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We have implemented the polarizable continuum model within the framework of the many-body
Green’s function GW formalism for the calculation of electron addition and removal energies
in solution. The present formalism includes both ground-state and non-equilibrium polarization
effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced
renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by
comparisons with ∆SCF calculations performed at both the density functional theory and coupled-
cluster single and double levels for solvated nucleobases. The present study opens the way to GW
and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics,
wet chemistry, and biology. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4946778]

I. INTRODUCTION

The study of electronic excitations in complex disordered
systems remains a challenge for computational methods,
leading to various strategies to split the system into an
“active” portion of space, where the highest desired level
of Quantum Mechanical (QM) treatment is performed, and an
“environmental” surrounding medium (a solvent, a metallic
nanoparticle, a disordered polymeric phase, etc.) that is
considered at a lower level of theory. This lower level can
be either a simplified QM model (QM/QM’), a molecular
mechanical approach (QM/MM), or a continuum model
representing the environment as a structureless material having
realistic macroscopic properties. This latter partitioning
allows in particular to straightforwardly account for the
renormalization of the excitation energy in the QM part
due to the re-arrangement of charges in the polarizable
environmental part induced by the excitation inside the QM
region. The description of the dielectric response of the
surrounding polarizable medium can notably be achieved
with the Polarizable Continuum Model (PCM)1 or within a
discrete model with, e.g., induced charges and/or dipoles at
atomic sites.

Since its first introduction in 1981,2 much progress has
been achieved along the line of the PCM approach where the
QM part (the solute) is considered to be located inside a cavity
carved into a continuous polarizable material (representing,
e.g., the solvent) characterized by its macroscopic dielectric
constant (ϵ). The definition of the cavity and the discretization
of its surface,3,4 the scheme used to extract the apparent surface
or volume charges that will enforce the electrostatic field and
potential continuity equations across the boundary between

a)Electronic mail: ivan.duchemin@cea.fr

the two media, from the original D-PCM2 to the IEF-PCM5,6

or the SS(V)PE7,8 formulations, the treatment of anisotropic
dielectric properties in the continuum,5 the inclusion of non-
electrostatic contributions to the solvation energy,9,10 and
the different strategies adopted to minimize the problems
associated with the “leaking” of the QM density outside
the cavity,5,8 are important issues that have been worked
out by the community over the years. Further, beyond the
exact treatment of the boundary conditions, approximate but
efficient schemes, such as the conductor-like-screening-model
(COSMO) approach,11 allowing the explicit calculation of
solvation energies and gradients, can be used as an alternative
to the IEF-PCM or SS(V)PE schemes. Likewise, we mention
that multipolar representation of the solvent was also proposed
as early as 1973.12,13 A review of the pros and cons of all these
approaches is beyond the scope of the present study and we
refer the reader to recent reviews where in-depth discussions
are provided.14–16

Concerning the quantum-mechanical approach used
to describe the solute, we consider here a specific
formulation of many-body perturbation theory, labeled the
GW formalism,17–25 that has recently attracted a growing
interest for the study of isolated molecular systems.26–54 Such
a formalism relies on an approximation to the equation-of-
motion of the time-ordered one-body Green’s function (G) of
which the poles are the addition and removal energies, namely
the difference of energies between the eigenstates of the
(N ± 1)-electrons systems and the N-electron ground state. As
such, the poles of the Green’s function are the correct vertical
excitation energies upon addition of an integer charge (electron
or hole) to the N-electron system, with the advantages as
compared to standard ∆SCF calculations that: (a) all occupied
and virtual energy levels can be straightforwardly obtained,
not only the frontier orbital energies; and (b) the formalism
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can be used for both finite or extended systems. The main
limitation of the GW approach is computational cost, with a
O(N4) scaling, but systems containing well above a hundred
atoms can now be routinely studied.36,45,51,55,56 Concerning
the obtained accuracy, existing studies and benchmarks on
gas phase molecules or complexes have demonstrated that
errors limited to a very few tenths of an eV can be obtained
as compared to experimental or higher-level calculations such
as CCSD(T). This will be illustrated below in the case
of nucleobases. Finally, the GW approach opens the way
to the study of optical excitations within the framework
of the Bethe-Salpeter equation (BSE) formalism57 that has
been shown recently, thanks to thorough benchmarks on
several molecular families,58–60 to provide average accuracies
comparable with the best (“optimized”) time-dependent
density functional theory (TD-DFT) approaches, solving in
particular the standard problems associated with charge-
transfer excitations36,47,61–64 and cyanine-like65 systems.

Contrary to, e.g., density functional theory (DFT) and
its time-dependent (TD-DFT) extension, the merging of
the GW formalism with polarizable models has been very
scarcely addressed by the community, reflecting the fact that
such a technique has been originally developed since the
mid-1960s for periodic extended systems. In a pioneering
study, Rohlfing introduced model dielectric functions to
account for the long-range screening by a substrate in the
so-called LDA + GdW approach.66 As another direction of
progress, GW and BSE calculations were recently achieved
starting from eigenstates generated with a QM/MM approach
at the DFT level, namely ground-state polarization effects
were introduced, but the excitations out of the ground-
state were not screened.67,68 Finally, a polarizable model
with a regular grid of polarizable centres was recently
combined with the GW and BSE formalisms for the study
of Frenkel and charge-transfer excitations in a donor/acceptor
complex.45

In the present study, we explore the merits of combining
the GW formalism with the polarizable continuum model.
Our goal is not to explore the merits of the PCM, but to
validate its combination with the GW formalism since several
approximations are required for merging the two formalisms.
Such approximations are validated quantitatively in the case of
hydrated nucleobases. The choice of such systems is dictated
by the existence of several reference calculations at various
quantum mechanical levels and experimental data. Further,
the large difference between the static and optical dielectric
constant of water (ϵ ∼ 78.35 and ϵ∞ ∼ 1.78, respectively)
allows to properly introduce the importance of the so-
called non-equilibrium PCM effects that can be naturally
introduced in the GW framework. We show in particular that
the solvent induced shifts obtained at the (GW+PCM) level
are within a few percent of that obtained by (∆SCF+PCM)
techniques at the DFT or CCSD levels, as implemented within
a reference computational package, namely Gaussian09.69

However, contrary to standard ∆SCF calculations that provide
the energy renormalisation of frontier orbitals, we show
that the GW formalism allows to obtain directly the
solvent-induced shift of the entire occupied and virtual
spectrum.

The present study is organized as follows. We briefly
expose in Section II the GW formalism, emphasizing the
issues of importance concerning the combination with the
PCM model. In particular, the so-called static Coulomb-hole
plus screened-exchange (COHSEX) limit for the GW operator,
and the contribution of the continuous dielectric medium
to the screened Coulomb potential W inside the quantum
mechanical cavity, are emphasized as crucial ingredients
for the present implementation. Our results are presented
in Section III followed by a discussion in Section IV. We
leave to the Appendix a discussion of our implementation of
the PCM model within a modified IEF-PCM implementation
accounting explicitly for the leaking of the charge outside of
the cavity.

II. THE GW FORMALISM AND THE DYNAMICALLY
SCREENED COULOMB POTENTIAL W

A. Basic equations

We briefly review the GW formalism, emphasizing the
features of relevance for the embedding strategy we develop.
More details can be found in thorough reviews on the
subject.17–25 We start by introducing the time-ordered Green’s
function G that reads

i~G(rt,r′t ′) = θ(t − t ′) 
ψGS(N) �ψ̂(r′t ′)ψ̂†(rt)�ψGS(N)�
− θ(t ′ − t) 
ψGS(N) �ψ̂†(rt)ψ̂(r′t ′)�ψGS(N)� ,

where ψGS(N) is the N-electron ground-state wavefunction
and

�
ψ̂(rt), ψ̂†(rt)	 are the destruction/creation field-operators

in the Heisenberg representation. As such, G follows the
propagation in time of an added (removed) electron to (from)
the N-electron system in its ground-state. It can be shown
in consequence that its spectral representation (after time
to frequency Fourier transform) is dominated by energy
poles that are precisely the addition (removal) energies of
an electron to (from) the N-electron ground-state, including
the ionization energy and electronic affinity. The so-called
Lehman representation of G reads

G(r,r′;ω) =

a

ga(r)g∗a(r′)
ω − Ea + i0+

+

i

gi(r)g∗i (r′)
ω − Ei − i0+

, (1)

where Ea = Ea(N + 1) − E0(N) is an addition energy, with
the (a) indexing the eigenstates of the (N + 1)-electron
system, while Ei = E0(N) − Ei(N − 1) span the removal
energies. The ga/i are called Lehman amplitudes and the
infinitesimally small (0+) positive parameter indicates that
the Green’s function can only be analytically continued in
the first and third quadrants of the ω-frequency complex
plane.24,70

Anticipating on the comparisons that will be conducted
below, it is interesting to consider the standard ∆SCF
techniques that proceed by calculating the ground-state energy
of the (N + 1), neutral, and (N − 1)-electron systems. Both
the GW and ∆SCF formalisms are thus concerned with the
explicit change in the number of electrons in the system.
In the ∆SCF approach, the electronic reorganization energy
associated with the change in particle number is usually treated
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self-consistently, e.g., at the density functional level. In the
case of the GW formalism, the response of the N-electron
system is contained in the dynamical susceptibility P(r,r′;ω)
that relates the self-consistent changes in charge density to the
perturbation that represents the added electron or hole. The
screened Coulomb-potential W that enters the GW formalism
is closely related to the susceptibility operator (see below).

On very general grounds, the equation-of-motion of the
Green’s function leads to the following eigenvalue equation
where we introduce the self-energy operator Σ that represents

exchange and correlation effects:

[ω − h0(r)]G(r,r0;ω)
−


dr′ Σ(r,r′;ω)G(r′,r0;ω) = δ(r − r0), (2)

where the one-body Hamiltonian h0 contains the kinetic
energy, ionic, and Hartree operators. Within the GW
formalism, which can be considered as the lowest-order
approximation to Σ in terms of the screened Coulomb potential
W , the quantities to be calculated read

Σ(r,r′; E) = i
2π


dωeiω0+G(r,r′; E + ω)W (r,r′;ω), (3)

G(r,r′; E) =

n

φn(r)φ∗n(r′)
E − εn + i0+ × sgn(εn − EF) , (4)

W (r,r′;ω) = v(r,r′) +


dr1dr2 v(r,r1)P0(r1,r2;ω)W (r2,r′;ω), (5)

P0(r,r′;ω) =

i, j

( f i − f j)
φ∗i(r)φ j(r)φ∗j(r′)φi(r′)

εi − ε j − ω − i0+ × sgn(εi − ε j) , (6)

where v(r,r′) is the bare Coulomb potential, G the time-
ordered one-body Green’s function, P0 the independent-
electron susceptibility, and W the screened Coulomb potential.
The { f i/ j} are occupation numbers and the input {φn, εn}
eigenstates are typically Kohn-Sham eigenstates that will be
corrected within the present GW formalism. Once the self-
energy Σ is obtained, inserting the Lehman representation for
G, one obtains

h0(r)ψn(r) +


dr′ Σ(r,r′; En)ψn(r′) = Enψn(r), (7)

where the {gn} Lehman amplitudes have been renamed {ψn}
to bridge with more standard notations for the one-body
eigenvector equation. Note that the (En,ψn) solutions of Eq. (7)
can be different from the (εn, φn) states used to build W and Σ,
e.g., input Kohn-Sham eigenstates. This equation generalizes
the standard Kohn-Sham or Hartree-Fock eigenvalue problem
since Σ is energy-dependent. In practice, the standard and most
simple GW approach consists of replacing the DFT exchange-
correlation potential contribution to the input Kohn-Sham
eigenvalues by the GW self-energy operator,

EGW
n = εKS

n + ⟨φKS
n |ΣGW(EGW

n ) − V XC |φKS
n ⟩. (8)

With the self-energy operator built from the input Kohn-Sham
DFT eigenstates, such a simple non-self-consistent scheme is
labeled as the G0W0 approach. More specifically, if the starting
DFT calculation is performed with, e.g., the PBE0 exchange-
correlation functional,71 the notation G0W0@PBE0 is used.
As documented in several recent studies, such an approach
leads for organic molecules to ionization potentials too small
with respect to experiment when starting with semilocal DFT
functionals or hybrids with a relatively limited amount of exact
exchange such as PBE0. As illustrated here below, better

energies can be obtained by using a simple self-consistent
scheme where the corrected eigenvalues are reinjected into
the construction of G and P0 in Eqs. (4) and (6). Such a scheme,
labeled evGW in the following, is a partially self-consistent
approach with update of the eigenvalues only. We refer the
readers to recent papers devoted to self-consistency within
GW for molecular systems.30,31,37–39,41,44,46,48,49,54

B. PCM contribution to the screened-Coulomb
potential W

Observing the definition, in Eq. (6), of the independent-
electron polarizability P0 built with occupied/virtual Kohn-
Sham eigenstates, it is obvious that if two systems located
in two separate regions (1) and (2) have non-overlapping
molecular orbitals, there are no matrix elements P0(r1,r2)
coupling 1 and 2. Using a block notation where index 1 (2)
corresponds to points located in area 1 (2), the restriction W11
of the screened Coulomb potential to system 1 reads

W11 = v11 + v11P0,11W11 + v12P0,22W21, (9)
W21 = v21 + v21P0,11W11 + v22P0,22W21. (10)

Simple matrix manipulation leads to the following formulation
for the restriction of the screened Coulomb potential to
system (1):

W11 = ṽ11 + ṽ11P0,11W11, (11)
ṽ11 = v11 + v12P∗22v21, (12)

P∗22 = P0,22 + P0,22v22P∗22. (13)

The quantity P∗22 is the interacting polarizability of system
(2) alone, namely in the absence of system 1. We have
introduced the (*) subscript to indicate that it should not be
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confused with the restriction to system (2) of the interacting
polarizability of the full (1+2) system. Since the interacting
polarizability relates the variation of the charge density as
a response to an applied perturbation, the interpretation
of the contribution of v12P∗22v21 to ṽ11 is straightforward.
Reintroducing explicit real-space indexes, the quantity

∆n(r2) =


dr′2 P∗(r2,r′2)v(|r′2 − r1|) (14)

represents the charge density variation generated in (r2) inside
system (2) by a unit test charge located in (r1) inside the
cavity. As a result, the term

V reac(r1,r′1) =


dr2dr′2 v(|r′1 − r2|)P∗(r2,r′2)v(|r′2 − r1|) (15)

is the reaction potential generated on point r′1 in system (1)
by the charge variation ∆n(r2) in system (2). As such, the
renormalized Coulomb interaction ṽ11(r1,r′1) is just the sum of
the bare Coulomb potential generated on r′1 by a normalized
test charge in r1, with r1 and r′1 inside the cavity, plus the
reaction field on r′1 generated by the polarization charges
developed in system (2) as a response to the test charge in
r1 (see Fig. 1 for a symbolic representation). In this way,
we recover the physics of solving Poisson’s equation inside a
cavity surrounded by a dielectric medium characterized by its
dielectric response properties.

In the present Coulomb-fitting resolution-of-the-identity
(RI-V) Gaussian basis implementation,72 we do not calculate
ṽ11(r1,r′1), but the Gaussian integrals

ṽβ,β′ =


dr1dr′1 β(r1)ṽ11(r1,r′1)β′(r′1) (16)

namely the two-centers two-electrons Coulomb integrals
between “auxiliary” Gaussian orbitals located on the atomic
sites in the QM region. In practice, this means that for
the calculation of the ṽβ,β′ matrix elements, we calculate
the reaction field associated with a charge supported by an
auxiliary basis β orbital in the quantum mechanical part and

FIG. 1. Symbolic representation of the renormalization of the Coulomb inte-
grals between auxiliary basis orbitals in the quantum mechanical part through
polarization of the continuous polarizable medium. The symbols v and ṽ
stand for the bare and renormalized Coulomb interactions whereas P∗PCM is
the polarizability of the PCM in the absence of the solute. Embedded GW
calculations are performed as in the vacuum provided that the renormalized
ṽ Coulomb potential is used when building the screened Coulomb potential
W (see Eq. (11) in the text). The shape of the cavity drawn here is sym-
bolic and does not reflect the standard construction based on atom-centered
spheres.

calculate the action of the generated induced charges and
dipoles onto all β′ orbitals in the QM region. More details
about the PCM implementation can be found in the Appendix.
Once ṽ11 is built, one can proceed with a standard GW
calculation for the isolated quantum mechanical part provided
that one uses ṽ in the construction of W . In particular, once
ṽβ,β′ is known, the effect of the PCM onto all occupied/virtual
electronic energy levels can be obtained.

C. From dynamical to static screening

A difficulty to combine the GW formalism with the PCM
approach is that the calculation of the self-energy operator
Σ(r,r′;ω) requires the knowledge of the dynamically screened
(namely ω-dependent) Coulomb potential W (r,r′;ω). The
frequency dependence of W stems from the frequency-
dependence of the dielectric function in the optical range.
This is schematically represented in Fig. 2 where the real-part
of the optical macroscopic dielectric constant of water, as
defined from the frequency-dependent refractive index, is
represented in the optical range and beyond. In other words,
the relation connecting the screened Coulomb potential W11
in the QM region to the polarizability P0 in the QM and PCM
subsystems is frequency dependent

W11(ω) = v11 + v11P0,11(ω)W11(ω) + v12P0,22(ω)W21(ω). (17)

While the explicit frequency dependence of the QM solute
P0,11(ω) polarizability is calculated explicitly from Eq. (6),
the frequency-dependence of the polarizable medium optical
dielectric constant is usually not available since standard
PCM implementations only consider the (ω → 0) static limit
of the optical dielectric constant when it comes to screen

FIG. 2. Dependence of the optical dielectric constant of water on photon
energy (adapted from experimental data of Ref. 73). The GW self-energy
operator requires the knowledge of the optical microscopic dielectric function
ϵ(r, r′;ω) for 0 ≤ω <∞. The static COHSEX approximation only requires
the knowledge of ϵ(r, r′;ω = 0) with the corresponding ϵ∞ macroscopic di-
electric constant value (ϵ∞∼ 1.78 for water; see text).
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“fast” electronic excitations in a photoemission or optical
experiment. This is usually labeled (ϵ∞) with for example
ϵ∞ ∼ 1.78 for water (see red arrow in Fig. 2). Even though ϵ∞
is taken to be the static limit of the optical dielectric constant,
related to the optical refractive index, it should not be confused
with the “static dielectric constant,” that is, (ϵ ≃ 78) for water,
that accounts both for ionic and electronic degrees of freedom.

We will not explore the generalization of the PCM
formalism to a full frequency-dependent dielectric response
in the optical range. While certainly possible, we show below
that simple schemes relying on the PCM implementations as
they stand already lead to excellent results. As such, a first
strategy consists in ignoring the above-mentioned difficulty
and just assume that the dielectric constant of the polarizable
medium is constant in the optical range. We therefore perform
a GW calculation in the gas phase and a GW calculation in the
presence of the PCM, replacing the bare Coulomb potential
v by its ṽ analog, where ṽ is renormalized but frequency
independent. The change in GW quasiparticle energies upon
switching on the PCM directly provides the solvation energy
shifts. Such a straightforward scheme will be labeled ∆GW in
the following.

A second strategy, proposed, e.g., in the case of the
renormalization by a metallic electrode of molecular frontier
orbitals energy,74,75 consists in combining the polarizable
medium response with a “low-frequency-screening-only”
formulation of GW. Namely, rather than generalizing the
PCM model to frequency-dependent screening properties,
we restrict the GW formalism to a frequency-independent
screening approach. There exists indeed a well documented
restriction of the GW formalism to low-frequency (ω = 0)
screening, the so-called “static” Coulomb-hole plus screened-
exchange (COHSEX) approximation that was introduced
by Lars Hedin in his seminal paper introducing the GW
formalism.18 Again, the word “static” means here that only
the (ω = 0) low-frequency limit (ϵ∞) of the optical dielectric
constant is considered. Such a COHSEX approximation was
very largely used in the context of (simplified) self-consistent
GW approaches.76 While not providing quasiparticle energies
as accurate as the GW formalism, we show below that the
solvatochromic shift, namely the difference between the
quasiparticle energies provided by COHSEX calculations
performed with and without PCM, reproduces very closely
the shifts obtained using standard ∆SCF DFT or CCSD
calculations. In practice, we write

{ΣGW + PCM(ϵ∞)}
= ΣGW +

�{ΣGW + PCM(ϵ∞)} − ΣGW� (18)

≃ ΣGW +
�{ΣCOHSEX + PCM(ϵ∞)} − ΣCOHSEX� . (19)

This formula approximates the {GW + PCM} calculation by
a “gas phase” GW calculation (see below for more details),
plus a PCM correction that is calculated at the ∆ΣCOHSEX

level. The reason for such a formulation is that the use of the
COHSEX approximation in the form of a difference allows
to reduce the error introduced by replacing the frequency-
dependent optical dielectric constant by its low-frequency
limit. Even though the screening potential W in the quantum
mechanical region is modified by the PCM response, one

here assumes that the “dynamical screening error” entering in
the difference ({ΣGW + PCM(ϵ∞)} − {ΣCOHSEX + PCM(ϵ∞)})
largely cancels with the error in (ΣGW − ΣCOHSEX).

The adiabatic or “static screening” COHSEX representa-
tion of the GW self-energy was originally introduced from the
time representation of G, W , and Σ.18,22,76 Using the spectral
representations of G and W ,20 one can readily obtain the
following expression in the limit of static screening only:

Σ
SEX
static(r,r′) = −

occ
n

φn(r)φ∗n(r′)W (r,r′;ω = 0), (20)

Σ
COH
static(r,r′) =

1
2


n

φn(r)φ∗n(r′)(W − v)(r,r′;ω = 0) (21)

=
1
2
δ(r − r′)(W − v)(r,r′;ω = 0). (22)

The contribution ΣSEX, which involves a summation over the
occupied states only, originates from the poles of G. It is
called the screened exchange interaction in analogy to the
bare exchange term that can be obtained by replacing W
with the energy-independent bare Coulomb potential v . ΣCOH

originates from the poles of W and represents the Coulomb-
hole contribution, since it can be shown to be related to the
interaction of an electron with its related adiabatically built
correlation hole.

D. A “non-equilibrium” embedded GW calculation
in practice

An important aspect in the use of any polarizable model is
the distinction that must be made between screening properties
in the ground state and the screening of “fast” electronic
excitations. For example, let us consider a molecule with a
permanent non-zero dipole or quadrupole in its ground-state.
Considering water as solvent, water molecules will respond
to the solute ground-state multipoles by a specific average
rearrangement of the water molecules in the surrounding of the
solute. This involves both the “slow” (solvent nuclear motions)
and the “fast” (solvent electronic motions) degrees of freedom
that correspond to a total dielectric constant, ϵ , of about
78.35. In contrast, during a vertical electronic excitation out
of the ground-state in photoemission or optical experiments,
only the “fast” solvent degrees of freedom can react to the
solute excitation and one must then consider the ϵ∞ ∼ 1.78
solute optical dielectric constant. A non-equilibrium scheme
labels a model adapted to treat phenomena too rapid to
allow solvent nuclear relaxation, and therefore requires
an approach that can discriminate between these different
screening mechanisms. On the contrary, the equilibrium
limit considers the same dielectric constant for the two
processes. Clearly, the non-equilibrium limit corresponds to
the correct physical situation when comparing theoretical and
experimental vertical excitation energies.

The use of input DFT Kohn-Sham eigenstates as
starting point for GW calculations allows a straightforward
implementation of non-equilibrium effects. Indeed, the
starting DFT calculation can be performed with the PCM
based on the static dielectric constant (ϵ = 78.35 in water),
generating Kohn-Sham eigenstates that account for the
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response of both the slow and fast degrees of freedom.
Such a step is now standard in many quantum chemistry
codes such as the Gaussian69 and NWchem77 codes we use,
even though differences in PCM implementations exist (see
below). Once the Kohn-Sham eigenstates, that contain the
effect of PCM polarization in the ground-state, are generated,
one can proceed with the GW calculations that we combine
with the PCM approach using the optical dielectric constant
(ϵ∞ ∼ 1.78) in the construction of the screened Coulomb
potential W (namely in the construction of ṽ as explained
above). As such, vertical excitation energies will only be
screened by the dielectric properties of the solvent in the
optical range.

In practice, labelling {φPCM,ϵ
n } the Kohn-Sham eigen-

states generated by a DFT calculation combined with a
PCM(ϵ = 78.35) polarizable medium, the non-equilibrium
solvatochromic shift PEn of the (vertical) quasiparticle
energies, namely the solvent induced shift of the occupied
or virtual energy levels, read for the ∆GW approach,

PEn = EGW+PCM(ϵ∞)
n [φPCM,ϵ

n ] − EGW
n [φvac

n ], (23)

where EGW+PCM(ϵ∞)
n [φPCM,ϵ

n ] are the quasiparticle energies
given by a GW calculation combined with the PCM(ϵ∞)
and starting from {φPCM,ϵ

n } Kohn-Sham eigenstates generated
with a PCM(ϵ) embedding. The EGW

n [φvac
n ] are gas phase

GW quasiparticle energies. Concerning now the ∆COHSEX
scheme, one obtains

PEn = EGW
n [φPCM,ϵ

n ] − EGW
n [φvac

n ] + ∆ΣCOHSEX
ϵ∞ , (24)

∆Σ
COHSEX
ϵ∞ = ⟨φPCM,ϵ

n |ΣCOHSEX
PCMϵ∞ − Σ

COHSEX
vac |φPCM,ϵ

n ⟩, (25)

where the EGW
n [φPCM,ϵ

n ] are gas phase GW quasiparticle ener-
gies starting from DFT Kohn-Sham eigenstates generated with
the PCM(ϵ = 78.35) screening, and ∆ΣCOHSEX

ϵ∞ corresponds to
the shift induced at the COHSEX level by the screening of the
electronic excitation within the PCM(ϵ∞ = 1.78) approach.
In Eq. (25), the COHSEX operators are built with the
{εPCM,ϵ

n , φPCM,ϵ
n } spectrum containing the information from

the screening in the ground-state.
To conclude, we notice that our polarization energies

PEn are state-specific since they clearly differ from one level
to another as indexed by (n). Further, as emphasized here
above, contrary to ∆SCF calculations where only frontier
orbital polarization shifts can be easily obtained, the present
scheme allows to directly determine the shifts of all energy
levels. However, as seen in the above formulas, the use of
the “frozen” {ψPCM,ϵ

n } Kohn-Sham orbitals allows to include
ground-state orbital-relaxation effects, but neglects the orbital
relaxation induced by the excitation process.

III. APPLICATION TO NUCLEOBASES

To validate the present implementation, we study the case
of hydrated nucleobases. The importance of understanding
the properties of DNA nucleobases in water, namely in an
environment close to physiological conditions compared to
the dilute gas phase limit, has indeed generated many studies
combining standard quantum mechanical approaches with
both implicit or explicit descriptions of the aqueous medium.

We refer the reader to a recent review on the subject.78

In particular, recent theoretical studies combining ∆SCF
approaches with the PCM, at the DFT79 or MP280 levels, may
serve as guidelines to validate the present implementation.
Further, we perform additional∆SCF calculations at the CCSD
level combined with the PCM as another set of reference
data. As emphasized in Ref. 80 where experimental values
for the vertical ionization potential of hydrated nucleosides
were obtained by UV photoelectron spectroscopy, the direct
comparison of calculated solvation energies within the PCM
approach may be off by a few tenths of an eV, an error that can
be reduced by adding a few layers of explicit water molecules.
The present study does not therefore aim at obtaining perfect
agreement with the (scarce) experimental data, but rather
to validate the combination of the GW formalism with the
PCM, in comparison with well-established DFT or CCSD
techniques. In that respect, the case of water, with a dramatic
change in dielectric constant between the slow (nuclear)
to the fast (electronic) time scales, offers a stringent test
for discriminating between equilibrium and non-equilibrium
limits.

A. Computational details

Our GW calculations are performed with the F
code30,31,58 that implements the GW formalism within a
Gaussian basis and resolution-of-the-identity approach. The
energy integration required to calculate the ΣGW self-energy
operator (Eq. (3)) is performed along the imaginary axis thanks
to a contour deformation approach that does not involve
any plasmon-pole approximation nor analytic continuation
to the real-axis. The implemented “Coulomb-metric” RI-V
replaces four-center two-electrons Coulomb integrals by a
sum over three-centers two-electrons integrals, involving the
use of an auxiliary basis, labeled {β}. The input Kohn-
Sham eigenstates needed to build G and W are generated
with the cc-pVTZ correlation-consistent atomic basis set of
Dunning.81 The corresponding cc-pVTZ-RI auxiliary basis
defined by Weigend and co-workers82 is adopted for our
RI implementation of the GW formalism. As shown in the
supplementary material,83 the ionization potential solvent-
induced shift is well converged with the cc-pVTZ basis set,
both at the DFT and CCSD levels. Consequently, we adopt
this atomic basis for the GW calculations. The adenine,
cytosine, thymine, and uracil geometries are the gas-phase
MP2/6-31G(d) geometries supplied in Ref. 84.

The reference ∆SCF calculations, within DFT or CCSD,
are performed with the Gaussian09 package69 combined with
the IEF-PCM approach. For the DFT and CCSD calculations,
the equilibrium ionization potentials (IPs) were obtained by
considering independently the neutral and cationic forms in
a fully relaxed solvent. In the non-equilibrium approach, the
response to the dipole, quadrupole, etc. of the neutral molecule
in its ground-state is calculated with the PCM(ϵ ≃ 78.35)
model, generating a first set of “static” surface charges. The
polarisation energy associated with the changes in charge
density from the neutral molecule to its cation is then treated
with the PCM(ϵ∞ = 1.78) medium, generating additional
“dynamical” charges. These two sets of induced charges (static
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and dynamical) contribute to the non-equilibrium solvation
energy.85

The input Kohn-Sham eigenstates needed to start the
GW calculations are generated by the NWChem package.77

NWChem does not allow the use of the IEF-PCM formulation
but implements instead the COSMO. While much discussions
can be found on the differences between the IEF-PCM and
COSMO implementations in the limit in particular of apolar
solvents with small dielectric constant,86 the case of water,
a solvent with a very large dielectric response, is an ideal
scenario where the two continuum implementations should
provide extremely close results. We emphasize here that
the (NWChem+COSMO) calculations are only needed for
the ground-state involving the very large (ϵ ≃ 78) dielectric
constant, while the screening of the electronic excitation
with the optical dielectric constant (ϵ∞ ≃ 1.78) is performed
with the F PCM implementation that solves exactly
Poisson’s equation inside and outside the cavity. As a simple
test, we compared, within the same code (Gaussian09), the
∆SCF PBE0/cc-pVTZ ionization potential of adenine in water
determined with the IEF-PCM or C-PCM implementations,
with values of 6.26 eV in both implementations for equilibrium
calculations, and values of 7.41 eV and 7.40 eV in the non-
equilibrium calculations, with the C-PCM and IEF-PCM,
respectively. Such differences of the order of 10 meV are
marginal as compared to the absolute solvatochromic shift
that attains 0.74 eV (the IP is 8.15 eV in gas phase). Even
though the C-PCM implementation in Gaussian0987 and the
COSMO implementation in NWChem may not rely on strictly
equivalent parameters for setting up the cavity, they both
implement essentially the same (scaled) conductor condition
boundaries.11,87

A description of the PCM implementation in the
F code is provided in the Appendix and in the
supplementary material.83 It closely follows the original IEF-
PCM formulation,5,6 modified in order to account exactly for
source {β} and test {β′} auxiliary basis orbitals spilling out
of the cavity. For the sake of illustration, we plot here in Fig. 3
a representation of the cavity around the adenine molecule,
together with an isocontour description of the HOMO Kohn-
Sham orbital. The molecular cavity is built from the standard
superposition of atom-centered spheres with (scaled) universal

FIG. 3. Representation of the molecular cavity generated for the adenine
molecule using van der Waal’s radii with a 1.1 scaling factor. The discretiza-
tion of the (smoothed) surface is also shown, corresponding to an initial
tesselation of 1280 tesserae per atomic sphere. The final surface contains
6756 tesserae. For sake of illustration, an isocontour representation of the
HOMO Kohn-Sham (PBE0) molecular orbital is shown. More details about
the calculation of the reaction field is provided in the Appendix and in the
supplementary material.83

force field88 van der Waal’s radii, adopting a 1.1 scaling factor
consistently with the default in Gaussian09. The obtained
surface is smoothed at the atomic sphere intersections in
order to avoid too large local curvature. The convergency
with respect to the discretisation of the surface was carefully
checked. In the case of a spherical cavity, the renormalization
by the reaction field of the Coulomb integrals between
auxiliary basis orbitals was shown to match very precisely
exact analytic values (see supplementary material).83

B. Results

Before addressing the effect of the solvent reaction field,
we compare in Table I the GW formalism with several ∆SCF
schemes for the IP of adenine, cytosine, thymine, and uracil in

TABLE I. Calculated gas phase vertical ionization potential. ∆SCF and GW calculations performed at the
cc-pVTZ level. The PMP2 data are the projected MP2/aug-cc-pVDZ data as calculated by Slavíĉek et al. in
Ref. 80. The abbreviation CAM stands for the CAM-B3LYP functional. The last column contains the range of
experimental values from Refs. 90–93. All values are in eV.

G0W0 evGW

PMP2a ∆PBE0 ∆CAM ∆CCSD PBE0 CAM PBE0 CAM Expt.b,c,d,e

Adenine 8.15 8.26 8.24 7.99 8.21 8.21 8.28 8.3-8.5
Cytosine 8.84 8.60 8.74 8.68 8.44 8.71 8.77 8.82 8.8-9.0
Thymine 9.15 8.93 9.06 9.04 8.86 9.11 9.13 9.21 9.0-9.2
Uracil 9.39 9.52 9.44 9.25 9.50 9.54 9.60 9.4-9.6

aReference 80.
bReference 90.
cCompiled in Ref. 91.
dCompiled in Ref. 92.
eReference 93.
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the gas phase. While differences exist between all approaches,
it can be seen that the evGW formalism, with partial
self-consistency on the eigenvalues (see Sec. II) compares
very well with the ∆PBE0, ∆CAM-B3LYP, and ∆CCSD
results. The non-self-consistent G0W0 calculations starting
from PBE0 Kohn-Sham eigenstates tend to underestimate
the ionization potential, so that in the following of the
paper our GW calculations are systematically performed
at the evGW level. Even though both CCSD and GW
ionization potential may still increase by 0.1-0.2 eV upon
increasing the size of the Kohn-Sham atomic basis set (see
the supplementary material),83 we see that the agreement
between all techniques and the experimentally available data
is already very satisfying.89 The same quality of agreement
was attained in previously published projected MP2/aug-cc-
pVDZ calculations by Slavíĉek and co-workers.80 Similarly,
in the case of cytosine, the present numbers are close to the
8.98 eV value obtained at the ∆M05-2X/6-31+G(d,p) level by
Muñoz-Losa and co-workers in Ref. 79.

Let us now turn to the solvent-induced shifts that are
listed in Table II for the ionization potential calculated at the
cc-pVTZ level within the ∆SCF approaches (DFT and CCSD)
and with the present GW formalism. We also include the
PMP2/cc-pVDZ data by Slavíĉek et al.80 for comparisons. We
present both the non-equilibrium shifts, considering the static
dielectric constant for the ground-state DFT calculations and
its optical counterpart for the GW runs, and the equilibrium
values for which the ϵ ∼ 78.35 water dielectric constant,
including both nuclear and electronic degrees of freedom, has
been used throughout the calculation. Our results are also
summarized in Figure 4.

Our non-equilibrium PBE0 and CAM-B3LYP ionization
potential solvatochromic shifts for cytosine, −0.76 eV and
−0.78 eV, respectively, compare very well with the −0.78 eV
value obtained at the M05-2X level by Muñoz-Losa and
co-workers.79 Clearly, by comparing the ∆SCF data based on
PBE0 or CAM-B3LYP exchange-correlation functionals, one

TABLE II. Calculated solvatochromic energy shifts of the ionization poten-
tial. We report the absolute value, the shift being always negative. ∆SCF and
GW calculations performed at the cc-pVTZ level. The PMP2 data are the
projected MP2 data combined with the PCM as calculated by Slavíĉek et al.
in Ref. 80. All values are in eV.

∆GW
∆COHSEX

PMP2a PBE0 CAM CCSD PBE0 PBE0 CAM

Non-equilibrium calculations

Adenine 0.74 0.76 0.74 0.60 0.64 0.65
Cytosine 0.98 0.76 0.78 0.78 0.67 0.70 0.70
Thymine 1.28 1.04 1.07 1.10 0.95 0.99 1.01
Uracil 1.12 1.15 1.18 1.05 1.07 1.10

Equilibrium calculations

Adenine 1.89 1.90 1.90 1.51 1.64 1.65
Cytosine 2.25 1.98 2.00 2.00 1.67 1.75 1.75
Thymine 2.50 2.22 2.26 2.26 1.92 2.03 2.05
Uracil 2.36 2.40 2.40 1.96 2.15 2.17

aReference 80.

FIG. 4. Theoretical solvent (water) induced shifts of the HOMO energy
for nucleobases within the non-equilibrium and equilibrium solvation limits.
The reference energy shifts are taken to be the (CCSD+IEF-PCM) data
indicated by the dashed first diagonal. The PMP2 values are the projected
MP2/aug-cc-pVDZ data as calculated by Slavíĉek et al. in Ref. 80. The letters
A, C, T and U, stand for adenine, cytosine, thymine and uracil, respectively.

notices 20-30 meV variations only. These differences are small
compared to the absolute shift value. Similar conclusions can
be obtained when comparing CCSD data with DFT ones.
The CCSD shifts are, on the average, slightly larger than
the PBE0 one, but again with maximum differences of the
order of 60 meV in the case of thymine and uracil, that
represents a ∼6% maximum discrepancy. By comparison,
the PMP2 values of Ref. 80 stand systematically above both
the DFT and CCSD ∆SCF shifts, with differences of the
order of 0.2 eV, that correspond to ca. 20% deviations. As
expected, the equilibrium limit yields much larger effects than
the non-equilibrium one. This is obviously related to the use
of the very large ϵ ∼ 78.35 solvent dielectric constant that
strongly over-stabilizes the cationic species. The differences
between PMP2 and CCSD data slightly increase to about
0.25 eV in absolute value, leading interestingly to a smaller
∼7.5% percentage of error.

We now turn to the solvatochromic shifts obtained at the
GW level. The overall tendency is that both the ∆GW and
∆COHSEX values are smaller than their DFT counterparts. In
the case of non-equilibrium calculations, the scheme of choice
when discussing vertical energies, the ∆COHSEX@PBE0
approach (black squares in Fig. 4) yields shifts that are
on the average 65 meV smaller than the ∆PBE0 values,
corresponding to an average difference of 7%. The situation is
nearly identical when comparing ∆COHSEX@CAM-B3LYP
to ∆CAM-B3LYP calculations, with a 70 meV average
discrepancy. These variations are comparable to the one
obtained when comparing CCSD and PBE0 ∆SCF values.
The straightforward application of the ∆GW scheme leads to
a larger ∼0.1 eV discrepancy, comparing the ∆GW@PBE0
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with the corresponding DFT∆PBE0 values, corresponding to a
larger∼11% difference in the energy shift. Such deviations can
be compared to the PMP2 data80 that yield larger discrepancies
(see brown squares in Fig. 4, non-equilibrium limit).

The same trends can be observed in the case of the
equilibrium calculations. Clearly, the difference compared to
the reference ∆CCSD values is larger in absolute value (see
Fig. 4). The comparison between ∆COHSEX@PBE0 and
∆PBE0 data leads to an average difference of 0.22 eV for
an average shift of 2.11 eV, that is, a ∼10% difference,
to be compared to the ∼7% relative deviation for the
non-equilibrium calculations. Concerning the ∆GW scheme,
the shifts are again seen to be smaller, bringing the
average difference between ∆GW@PBE0 and ∆PBE0 to
0.34 eV, namely a 16% deviation. This can be viewed
as a sizable deviation, larger than the 11% discrepancy of
PMP2 compared to CCSD, indicating, as justified here above,
that the ∆COHSEX scheme is a favorable approach for the
combination of the GW formalism with the present frequency-
independent PCM response.

IV. DISCUSSION

We start the present discussion by emphasizing again the
differences between the approaches compared in this work. In
the ∆SCF techniques chosen as references, the energy shift is
obtained as a difference between two self-consistent ground-
state total energy calculations for the (N) and (N − 1)-electron
systems. As such, orbital and charge density relaxation upon
addition of a charge and upon screening by the solvent
are adequately considered. Further, since the present DFT
calculations rely on an adiabatic kernel, the use of a frequency-
independent solvent dielectric response in the optical range
does not come as a methodological problem.

The present implementation, aiming at combining the
many-body Green’s function GW formalism with the standard
PCM approach, relies on two main approximations: (a) the
neglect of the frequency dependence of the PCM dielectric
response in the optical range, and (b) the neglect of the
orbital relaxation upon electronic excitations, accounting only
for the wavefunction relaxation in the ground-state. More
precisely, while the self-energy operator fully accounts for
the interaction of the added charge with the N-electron
system through the calculated polarization response system
function, including both the QM and PCM response, the
added charge is assumed to take the shape of the guest
Kohn-Sham orbital as calculated for the N-electron system.
These approximations can certainly be circumvented but at
the cost of both losing the advantage of benefiting from
the well-known existing PCM implementations and a very
large increase of the computational cost in the case of self-
consistent GW schemes allowing to update the wavefunctions
in the ionized state. While practical solutions for such
refinements may be explored in the future, it remains that
the comparisons performed here with the ∆SCF techniques
lead to an agreement that does not call for implementing
more sophisticated/expensive techniques, at least in this initial
stage. Indeed, taking the case of the calculations performed
in the physically adequate non-equilibrium limit, the obtained

difference between the ∆COHSEX and the ∆SCF values,
limited to ∼60-70 meV, can already be considered as very
satisfactory.

To illustrate the difficulty in predicting the effect of
generalizing the PCM model to a frequency-dependent optical
dielectric constant, we write for illustration the exact20

dynamical screened-exchange contribution to the HOMO self-
energy,


φH

�
Σ

SEX(εH)� φH
�

= −
occ
n



φH

�
φn(r)φ∗n(r′)W (r,r′; εH − εn)� φH

�
, (26)

where {εH, φH} are the HOMO eigenvalue and eigenvector. For
molecules such as the DNA nucleobases, the energy difference
(εH − εn), where (n) indexes the occupied valence orbitals,
spans typically 20 eV. Over this energy range, the macroscopic
optical dielectric constant of water takes values that are both
larger and smaller than the low-frequency ϵ∞ ∼ 1.78 limit
(see Fig. 2). As such, it cannot be concluded straightforwardly
whether the restriction to the low-frequency limit results in
underestimating or overestimating the effect of the reaction
field.

It is however interesting to compare the ∆GW and the
GW+∆COHSEX schemes. The discrepancy between the two
formulations goes from an average of 35 meV in the non-
equilibrium case to 100 meV in the equilibrium limit. Such
variations amount respectively to 4.1% and 5.3% as compared
to the average ∆COHSEX@PBE0 energy shift. As such,
the differences remain rather small but of the same order of
magnitude as the difference between the GW+∆COHSEX and
the ∆SCF results. This hints that the neglect of the dynamical
nature of the screening properties of the solute in the optical
range, and the way it is handled, may contribute significantly
to the observed differences.

We now explore the issue of orbital relaxation,
recalling that in the present GW formalism, the Kohn-Sham
wavefunctions are frozen and not updated self-consistently.
While we cannot explore the effect of orbital self-consistent
relaxation within GW, we explore the case of the “default”
(PCM+∆SCF) scheme combined with CCSD formalism, for
which the PCM responds to the Hartree-Fock charge density of
the neutral and cation molecules. Namely, the PCM response
is not consistent with the charge-density corresponding to the
CCSD many-body wave function ansatz. This corresponds
to the so-called unrelaxed situation. For uracil (equilibrium
limit), we have evaluated the impact of determining self-
consistently the solvent effects for the CCSD density (so-
called externaliteration procedure in Gaussian09) and found
only small variations, as the IP goes from 7.03 eV to 7.04 eV.
As such, orbital relaxation, even in the equilibrium limit
where the impact of solvation is over-emphasized, does not
contribute by more than 10 meV to the energy shift.

Finally, we also test the influence of the size of the
cavity by building a smaller one, adopting atomic spheres of
radius equal to the standard van der Waals radii, dropping
the 1.1 rescaling factor. In the case of starting CAM-
B3LYP Kohn-Sham eigenstates, we obtain non-equilibrium
(GW+∆COHSEX) solvent-induced shifts of 0.69 eV, 0.72 eV,
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1.02 eV, and 1.12 eV for adenine, cytosine, thymine, and
uracil, respectively, which are on the average only ∼22 meV
larger than that reported in the last column of Table II for
the standard cavity size. Such variations associated with a
significant cavity volume change are not negligible, but are not
so large that they can account for the differences between the
∆SCF and (GW+∆COHSEX) schemes. As such, the possible
differences in the construction of the cavity are not expected
to contribute much to the differences observed between the
different approaches.

To close this discussion, we emphasize again that the
present implementation allows to calculate the solvent-
induced shift related to all electronic addition or removal
energies, namely the specific polarization energies associated
with transitions from the N-electron ground-state to any
eigenstate of the (N + 1) and (N − 1) electron systems. For
the sake of illustration, we plot in Fig. 5 the (non-equilibrium)
solvatochromic energy shift associated with a large set of
occupied and virtual energy levels for the uracil molecule.
Clearly, there is a large spread in the (GW+∆COHSEX)
polarization energies (blue circles). However, at least for the
occupied states (quasiparticle energies below −5 eV), most
of the spread comes from the effect of the solvent at the
ground-state level, namely the effect of the PCM (ϵ ≃ 78)
on the input Kohn-Sham eigenvalues (black crosses). Such an
observation holds much less in the case of virtual (unoccupied)
levels probably due to the increase in delocalization for empty
states with large positive energy. The shift of the Kohn-
Sham DFT energy levels is related to the polarization of the
PCM environment in response to the field generated by the
nucleobases ground-state dipole. The electrostatic potential

FIG. 5. Solvent-induced non-equilibrium polarization energies (PE) for 10
occupied and 10 virtual energy levels of the uracil molecule. The (blue)
circles are the (GW+∆COHSEX) polarization energies plotted with respect
to the absolute (GW+∆COHSEX) energies in solution. The black crosses
indicate the solvent-induced shift at the (DFT+PCM) (PBE0) level for the
neutral molecule. The Kohn-Sham (DFT+PCM) calculations performed on
the neutral molecule cannot give the overall solvent-induced shift but con-
tribute significantly to the spread in polarization energy amongst, e.g., the
occupied states. Notice that the shift of the occupied/virtual GW energy
levels is of opposite signs as expected, leading to a ∼2 eV reduction of the
HOMO-LUMO gap upon solvation.

generated by the PCM polarization charges acts differently
on Kohn-Sham orbitals with different spatial shape. Since the
reaction field generated by the ground-state dipole is much
smaller than the one related to adding a charge on the QM
system, the energy shifts calculated at the Kohn-Sham DFT
level are much smaller than the one calculated with the GW
or ∆SCF formalisms.

V. CONCLUSIONS AND OUTLOOK

We have implemented the polarizable continuum model
in the framework of the many-body Green’s function GW
formalism for the calculation of the vertical electronic addition
and removal energies in solution. We have demonstrated in
particular that the solvatochromic shifts agree quantitatively
with the standard combination of the PCM formalism
with ∆SCF techniques at the DFT and CCSD levels, with
differences of the order of a few percents only, corresponding
to deviations of the order of ∼70 meV out of a shift of
about 1 eV for non-equilibrium PCM calculations. Such small
variations are expected to come from the approximation that
consists of merging the GW formalism, which accounts for
the frequency-dependence of the dielectric response in the
optical range, with standard PCM models that only consider
the low-frequency optical dielectric response to electronic
excitations. Such conclusions were validated in the case of
the evolution of the ionization potential of nucleobases from
the gas to the aqueous phase. The possibility of determining
solvent effects in both the equilibrium and non-equilibrium
limits was clearly illustrated. Further, beyond the case of
frontier orbitals, the energy shift of all occupied/virtual energy
levels can be obtained on the same footing. The extension of
the present implementation to the Bethe-Salpeter equation
formalism for the calculation of optical excitations in solvated
condition is under way, together with the generalization of
the present scheme to the combination of the GW formalism
with discrete polarizable models,94 for the calculation of the
polarization energies in organic crystals with applications to
organic light-emitting and photovoltaic devices.

ACKNOWLEDGMENTS

The authors are indebted to Eric Cancès and B. Mennucci
for discussions and guidance concerning the IEF-PCM
formalism and the implementation of non-equilibrium DFT
∆SCF calculations in the Gaussian package. I.D. and X.B.
acknowledge Gabriele D’Avino for strategical discussions
concerning future extensions to discrete polarizable models.
This project has received funding from the European Union
Horizon 2020 research and innovation programme under Grant
agreement No 646176 (EXTMOS) and No 676629 (EoCoE).
X.B. acknowledges funding from the French No. ANR-12-
BS04-0001 “PANELS.” D.J. acknowledges the European
Research Council (ERC) and the Région des Pays de la
Loire for financial support in the framework of a Starting
Grant (No. Marches-278845) and the LumoMat RFI project,
respectively. This research used resources of: (i) the GENCI-
CINES/IDRIS; (ii) CCIPL (Centre de Calcul Intensif des Pays



164106-11 Duchemin, Jacquemin, and Blase J. Chem. Phys. 144, 164106 (2016)

de Loire); (iii) a local Troy cluster and (iv) HPC resources
from ArronaxPlus (Grant No. ANR-11-EQPX-0004 funded
by the French National Agency for Research).

APPENDIX: CAVITY REACTION FIELD

Following the original IEF-PCM formulation notations,5,6

we consider a cavity defined by the closed surface Γ delimiting
two open domains Ωi and Ωe (respectively, internal and
external), and a source charge ρ(r). We thus look for the
potential V (r) solution of the following Poisson’s equation:

∇{ϵ(r)∇V (r)} = ρ(r), ϵ(r) =



ϵ i when r ∈ Ωi

ϵe when r ∈ Ωe

.

We will first consider the case of a source charge ρ(r) entirely
contained inside the Ωi domain, recovering the original IEF-
PCM formulation, before considering the modifications to be
adopted to treat exactly the case of a source charge spilling
out in the Ωe domain.

1. Standard IEF-PCM formulation

Following Cancès and co-workers,5,6 we consider first
the case of a source charge ρ entirely contained within the
Ωi domain. In this case, a possible functional form for the
potential V (r) solution of Poisson’s equation in both Ωi and
Ωe is

∀ r ∈ R3 \ Γ, V (r)
B

1
ϵ i

(
Ωi

dr′
1

|r − r′| ρ(r
′) +


Γ

dy
1

|r − y|σ(y)
)
. (A1)

The surface charge σ is determined by the continuity
conditions of V (r) across Γ. Using the following notations:

Vi/e(x) B lim
r∈Ωi/e→x

V (r)

and denoting n(x) the normal to Γ at point x ∈ Γ, the continuity
conditions write

[V ] : ∀x ∈ Γ, Vi(x) = Ve(x), (A2)
[∂V ] : ∀x ∈ Γ, ϵ i n(x) · ∇Vi(x) = ϵe n(x) · ∇Ve(x). (A3)

Since the surface charge distribution σ does not induce any
discontinuity of the potential V (r) across Γ, condition (A2) is
automatically fulfilled. Here, we adopt again the notations of
Refs. 5 and 6 and write

(D∗ · σ)(x) =

Γ

dy n(x) · ∇x
1

|x − y|σ(y)

the corresponding component of the Calderon projector.95

The normal component of the electric field on the Ωi and
Ωe domain boundaries is given by (see the supplementary
material for a sketch of proof83):

Ei/e(x) = −n(x) · ∇Vi/e(x) = −(D∗ · σ)(x) ∓ σ(x)2
. (A4)

Denoting En(x) the normal field coming from the initial charge
distribution ρ at a point x ∈ Γ, the second continuity condition

(A3) writes

ϵ i
(
− σ(x)

2
− (D∗ · σ)(x) + En(x)

)
= ϵe

(σ(x)
2
− (D∗ · σ)(x) + En(x)

)
.

After some simple manipulations, we find again Eq. (2.8) of
Ref. 6 defining the surface charge density σ as given by the
standard IEF-PCM approach,(

ϵe + ϵ i
ϵe − ϵ i

I

2
− D∗

)
σ = −En. (A5)

2. Modified IEF-PCM formulation

In order to take into account the possibility of having
some of the source charge distribution spilling in Ωe, we
choose the following formulation of the solution V (r) of the
Poisson equation:

V (r) B



1
ϵ i


R3

dr′
1

|r − r′| ρ(r
′) + VR(r) , r ∈ Ωi

1
ϵe


R3

dr′
1

|r − r′| ρ(r
′) + VR(r) , r ∈ Ωe

. (A6)

The source charge distribution ρ(r) is now sampled over
R3. The reaction potential VR(r) needs to be defined as the
combination of a single and a double-layer potential, namely
a charge plus dipole surface distribution,

VR(r) B

Γ

dy
(

1
|r − y|σ(y) +

r − y
|r − y|3 · n(y) µ(y)

)
, (A7)

where µ(y) is the normal component of the surface dipole.
Under this form, the potential V (r) satisfies automatically the
Poisson equation in both Ωi and Ωe. The first contribution
(single layer potential) to the reaction field VR(r) is identical
to the one of the standard IEF-PCM model. The second one
(double layer potential) corresponds to the potential issued
from a normal surface dipole distribution µ. This dipole
distribution is unequivocally related to the discontinuity
coming from taking explicitly the dielectric constant into
account within the first term of the form (A6). The jump of
the reaction potential VR across Γ is simply given by

lim
r∈Ωe→x

VR(r) − lim
r∈Ωi→x

VR(r) = µ(x).

Keeping the notations previously introduced for Vi and Ve and
introducing φ the potential issued from the source distribution
in vacuum, we have now the following expression for the first
continuity condition (A2):

Ve(x) − Vi(x) =
(

1
ϵe
− 1
ϵ i

)
φ(x) + µ(x) = 0

so that one simply has

µ(x) = ϵe − ϵ i
ϵeϵ i

φ(x). (A8)

For the sake of consistency with the IEF-PCM notations, we
introduce the following integral operator representation for
the electric field (given a minus sign) generated by the surface
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normal dipole distribution µ at a point x ∈ Γ:

(K ∗ · µ)(x) =

Γ

dy n(x) · ∇x


x − y
|x − y|3 · n(y) µ(y)


.

The second continuity equation (A3) gives then(
ϵe + ϵ i
ϵe − ϵ i

I

2
− D∗

)
σ = −En +

ϵe − ϵ i
ϵeϵ i

K ∗φ. (A9)

Again, this representation is unique, since the left member of
Eq. (A9) has been shown to lead to a unique solution σ in
Ref. 6 and µ is explicitly related to the potential φ. In practice,
the tessellation of the surface Γ translates Eq. (A9) into a
standard linear algebra problem that is solved numerically in
order to get σ, while µ is directly estimated through φ. We
provide in the Supplementary Material83 a convergence test of
the renormalized Coulomb interaction between two Gaussian
charge distributions as a function of the surface tessellation.

To conclude, we note that while the generation of the
VR(r) reaction potential generated by a source charge inside
and outside the cavity does not represent a major complication,
the presence of the (ϵ i/e)−1 prefactor in front of the direct
Coulomb term in Eq. (A6) requires that its contribution
to the integral


drV (r)β′(r) must be truncated in two

“inside/outside” integrals for a {β′} test orbital that spills out
of the cavity. This is performed numerically using accurate but
demanding quadrature rules (see supplementary material).83

As an important check, one verifies that the interaction energy
between a Gaussian charge contained within the cavity with
a charge significantly spilling out is completely symmetric
whether the spilling orbital is considered as the source or the
test orbital. The present formulation with explicit treatment of
spilling charges is computationally more demanding than the
original IEF-PCM formulation.
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