hierarchical body tracking system is composed of 25 10 joints according to the Kinect SDK body tracking system. 11 To define each joint f , the position and the orientation of its 12 parent p is required. To overcome this, we begin by comput-13 ing the joints from the root (spine base joint) to the leaves (e.g. 14 hand tips, foot joints and head joint). The root joint is defined 15 by keeping the filtered Kinect position and orientation.

Fig. 10 .

 10 Fig. 10. (a): our hierarchical body tracking skeleton at (t 0 ). (b): Kinect body tracking skeleton at (t). (c): our result.

  Anatomically constrained joint orientations 31 To correct non-anatomically plausible behaviors due to track-32 ing errors, each Kinect hierarchical body tracking joint orienta-33 tion is constrained by limiting the number of possible rotations 34 based on anatomical motion knowledge (e.g. knee joint can be 35 approximated as a 1DOF joint, whereas the hip joint is a 3DOFs 36 joint). This is done by constraining a given quaternion using 37 Euler-angle constraints to find the closest rotation matrix de-38 fined only with valid axis within the joint limits. Computation 39 is made using the Geometric Tools library by Eberly (2008).

Fig. 11

 11 Fig. 11.a illustrates in red a raw Kinect tracking and in gray the result after applying this constraint. To add even more anatomical plausibility to the result, joint limits are added to each rotation axis. Fig. 11.b highlights this constraint by showing Kinect raw data in red and realistic angular limits obtained in gray.

Fig. 11 .

 11 Fig. 11. Kinect data in red and corrected in gray. (a): off angular limits rotation. (b): rotation axis error (DOFs).

Fig. 13

 13 Fig.13presents two tracking data of the same user wearing different clothing and with different hair styles. It can be

Fig. 12 .

 12 Fig. 12. Left: system set-up. Right: snapshots of results.

Fig. 13 .

 13 Fig. 13. For the same user with different clothing and hair style (Left), we obtain almost identical results (Right).

Fig. 14 .

 14 Fig. 14. Morphometric measurements (green lines) used to compare our results with ground truth MRI data. Top: 1.55m female. Bottom: 1.85m male.

34Fig. 6

 6 Fig.6shows that the point cloud and skin are fairly close; 35 our generic skin being registered for a woman or a man, but 36

15 4 .

 4 2. Validation with User Study 16 In a second set of experiments 20 different subjects with 17 no motor problems and working everyday on tools involving 18 medicine or medical imaging were involved. For each subject, 19 we captured a range of full body motions involving upper and 20 lower limb motion as well as torso motion. Fig. 15 presents 21 snapshots obtained during the user study.
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Fig. 15 .

 15 Fig. 15. snapshots of our system obtained during the user study.

34 35

 34 Body position range (criterion C01) corresponds to motions 36 while standing, crouching or sitting. In most cases, the results are well received. For other cases, limitations are directly con-38 nected to Kinect occlusion limitations (for more information 39 cf. Associated supplemental materials).
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  top row) corresponding to a set of predefined 3D anatomy regions. Each anatomy region is composed of a specific set of bones, organs and muscles of the registered 3D anatomical model. For example, in Fig. 16, we show the anatomy images corresponding to the five anatomy regions we use in our examples. Unfortunately, after superimposing them onto the color map we can clearly observe that they are misaligned (see Fig. 16 bottomleft). Using our image-based correction, we deform or warp these anatomy images to correct the misalignments. In Section 3 we defined our enhanced body tracking system composed of 25 joints. By mapping it to image space, we generate Anatomy landmarks. The same is done with the Kinect SDK body tracking skeleton to generate Kinect landmarks. Our image-based correction method uses these two sets of landmarks and the Kinect depth map to correct the anatomy misalignments.As mentioned earlier, to solve the problem of anatomy misalignment due to accumulation of errors in the 3D registration system, we propose an image-based correction method. Correcting these errors in a reduced dimension (in image space) causes small projective errors to occur, but these corrections can be performed very efficiently. Furthermore, the result of the 3D registration system is a 2D image that mixes the real world captured by the Kinect with a simulated image of the animated model; therefore making the correction at the very end of the process makes it possible to correct errors of all the stages including the final visualization in 2D. The two main stages of our algorithm are: (a) image-based correction and (b) occlusion estimation and layering. The overview of this pipeline can be seen in Fig.17

  .

Fig.

  Fig. 16. We propose an image-based correction (step 1), and an occlusion estimation and layering technique (step 2). In the first step, we correct anatomy regions separately. In the second step, we combine them in correct order to generate the final overlay image.

56

  The image-based correction stage can be further divided into 57 three steps: (a) feature estimation, (b) landmark correction and 58 (c) updated anatomy image generation. 59 5.2.1. Feature Estimation60

Fig. 17 .

 17 Fig. 17. Overview of our corrective registration system.

Fig. 18 .

 18 Fig. 18. Feature estimation for left arm. In left: anatomy features (S) (blue) are estimated using anatomy landmarks (red) and sub-landmarks (green). In right: depth features (D) are estimated using Kinect depth landmarks (red) and sub-landmarks(green). Here we are showing one sub-division of landmarks.
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Fig. 19 .

 19 Fig. 19. Feature estimation: Preliminary 3D registration when superimposed on input image (a) we can observe anatomy misalignments (b). We estimate anatomy features (d) from the intermediate anatomy images (c).In the bottom row, we show the estimation (f) and segmentation (g) of depth contours from the depth map (e), and estimated depth features (h).
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(

  1989)) represented with radial basis functions (RBF) to ap-8 proximate the mapping T from anatomy features to depth fea-9 tures. This mapping is composed of an affine transformation 10 and a non-affine deformation. We use a regularizer parameter 11 λ to control the influence of the non-affine deformation part, 12 which refers to a physical analogy of bending. More recent 13 techniques, such as Sorkine and Alexa (2007) can also be used 14 to compute the image warp map. 15 For an anatomy region with M feature points. The parameters of the RBF function are estimated by solving the following Eq. 1:D i = A S i + λ i=1:M j=1:M (w j R(||s id j ||)) (1)Where, D i and S i are Mx2 matrices containing respectively lo-16 cations of depth and anatomy features. s i and d i are locations 17 of ith anatomy and depth features, A is a MxM affine trans-18 formation matrix. w represents weight of non-affine bending 19 transformation, and R(r) = r 2 log(r) is a RBF function. Addi-20 tionally, we include Kinect landmarks and anatomy landmarks 21 respectively in the matrices D and S.

23 240 ×

 240 240 and 240 × 2 respectively. Finally, we can also write 24 Eq. 3 as D = T ( M(S), X. where, T maps anatomy features in 25 S to the depth features in D, and X includes the parameters of 26 the mapping. 27 We solve Eq. 4 to estimate mapping parameters X of T by 28 formulating it as a linear least squares system for given S and 29 D which includes anatomy and depth features that have one-30 to-one correspondences. In our regularized optimization frame-31 work, we constrain the anatomy landmarks with soft constraints 32

Fig. 20 .

 20 Fig. 20. Landmark correction: Our skeleton correction algorithm corrects initial Kinect 2D skeleton in image space (b) to produce more consistent configurations (c).

Fig. 21 .

 21 Fig. 21. Cage generation and warping of the right upper limb. Yellow points are anatomy landmarks, White ones are updated landmarks. The red zones present anatomy cages.

Fig. 23 ,

 23 Fig. 23, (b) can occur. In this case, the anatomy region corresponding to the torso is occluding the hands, which is not what we expect. Our method described below tackles this problem. We first generate synthetic depth images for the anatomy regions based on the Kinect 2D skeleton. For each anatomy region, we know 3D configuration of the corresponding Kinect joints in the Kinect 2D skeleton. We model cylindrical primitives around the bones. The radius is set equal to the maximum cross-section radius of the corresponding anatomy region. Using the projection matrix of the camera, for each anatomy region, we render a depth map. We call this image anatomy depth image.

Fig. 22 .

 22 Fig. 22. Image-based corrective registration: Misalignments in the anatomy regions observed in (a) are corrected by our image-based corrective algorithm to produce (b).
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Fig. 23 .

 23 Fig. 23. Occlusion handling: Our image-based corrective algorithm corrects misalignments in the rendering (a) of initial 3D registration by warping anatomy regions in image space and in separate layers. Rendering them without knowing their relative distances from camera create occlusions (b). Our occlusion handling algorithm can recover these relative distances and render these regions in correct order (c).

  17ferences and at the Consumer Electronic Show. More than 400 18 people have been able to test it out. Most of them enjoyed the 19 experience and a lot of them recommended it and came back

Table 2 .

 2 Comparison between anatomical mirror-like applications. Legend: green for good (or True), orange for average, red for bad (or False).
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data used for validation are 26

Video

Before After Squat motion 0.939 ± 0.184 0.994 ± 0.026 Hand crossing 0.961 ± 0.159 0.988 ± 0.089 Table 4. Image-based corrective registration results: anatomy intersection coefficient before and after corrections Our work is designed to be used as a tool for anatomy learn-8 ing for medical and sports students. This is why in the future it