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Critical Assessment of Metagenome Interpretation -a benchmark of computational metagenomics software

établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

The biological interpretation of metagenomes relies on sophisticated computational analyses such as read assembly, binning and taxonomic profiling. All subsequent analyses can only be as meaningful as the outcome of these initial data processing steps. Tremendous progress has been achieved in metagenome software development in recent years [START_REF] Turaev | High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved[END_REF] . However, no current approach can completely recover the complex information encoded in metagenomes. Methods often rely on simplifying assumptions that may lead to limitations and inaccuracies. A typical example is the classification of sequences into Operational Taxonomic Units (OTUs) that neglects the phenotypic and genomic diversity found within such taxonomic groupings [START_REF] Marx | Microbiology: the road to strain-level identification[END_REF] .

Evaluation of computational methods in metagenomics has so far been largely limited to publications presenting novel or improved tools. However, these results are extremely difficult to compare, due to the varying evaluation strategies, benchmark datasets, and performance criteria used in different studies. Users are thus not well informed about general and specific limitations of computational methods, and their applicability to different research questions and datasets. This may result in difficulties selecting the most appropriate software for a given task, as well as misinterpretations of computational predictions. Furthermore, due to lack of regularly updated benchmarks within the community, method developers currently need to individually evaluate existing approaches to assess the value of novel algorithms or methodological improvements. Due to the extensive activity in the field, performing such evaluations represents a moving target, and consumes substantial time and computational resources, and may introduce unintended biases.

We tackle these challenges with a new community-driven initiative for the Critical Assessment of Metagenome Interpretation (CAMI). CAMI aims to evaluate computational methods for metagenome analysis comprehensively and most objectively. To enable a comprehensive performance overview, we have organized a benchmarking challenge on datasets of unprecedented complexity and degree of realism. CAMI seeks to establish consensus on performance evaluation and to facilitate objective assessment of newly developed programs in the future through community involvement in the design of benchmarking datasets, evaluation procedures, choice of performance metrics, and specific questions to focus on.

We assessed the performance of metagenome assembly, binning and taxonomic profiling programs when encountering some of the major challenges commonly observed in metagenomics. For instance, the study of microbial communities benefits from the ability to recover genomes of individual strains from metagenome samples [START_REF] Marx | Microbiology: the road to strain-level identification[END_REF][START_REF] Sangwan | Recovering complete and draft population genomes from metagenome datasets[END_REF] . This enables fine-grained analyses of the functions of community members, studies of their association with phenotypes and environments, as well as understanding of the microevolution and dynamics in response to environmental changes (e.g. SNPs, lateral gene transfer, genes under directional selection, selective sweeps [START_REF] Yassour | Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability[END_REF][START_REF] Bendall | Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations[END_REF] or strain displacement in fecal microbiota transplants [START_REF] Li | Durable coexistence of donor and recipient strains after fecal microbiota transplantation[END_REF] ). In many ecosystems, a high degree of strain-level heterogeneity is observed [START_REF] Bai | Functional overlap of the Arabidopsis leaf and root microbiota[END_REF][START_REF] Kashtan | Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus[END_REF] . To date, it is not clear how much assembly, genome binning and profiling software are influenced by factors such as the evolutionary relatedness of organisms present, varying community complexity, the presence of poorly categorized taxonomic groups such as viruses, or the specific parameters of the algorithms being used.

To address these questions, we generated extensive metagenome benchmarking datasets employing newly sequenced genomes of approximately 700 microbial isolates and 600 complete plasmids, viruses, and other circular elements, which were not publicly available at the time of the challenge and include organisms evolutionarily distinct from strains, species, genera, or orders already represented in public sequence databases. Using these genomes, benchmark datasets were designed to mimic commonly used experimental settings in the field. They include frequent properties of real datasets, such as the presence of multiple, closely related strains, of plasmid and viral sequences, and realistic abundance profiles. For reproducibility, CAMI challenge participants were encouraged to provide their predictions together with an executable docker-biobox implementing their software with specification of parameter settings and reference databases used. Overall 215 submissions representing 25 computational metagenomics programs and 36 biobox implementations of 17 participating teams from around the world were received with consent to publish. To facilitate future comparative benchmarking, all data sets are provided for download and together with the current submissions in the CAMI benchmarking platform (https://data.cami-challenge.org/), allowing to submit predictions for further programs and computation of a range of performance metrics.

Our results supply users and developers with extensive data about the performance of common computational methods on multiple datasets. Furthermore, we provide guidance for the application of programs, their result interpretation and suggest directions for future work.

RESULTS

Assembly challenge

Assembling genome sequences from short-read data remains a computational challenge, even for microbial isolates. Assembling genomes from metagenomes is even more challenging, as the number of genomes in the sample is unknown and closely related genomes occur, such as from multiple strains of the same species, that essentially represent genome-sized repeats which are challenging to resolve.

Nevertheless, sequence assembly is a crucial part of metagenome analysis and subsequent analyses -such as binning -depend on the quality of assembled contigs.

Overall performance trends

Developers submitted reproducible results for six assemblers and assembly pipelines, namely for Megahit 9 , Minia 10 , Meraga (Meraculous 11 + Megahit), A* (using the OperaMS Scaffolder [START_REF] Gao | Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences[END_REF] ), Ray Meta 13 and Velour 14 . Several of these were specifically developed for metagenomics, while others are more broadly used (Table 1, Supplementary Table 1). The assembly results were evaluated using the metrics of MetaQUAST 15 using the underlying genome sequences of the benchmark datasets as a reference (Supplementary Table 2, Supplementary methods "Assembly metrics"). The gold standard assembly of the high complexity data set has 2.80 Gbp in 39,140 contigs. As performance metrics, we focused on genome fraction and assembly size, as well as on the number of unaligned bases and misassemblies.

Genome fraction and assembly size are measures representing the completeness of genomes recovered from a data set, while the number of misassemblies and unaligned bases are error metrics reflective of the assembly quality. Combined, they provide an indication of the performance of a program, while individually, they are not sufficient for assessment. For instance, while assembly size might be large, a highquality assembly also requires the number of misassemblies and unaligned bases to be low. To assess how much metagenome data was included in each assembly, we also mapped all reads back to them. (8,831). Changing the parameters of Megahit (Megahit_ep_mtl200) substantially increased the unaligned bases to 40.89 Mb, while the total assembly length, genome fraction and fraction of mapped reads remained almost identical (1.94 Gb, 67.3%, and 97.0%, respectively, number of misassemblies: 7,538). The second largest assembly was generated by Minia 10 (1.85 Gb in 574,094 contigs), with a genome fraction of 65.7%, only 0.12 Mb of unaligned bases and 1,555 misassemblies. Of all reads, 88.1% mapped back to the Minia assembly. Meraga generated an assembly of 1.81 Gb in 745,109 contigs, to which 90.5% of reads could be mapped (2.6 Mb unaligned, 64.0% genome fraction, 2,334 misassemblies).

Across all datasets (Supplementary

Velour (VELOUR_k63_C2.0) produced the most contigs (842,405) in a 1.1 Gb assembly (15.0% genome fraction), with 381 misassemblies and 56 kb unaligned sequences. 81% of the reads mapped back to the Velour assembly. The smallest assembly was generated by Ray 6 using k-mer of 91 (Ray_k91) with 12.3 Mb assembled into 13,847 contigs (genome fraction <0.1%). Only 3.2% of the reads mapped back to this assembly. Altogether, we found that Megahit, Minia and Meraga produced results within a similar quality range when considering these various metrics, generated a higher contiguity for the assemblies (Supplementary Figures SA10-SA12) and assembled a substantial part of the underlying genomes.

Closely related genomes

To assess how the presence of closely related genomes in a metagenome data set affects the performance of assembly programs, we divided the genomes according to their Average Nucleotide Identity (ANI) to each other into "unique strains" (genomes with < 95% ANI to any other genome) and "common strains" (genomes with closely related strains present; all genomes with an ANI >= 95% to any other genome in the dataset). When considering the fraction of all reference genomes recovered, Meraga, Megahit and Minia performed best (Fig. 1a). For the unique strains, Minia and Megahit had the highest genome recovery rate (Fig. 1c; median over all genomes 98.2%), followed by Meraga (median 96%) and VELOUR_k31_C2.0 (median 62.9%).

Notably, for the common strains, the recovery rate dropped substantially for all assemblers (Fig. 1b). Megahit (Megahit_ep_mtl200) recovered this group of genomes best (median 22.5%), followed by Meraga (median 12.0%) and Minia (median 11.6%). VELOUR_k31_C2.0 showed only a genome fraction of 4.1% (median) for this group of genomes. Thus, current metagenome assemblers produce high quality results for genomes for which no close relatives are present. Only a small fraction of the "common strain" genomes was assembled, while most strainlevel variants were lost. The resolution of strain-level diversity represents a substantial challenge to all evaluated programs.

Effect of sequencing depth

To investigate the effect of sequencing depth on the assembly metrics, we compared the genome recovery rate (genome fraction) to the genome sequencing coverage for the gold standard and all assemblies (Fig. 1d, Supplementary Fig. SA2 for complete results). The chosen k-mer size has an effect on the recovery rate for low abundance genomes (Supplementary Fig. SA3). While small k-mers allowed an improved recovery of low abundance genomes, large k-mers led to a better recovery of highly abundant ones. Assemblers using multiple k-mers (Minia, Megahit, Meraga) substantially outperformed single k-mer assemblers. All assemblers showed poor results in recovering very high copy number circular elements (sequencing coverage > 500x), except for the Minia Pipeline, which performed well in this respect, but surprisingly lost all genomes with a sequencing coverage between 80 and 200x (Fig. 1d). Notably, no program investigated the topology of the obtained contigs, whether these were linear and incomplete or circular and complete.

Binning challenge

Metagenome assembly programs return mixtures of variable length fragments originating from individual genomes. Metagenome binning algorithms were thus devised to tackle the problem of classifying, or "binning" these fragments according to their genomic or taxonomic origins. These "bins", or sets of assembled sequences and reads, group data from the genomes of individual strains or of higher-ranking taxa present in the sequenced microbial community. Such bin reconstruction allows the subsequent analysis of the genomes (or pangenomes) of a strain (or higherranking taxon) from a microbial community. While genome binners group sequences into genome bins without assignment of taxonomic labels, taxonomic binners group the sequences into bins with a taxonomic label attached.

Results for five genome binners and four taxonomic binners were submitted together with bioboxes of the respective programs in the CAMI challenge, namely MyCC 16 , MaxBin 2.0 17 , MetaBAT 18 , MetaWatt-3.5 [START_REF] Strous | The binning of metagenomic contigs for microbial physiology of mixed cultures[END_REF] , CONCOCT [START_REF] Alneberg | Binning metagenomic contigs by coverage and composition[END_REF] , PhyloPythiaS+ 21 , taxatortk [START_REF] Dröge | Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods[END_REF] , MEGAN 6 [START_REF] Huson | MEGAN Community Edition -Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data[END_REF] and Kraken [START_REF] Wood | ultrafast metagenomic sequence classification using exact alignments[END_REF] . Submitters could choose to run their program on the provided gold standard assemblies or on individual read samples (MEGAN 6), according to their suggested application. We then determined their performance for addressing important questions in microbial community studies: do they allow the recovery of high quality bins for individual strains, i.e. with high average completeness (recall), and low contamination levels (precision)? How does strain level diversity affect performance? How is performance affected by the presence of non-bacterial sequences in a sample, such as viruses or plasmids? Do current taxonomic binners allow recovery of higher-ranking taxon bins with high quality? How does their performance vary across taxonomic ranks? Which programs are highly precise in taxonomic assignment, so that their outputs can be used to assign taxa to genome bins? Which software has high recall in the detection of taxon bins from low abundance community members, as is required for metagenomes from ancient DNA and for pathogen detection? Finally, which programs perform well in the recovery of bins from deep-branching taxa, for which no sequenced genomes yet exist?

Recovery of individual genome bins

We first investigated the performance of each program in the recovery of individual genome (strain-level) bins. We calculated precision and recall (Supplementary Methods) for every bin relative to the genome that was most abundant in that bin in terms of assigned sequence length. In addition, we calculated the Adjusted Rand Index as measure of assignment accuracy for the portion of the data assigned by the different programs. As not all programs assigned the entire data set to genome bins, these values should be interpreted under consideration of the fraction of data assigned (Supplementary Figure B9). These two measures complement the precision and recall values averaged over genome bins, as assignment accuracy is evaluated per bp, with large bins contributing more than smaller bins in the evaluation. To determine whether the data partitioning achieved by taxonomic binners can also be used for strain-level genome recovery, we compared predicted taxon bins of all ranks from domain to species (a strain-level rank does not exist in the reference taxonomy) to the genome bins. The precision and recall for predicted taxon bins were calculated in the same way as for the genome binners. Thus for taxonomic binners, we evaluated the bin quality in terms of completeness (recall) and purity (precision) relative to a reference genome, but not the taxon assignment.

For the genome binners both the average recall (ranging from 34% to 80%) and precision (ranging from 70% to 97%) per bin varied substantially across the three challenge datasets (Supplementary Table 4, Supplementary Fig. B1). For the medium and low complexity datasets, MaxBin 2.0 had the highest average recall and precision of all genome binners (70-80% recall, more than >92% precision), followed by other programs with comparably good performance in a narrow range (recall ranging with one exception from 50-64%, more than 75% precision). Notably, other programs assigned a larger portion of the datasets in bp than MaxBin 2.0, though with lower ARI (Supplementary Figure B9). For applications where binning a larger fraction of the dataset at the cost of some accuracy is important, therefore, programs such as MetaWatt, MetaBAT and CONCOCT could be a good choice. The high complexity dataset was more challenging to all programs, with average recall values decreasing to around 50% and more than 70% precision, except for MaxBin 2.0 and MetaWatt-3.5, which showed an outstanding precision of above 90%. The programs either assigned only a smaller portion of the dataset (>50% of the sample bps, MaxBin 2.0), with high ARI or assigned a larger fraction with lower ARI (more than 90% with less than 0.5 ARI). The exception was MetaWatt-3.5, which assigned more than 90% of the dataset with an ARI larger than 0.8, thus performing better than the others in the recovery of abundant genomes from the high complexity dataset.

For the taxonomic binners, the recall was notably lower than for the genome binners -mostly less than 30% -with that of PhyloPythiaS+ (~20-31%) being the highest, while for all others, recall was below 10% (Supplementary Table 5 and Supplementary Fig. B2). The technical limitations of using taxonomic binners for genome bin recovery is evident by the positioning of the taxon bin gold standardeven when performing perfect binning down to the species level, the presence of multiple strains for many species prevents these approaches from achieving high recall values in genome reconstruction. Notably, the precision had a similar range to that of the genome binners. The most precise was Kraken, with mean values of above 80%, closely followed by the others. This finding, however, does not mean that Kraken assigned many taxonomic labels correctly, but rather that it consistently grouped some fragments of the same genome together.

Effect of strain diversity

We investigated the effect that the presence of multiple related strains had on binning performance in more detail. Considering only unique strains, the performance of all genome binners improved substantially, both in terms of average precision and recall per bin (Fig. 2a). For the medium and low complexity datasets, all genome binners had precision values of above 80%, while recall was more variable. MaxBin 2.0 performed the best across all three datasets, showing precision values above 90% and recall values of 70% or higher. An almost equally good performance for two of the three datasets was delivered by MetaBAT, CONCOCT and MetaWatt-3.5. For the taxonomic binners, both precision and recall improved by around 10% when evaluating "unique" strains for all three datasets, with recall values of up to 40% reached by PhyloPythiaS+, while simultaneously showing a precision of more than 70% (Fig. 2c). Precision values of more than 90%, though with very low recall (~1%), were obtained by Kraken. A similar behavior to Kraken was shown by MEGAN 6 and taxator-tk, which have methodological similarities (Table 1).

For the "common strains" of all three datasets, however, binning recall decreased substantially (Fig. 2b), similarly to precision for most programs. MaxBin 2.0 still stood out from the others, with a precision of more than 90% on all datasets. For the taxonomic binners, precision and recall also dropped notably (Fig. 2d).

PhyloPythiaS+ again had the highest recall values, which was less than 30% though, at lower precision. Precision was down to 70% for the best performing taxonomic binner, taxator-tk. In part, this is expected even under ideal circumstances, as the reference taxonomy does not include a strain rank, with strains being part of the same species bin in the taxonomic binning gold standard. This effect is evident by the varying, and imperfect performance of the gold standard in recovering the underlying genomes for the "unique" and "common" datasets, where it performed well on the first, but poorly on the second. Interestingly, for the common strains datasets, taxonomic binners achieved a better genome resolution than attributed to the gold standard, by assigning genomes of related strains either not at all or consistently to taxon bins at different ranks.

Overall, the presence of multiple related strains in a metagenome sample had a substantial effect on the quality of the reconstructed genome bins, both for genome and taxonomic binners. Very high quality genome bin reconstructions were attainable with binning programs for the genomes of "unique" strains, while the presence of several closely related strains in a sample presented a notable hurdle to these tools.

Taxonomic binners had lower recall than genome binners for genome reconstructions, with similar precisions reached, thus delivering high quality, partial genome bins.

Performance in taxonomic binning

We next investigated the performance of taxonomic binners in recovering taxon bins at different ranks. These results can be used for taxon-level evolutionary or functional pangenome analyses and conversion into taxonomic profiles. As performance metrics, the average precision and recall per bin were calculated for individual ranks under consideration of the taxon assignment (Supplementary Material, Binning metrics). In addition, we determined the overall classification accuracy for the entire samples, as measured by total assigned sequence length, and misclassification rate for all assignments. While the former two measures allow assessing performance as averaged over bins, where all bins are treated equally irrespective of their size, the latter are influenced by the actual sample taxonomic constitution, with large bins having a proportionally larger influence.

For the low complexity data set, PhyloPythiaS+ had the highest accuracy, average recall and precision, which were all above 75% from domain to family level. Kraken followed, with average recall and accuracy still above 50% down to family level. However, precision was notably lower, mostly caused by prediction of many small false bins, which affects precision more than overall accuracy, as explained above (Supplementary Fig. B3). Removing the smallest predicted bins (1% of the data set) increased precision for Kraken, MEGAN, and, most strongly, for taxator-tk, for which it was close to 100% until the order level, and above 75% until the family level (Supplementary Fig. B4). This shows that small predicted bins by these programs are not reliable, but otherwise, high precision could be reached for higher ranks. Below the family level no program performed very well, with all either assigning very little data (low recall and accuracy, accompanied by a low misclassification rate), or performing more assignments with a substantial amount of misclassification. Another interesting observation is the similar performance for Kraken and Megan, which was not observed on the other datasets, though. These programs employ different features of the data (Table 1), but rely on similar algorithms.

The results for the medium complexity data set qualitatively agreed with those obtained for the low complexity data set, except for that Kraken, MEGAN and taxatortk performed better (Fig. 2e). With the smallest predicted bins removed, both Kraken and PhyloPythiaS+ performed similarly well, reaching performance statistics of above 75% for accuracy, average recall and precision until the family rank (Fig. 2f).

Similarly, taxator-tk showed an average precision of almost 75% even down to the genus level on these data (almost 100% until order level) and MEGAN had an average precision of more than 75% down to the order level, while maintaining accuracy and average recall values of around 50%. The results of highly precise taxonomic predictions can be combined with genome bins, to enable their taxonomic labeling. The performance for the high complexity data set was similar to that for the medium complexity data set (Supplementary Figs. B5,B6).

Analysis of low abundance taxa

We determined which programs had high recall also for low abundance taxa. This is relevant when screening for pathogens in diagnostic settings [START_REF] Miller | Metagenomics for pathogen detection in public health[END_REF] , or for metagenome studies of ancient DNA samples. Even though a high recall was achieved by PhyloPythiaS+ and Kraken until the rank of family (Fig. 1e,f), recall degraded for lower ranks and overall for low abundance bins (Supplementary Fig. B7), which are of most interest for these applications. It therefore remains a challenge to further improve the predictive performance.

Deep-branchers

Taxonomic binning methods commonly rely on comparisons to reference sequences for taxonomic assignment. To investigate the effect of increasing evolutionary distances between a query sequence and available genomes, we partitioned the challenge datasets by their taxonomic distances to sequenced reference genomes and evaluated the program performance on the resulting partitions (genomes of new strains, species, genus, family, Supplementary Fig. B8). For genomes representing new strains from sequenced species, all programs performed well, with generally high precision and oftentimes high recall, or with characteristics observed also in other datasets (such as low recall for taxator-tk). At increasing taxonomic distances to the reference, performance for MEGAN and Kraken dropped substantially, in terms of both precision and recall, while PhyloPythiaS+ decreased most notably in precision and taxator-tk in recall. For deep branchers at larger taxonomic distances to the reference collections PhyloPythiaS+ maintained the best overall performance in precision and recall.

Influence of plasmids and viruses

The presence of plasmid and viral sequences had almost no effect on the performance for binning bacterial and archaeal organisms. Although the copy number of plasmids and viral data in the datasets was high, in terms of sequence size, the fraction of viral, plasmid and other circular elements was small (<1.5%, Supplementary Table 6). Only Kraken and MEGAN 6 made predictions for the viral fraction of the data or predicted viruses to be present, though with low precision (<30%) and recall (<20%).

Profiling challenge

Taxonomic profilers predict the identity and relative abundance of the organisms (or higher level taxa) from a microbial community using a metagenome sample. This does not result in classification labels for individual reads or contigs, which is the aim of taxonomic binning methods. Instead, taxonomic profiling is used to study the composition, diversity, and dynamics of clusters of distinct communities of organisms in a variety of environments [START_REF] Arumugam | Enterotypes of the human gut microbiome[END_REF][START_REF]Structure, function and diversity of the healthy human microbiome[END_REF][START_REF] Koren | A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets[END_REF] . In some use cases, such as identification of potentially pathogenic organisms, accurate determination of the presence or absence of a particular taxon is important. In comparative studies (such as quantifying the dynamics of a microbial community over an ecological gradient), accurately determining the relative abundance of organisms is paramount.

Members of the community submitted results for ten taxonomic profilers to the CAMI challenge: CLARK [START_REF] Ounit | fast and accurate classification of metagenomic and genomic sequences using discriminative kmers[END_REF] ; 'Common kmers' (an early version of MetaPalette [START_REF] Koslicki | MetaPalette: a k-mer Painting Approach for Metagenomic Taxonomic Profiling and Quantification of Novel Strain Variation[END_REF] , abbreviated CK in the figures); DUDes 31 ; FOCUS 32 ; MetaPhlAn 2.0 33 ; Metaphyler 34 ; mOTU [START_REF] Sunagawa | Metagenomic species profiling using universal phylogenetic marker genes[END_REF] ; a combination of Quikr 36 , ARK [START_REF] Koslicki | ARK: Aggregation of Reads by K-Means for Estimation of Bacterial Community Composition[END_REF] , and SEK 38 (abbreviated Quikr); Taxy-Pro [START_REF] Klingenberg | Protein signaturebased estimation of metagenomic abundances including all domains of life and viruses[END_REF] ; and TIPP [START_REF] Nguyen | TIPP: taxonomic identification and phylogenetic profiling[END_REF] . For several programs, results were submitted with multiple versions or different parameter settings, bringing the number of unique submissions to twenty.

Performance trends

We employed commonly used metrics (Supplementary Material 'Profiling Metrics') to assess the quality of taxonomic profiling submissions with regard to the biological questions outlined above. These can be divided into abundance metrics (L1 norm and weighted Unifrac [START_REF] Lozupone | UniFrac: a new phylogenetic method for comparing microbial communities[END_REF] )and binary classification measures (true positives, false positives, false negatives, recall, and precision). In short, the abundance metrics assess how well a particular method reconstructs the relative abundances in comparison to the gold standard. The binary classification metrics assess how well a particular method detects the presence or absence of an organism in comparison to the gold standard, irrespective of their abundances. All metrics except the Unifrac metric (which is rank independent) are defined at each taxonomic rank.

We observed a large degree of variability in reconstruction fidelity for all profilers across metrics, taxonomic ranks, and samples. Each had a unique error profile, with different profilers showing different strengths and weaknesses (Fig. 3a). In spite of this variability, when comparing results for each sample, a number of patterns emerged. The profilers could be placed in three categories: (1) profilers that correctly predicted the relative abundances, (2) precise ones, and (3) profilers with high recall (sensitivity). To quantify this observation, we determined the following summary statistics: for each metric, on each sample, we ranked the profilers by their performance. Each was assigned a score for its ranking (0 for first place among all tools at a particular taxonomic rank for a particular sample, 1 for second place, etc.). These scores were then added over the taxonomic ranks and summed over the samples, to give a global performance score (Fig. 3b, Supplementary Figs P1-P7, Supplementary Table 7).

Among the profilers analyzed, MetaPhyler exhibited the best performance at inferring the relative abundances of organisms in a sample. The profilers with the highest recall were Quikr, Tipp, Taxy-Pro, and CLARK (Fig. 3), indicating their suitability for pathogen detection, where failure to identify an organism can have severe negative consequences. The profilers with the highest recall were also among the least precise (Supplementary Figs P8-P12) where low precision was typically due to prediction of a large number of low abundance organisms. In terms of precision, MetaPhlAn 2.0 and "Common Kmers" demonstrated an overall superior performance, indicating that these two are best at only predicting organisms that are actually present in a given sample and suggesting their use in scenarios where many false positives can cause unwanted increases in costs and effort in downstream analysis.

The programs that best reconstructed the relative abundances were MetaPhyler, FOCUS, TIPP, Taxy-Pro, and CLARK, making such profilers desirable for analyzing organismal abundances between and among metagenomic samples.

Often, a balance between precision and recall is desired. To assess this, we took for each profiler one half of the sum of precision and recall and averaged this over all samples and taxonomic ranks. The top performing programs by this criterion were Taxy-Pro v0, (mean=0.616), MetaPhlAn 2.0 (mean=0.603), and DUDes v0 (mean=0.596).

Performance at different taxonomic ranks

Most profilers performed well at higher taxonomic ranks (Fig. 3c and Supplementary Figs. P8-P12). A high recall was achieved until family level, and degraded substantially below. For example, over all samples and tools at the phylum level, the mean±SD recall was 0.845±0.194, and the median L1 norm was 0.382±0.280, both values close to each of these metrics' optimal value (ranging from 1 to 0 and 0 to 2, respectively). The precision had the largest variability among the metrics, with a mean phylum level value of 0.529 with a standard deviation of 0.549. Precision and recall were simultaneously high for several methods (DUDes, Common Kmers, mOTU, and MetaPhlAn 2.0) until the rank of order. We observed that accurately reconstructing a taxonomic profile is still difficult for the genus level and below. Even for the low complexity sample, only MetaPhlAn 2.0 maintained its precision down to the species level, while the maximum recall at genus rank for the low complexity sample was 0.545 for Quikr. Across all profilers and samples, there was a drastic average decrease in performance between the family and genus level of 47.5±14.9% and 51.6±18.1% for recall and precision, respectively. In comparison, there was little change between the order and family levels, with a decrease of only 9.7±6.9% and 8.8±26.4% for recall and precision, respectively. The other error metrics showed similar performance trends for all samples and methods (Figs 3c and Supplementary Figs. P13-P17).

Parameter settings and software versions

Several profilers were submitted with different parameter settings or versions (Supplementary Table 1). For some, this had little effect: for instance, the variance in recall among 7 different versions of FOCUS on the low complexity sample at the family level was only 0.002. For others, this caused large changes in performance: for instance, one version of DUDes had twice the recall compared to another at the phylum level on the pooled high complexity sample (Supplementary Figs. P13-P17).

Interestingly, a few developers chose not to submit results beyond a fixed taxonomic rank, such as for Taxy-Pro and Quikr. These submissions generally performed better than default program versions submitted by the CAMI team; indicating that, not surprisingly, experts can generate better results than when using a program's default setting.

Performance for viruses and plasmids

In addition to microbial sequence material, the challenge datasets also included sequences of plasmids, viruses and other circular elements (Supplementary Table 7). We investigated the effect of including these data in the gold standard profile for the taxonomic profilers (Supplementary Figs P18-P20). Here, the term "filtered" is used to indicate the gold standard did not include these data, and the term "unfiltered" indicates use of these data. The metrics affected by the presence of these data were the abundance-based metrics (L1 norm at the superkingdom level and Unifrac), and precision and recall (at the superkingdom level). All methods correctly detected Bacteria and Archaea, indicated by a recall of 1.0 at the superkingdom level on the filtered samples. The only methods to detect viruses in the unfiltered samples were MetaPhlAn 2.0 and CLARK. Averaging over all methods and samples, the L1 norm at the superkingdom level increased from 0.051 for the filtered samples to 0.287 for the unfiltered samples. Similarly, the Unifrac metric increased from 7.213 for the filtered to 12.361 for the unfiltered datasets. Thus, a substantial decrease in the fidelity of abundance estimates was caused by the presence of viruses and plasmids in a sample.

Taxonomic profilers vs. profiles derived from taxonomic binning

We compared the profiling results to those generated by several taxonomic binners using a simple coverage-approximation conversion algorithm for deriving profiles from taxonomic bins (Supplementary Methods, Figs P21-P24). Overall, the taxonomic binners were comparable to the profilers in terms of precision and recall: at the order level, the mean precision over all taxonomic binners was 0.595 (versus 0.401 for the profilers) and the mean recall was 0.816 (versus 0.857 for the profilers).

Two binners, MEGAN 6 and PhyloPythiaS+, had better recall than the profilers at the family level, with the degradation in performance past the family level being evident for the binners as well. However for precision at the family level, PhyloPythiaS+ was the fourth, after the profilers CK_v0, MetaPhlan 2.0, and the binner taxator-tk (Supplementary Figs P21-P22).

Abundance estimation at higher ranks was more problematic for the binners, as the L1 norm error at the order level was 1.07 when averaged over all samples, while the profilers average was only 0.681. Overall, though, the binners delivered slightly more accurate abundance estimates, as the binning average Unifrac metric was 7.03, while the profiling average was 7.23. These performance differences may in part be due to the use of the gold standard contigs as input by the binners except for MEGAN 6, though oftentimes Kraken is also applied to raw reads, while most profilers used the raw reads.

CONCLUSIONS

Determination of program performance is essential for assessing the state of the art in computational metagenomics. However, a lack of consensus about benchmarking datasets and evaluation metrics has complicated comparisons and their interpretation. To tackle this problem, CAMI has engaged the global developer community in a benchmarking challenge, with more than 40 teams initially registering for the challenge and 19 teams handing in submissions for the three different challenge parts. This was achieved by providing benchmark datasets of unprecedented complexity and degree of realism, generated exclusively from around 700 newly sequenced microbial genomes and 600 novel viruses, plasmids and other circular elements. These spanned a range of evolutionary divergences from each other and from publicly available reference collections. We implemented commonly used metrics in close collaboration with the computational and applied metagenomics communities and agreed on the metrics most important for common research questions and biological use cases in microbiome research using metagenomics. To be of practical value to researchers, the program submissions have to be reproducible, which requires knowledge of parameter settings and program versions.

In CAMI, we have taken steps to ensure reproducibility by development of dockerbased bioboxes [START_REF] Chikhi | Space-efficient and exact de Bruijn graph representation based on a Bloom filter[END_REF] and encouraging developer submissions of bioboxes for the benchmarked metagenome analysis tools, enabling their standardized execution and format usages. The benchmark datasets, along with the CAMI benchmarking platform are provided, allowing further result submissions and their automated evaluation on the challenge data sets, to facilitate benchmarking of further programs.

The evaluation of assembly programs revealed a clear advantage for assemblers using a range of k-mers compared to single k-mer assemblies. While single k-mer assemblies reconstructed only genomes with a certain coverage (small k-mers for low abundant genomes, large k-mers for high abundant genomes), using multiple kmers significantly improved the fraction of genomes recovered from a metagenomic data set. An unsolved challenge of metagenomic assembly for all programs is the reconstruction of closely related genomes. A poor assembly quality or lack of assembly for these genomes will negatively impact subsequent contig binning as the contigs of the affected genomes will be missing in the assembly output, further complicating their study.

In evaluation of the genome and taxonomic binners, all programs were found to perform surprisingly well at genome reconstruction, if no closely related strains were present. Taxonomic binners performed acceptably in taxon bin reconstruction down to the family rank. This leaves a gap in species and genus-level reconstruction that is to be closed, also for taxa represented by single strains in a microbial community.

Taxonomic binners achieved a better precision in genome reconstruction than in species or genus-level binning, raising the possibility that a part of the decrease of performance in low ranking taxon assignment is due to limitations of the reference taxonomy used. A sequence-derived reference phylogeny might represent a more suitable framework for -in that case -"phylogenetic" binning. Another challenge for all programs is the deconvolution of strain-level diversity, which we found to be substantially less effective than binning of genomes without close relatives present.

For the typically covariance of read coverage based genome binners it may require substantially larger numbers of replicate samples than those analyzed here (up to 5) to attain a satisfactory performance.

Despite of a large variability in performance amongst the submitted profilers, most profilers performed well with good recall and low errors in abundance estimates until the family rank, with precision being the most variable of these metrics. The use of different classification algorithms, reference taxonomies, reference databases and information sources (marker gene versus genome wide k-mer based) are likely contributors to the observed performance differences. Similarly to taxonomic binners, performance across all metrics substantially decreased for the genus level and below. Also when taking plasmids and viruses into consideration for abundances estimates, the performance of all programs decreased substantially, indicating a need for further development to enable a better analysis of datasets with such content, as plasmids are likely to be present and viral particles are not always removed by size filtration [START_REF] Thomas | Metagenomics -a guide from sampling to data analysis[END_REF] .

As both the sequencing technologies and the computational metagenomics programs continue to evolve rapidly, CAMI will continue to provide benchmarking challenges to the community. Long read technologies such as those by Oxford Nanopore, Illumina and PacBio [START_REF] Koren | One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly[END_REF] are expected to become more common in metagenomics, which will in turn require other assembly methods and may allow a better resolution of closely related genomes from metagenomes. In the future, we also plan to tackle assessment of runtimes and RAM requirements, to determine program suitability for different use cases, such as execution on individual desktop machines or as part of computational metagenome pipelines provided by MG-RAST [START_REF] Wilke | The MG-RAST metagenomics database and portal in 2015[END_REF] , EMG [START_REF] Mitchell | EBI metagenomics in 2016--an expanding and evolving resource for the analysis and archiving of metagenomic data[END_REF] or IMG/M [START_REF] Chen | IMG/M: integrated genome and metagenome comparative data analysis system[END_REF] .

We invite everyone interested to join and work with CAMI on providing comprehensive performance overviews of the computational metagenomics toolkit, to inform developers about current challenges in computational metagenomics and applied scientists of the most suitable software for their research questions.

MATERIALS AND METHODS

Community involvement

We organized public workshops, roundtables, hackathons and a research programme around CAMI at the Isaac Newton Institute for Mathematical Sciences (Supplementary Fig. M1), to decide on the principles realized in data set and challenge design. To determine the most relevant metrics for performance evaluation, a meeting with developers of evaluation software and of commonly used binning, profiling and assembly software was organized. Subsequently we created biobox containers implementing a range of commonly used performance metrics, including the ones decided as most relevant in this meeting (Supplementary Table 8).

Computational support for challenge participants was provided by the Pittsburgh Supercomputing Centre.

Standardization and reproducibility

For performance assessment, we developed several standards: we defined output formats for profiling and binning tools, for which no widely accepted standard existed.

Secondly, standards for submitting the software itself, along with parameter settings and required databases were defined and implemented in docker container templates named bioboxes [START_REF] Belmann | Bioboxes: standardised containers for interchangeable bioinformatics software[END_REF] These enable the standardized and reproducible execution of submitted programs from a particular category. Challenge participants were encouraged to submit the results together with their software in a docker container following the bioboxes standard. In addition to 23 bioboxes submitted by challenge participants, we generated 13 additional bioboxes and ran them on the challenge datasets (Supplementary Table 1), working with the developers to define the most suitable execution settings, if possible. For several submitted programs, bioboxes using default settings were created, to compare performance with default and expert chosen parameter settings. If required, the bioboxes can be rerun on the challenge datasets.

Genome sequencing and assembly

Draft genomes of 310 type strain isolates were generated at the DOE Joint Genome Institute (JGI) using the Illumina technology 48 9). Additionally, 488 isolates from the root and rhizosphere of Arabidopsis thaliana were sequenced [START_REF] Bai | Functional overlap of the Arabidopsis leaf and root microbiota[END_REF] . All sequenced environmental genomes were assembled using the A5 assembly pipeline (default parameters, version 20141120) [START_REF] Coil | A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data[END_REF] and are available for download at https://data.camichallenge.org/participate).

A quality control of all assembled genomes was performed based on tetranucleotide content analysis and taxonomic analyses (Supplementary Methods "Taxonomic annotation"), resulting in 689 genomes that were used for the challenge (Supplementary Table 9). Furthermore, we generated 1.7 Mb or 598 novel circular sequences of plasmids, viruses and other circular elements from multiple microbial community samples of rat caecum (Supplementary Methods, 'Data generation').

Challenge datasets

We simulated three metagenome datasets of different organismal complexities and sizes from the genome sequences of 689 newly sequenced bacterial and archaeal isolates and 598 sequences of plasmids, viruses and other circular elements (Supplementary Methods "Metagenome simulation", Supplementary Tables 3,6 Supplementary Figs D1 ,D2). These datasets represent common experimental setups and specifics of microbial communities. 

  Illumina standard shotgun libraries were constructed and sequenced using the Illumina HiSeq 2000 platform. All general aspects of library construction and sequencing performed at the JGI can be found at http://www.jgi.doe.gov. All raw Illumina sequence data was passed through DUK, a filtering program developed at JGI, which removes known Illumina sequencing and library preparation artifacts [Mingkun L, Copeland A, Han J. DUK, unpublished, 2011]. Genome sequences of isolates from culture collections are available in the JGI genome portal (Supplementary Table

Figure 1 :

 1 Figure 1: Boxplots representing the fraction of reference genomes assembled by each assembler for the high complexity data set. (a): all genomes, (b): genomes with

Figure 2 :

 2 Figure 2: Average precision (x-axis) and recall (y-axis) for genome binners (a,b) and taxonomic binners (c,d) by genome, and their standard errors (bars), for unique strains with equal to or less than 95% ANI to other (a,c) and common strains with more than 90% ANI to each other (b,d). For each program and complexity dataset, the submission with the largest sum of precision and recall is shown (Supplementary Tables 1, 10, 11, 12, 13). Bars denote the standard error of the mean across genome

  each case, small bins adding up to 1% of the data set size overall were removed. (e,f) Taxonomic binning performance metrics across ranks for the medium complexity data set, with (e) results for the complete data set and (f) with smallest predicted bins summing up to 1% of the data set removed. Shaded areas indicate the standard error of the mean in precision and recall across taxa.

Figure 3 :

 3 Figure 3: (a) Relative performance of profilers for different ranks and with different error metrics (Weighted unifrac, L1 norm, recall, precision, and false positives), shown here exemplarily for the microbial portion of the first high complexity sample. Each error metric was divided by its maximal value to facilitate viewing on the same scale and relative performance comparisons. A method's name is given in red (with two asterisks) if it returned no predictions at the corresponding taxonomic rank. (b) Best scoring profilers using different performance metrics summed over all samples and taxonomic ranks. A lower score indicates that a method was more frequently ranked highly for a particular metric. The maximum (worst) score for the Unifrac metric is 38 = (18 + 11+ 9) profiling submissions for the low, medium and high complexity datasets respectively), while the maximum score is 228 for all other metrics (= 6 taxonomic ranks * (18 + 11+ 9) profiling submissions for the low, medium and high complexity datasets respectively). (c) Absolute recall and precision for each profiler on the microbial (filtered) portion of the low complexity data set across six taxonomic ranks. Abbreviations are FS (FOCUS), T-P (Taxy-Pro), MP2.0 (MetaPhlAn 2.0), MPr (Metaphyler) and D (DUDes).

Table 3

 3 

	) the assembly statistics varied

Table 1 :

 1 The three datasets consist of a 15 Gb Optionally, they could provide an executable biobox implementing their software together with specifications of parameter settings and reference databases used. Submissions of assembly results were accepted until 05/20/2015. Subsequently, a gold standard assembly was provided for all datasets and samples, which was suggested as input for taxonomic binning and profiling. Provision of this assembly gold standard allowed us to decouple the performance analyses of binning and profiling tools from assembly performance. Developers could submit their binning and profiling results until 07/18/2015. Overall, 215 submissions were obtained from initially 19 external teams and CAMI developers, with 17 teams consenting to publish for the three challenge datasets and samples (Supplementary Table1), representing 25 different programs. The genome data used to generate the simulated datasets was kept confidential until the end of the challenge and then released[START_REF] Bai | Functional overlap of the Arabidopsis leaf and root microbiota[END_REF] . The CAMI challenge and toy datasets including the gold standard are available for download and in the CAMI benchmarking platform, where further predictions can be submitted Computational metagenomics programs evaluated in the CAMI challenge.

	single sample dataset from a low complexity community (40 genomes and 20 circular
	elements), a 40 Gb differential abundance dataset with two samples of a medium
	complexity community (132 genomes and 100 circular elements) and long and short
	insert sizes, as well as a 75 Gb time series dataset with five samples from a high
	complexity community (596 genomes and 478 circular elements). Some important
	properties that were realized in these benchmark datasets are: All included species
	represented by single and by multiple strains, to explore the effect of strain diversity
	on program performance. They also included viruses, plasmids and other circular
	elements, to assess their impact on program performances. All datasets furthermore
	included genomes at different evolutionary distances to those in reference
	databases, to explore their effect on taxonomic binning. The data generation pipeline
	is	available	on	GitHub	and	as	a	Docker	container	at
	https://hub.docker.com/r/cami/emsep/.					
	Challenge Organization							
	The first CAMI challenge benchmarked software for sequence assembly, taxonomic
	profiling and (taxonomic) binning. To allow developers to familiarize themselves with
	the data types, biobox-containers and in-and output formats, we provided simulated
	datasets from public data together with a standard of truth before the start of the
	challenge (Supplementary Figures M1, M2, https://data.cami-challenge.org/).
	Reference datasets of RefSeq, NCBI bacterial genomes, SILVA 50 , and the NCBI
	taxonomy from 04/30/2014 were prepared for taxonomic binning and profiling tools,
	to allow performance comparisons for reference-based tools based on the same
	reference datasets. For future benchmarking of reference-based programs with the
	challenge datasets, it will be important to use these reference datasets, as the
	challenge data have subsequently become part of public reference data collections.	

The CAMI challenge started on 03/27/2015. Challenge participants had to register on the website for download of the challenge datasets, with 40 teams registered at that time. They could then submit their predictions for all datasets or individual samples thereof. and a range of metrics calculated for benchmarking (https://data.camichallenge.org/participate).
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Genome fraction (%) unique (ANI < 95%)